Skip to main content

Reducing Losses in Magnetic Thin Films Through Nanoscale Surface Patterning

  • Conference paper
  • First Online:
Proceedings of the IV Advanced Ceramics and Applications Conference

Abstract

Biaxially textured nickel ferrite (NFO) thin films were grown by chemical solution deposition on c-plane sapphire substrates. Crystal structure and chemical composition was evaluated using X-ray Diffraction (XRD). Nanoimprint lithography (NIL) technique using a polydimethylsiloxane (PDMS) stamp was used imprint the films. A method for large scale precise patterning of was demonstrated. Quality of the transferred pattern was evaluated using atomic force (AFM) and transmission electron microscopies (TEM). Magnetic measurements were performed using superconducting quantum interference device (SQUID) and showed large decrease of coercivity in patterned samples. Probable causes for coercivity reduction have been investigated and surface patterning has been shown to be the direct cause of the coercivity reduction phenomena. Coercivity reduction has been shown to translate to thicker films with layer-by-layer manufacturing method yielding better results. The effect of changing the surface pattern on the topography, crystallography and magnetic properties was investigated and different trends were observed for the measurements done with the magnetic field parallel and perpendicular to the film surface. In all cases, the coercivity was reduced relative to the planar (nonpatterned) films and relative to the base layer onto which the patterned film was deposited. All films showed a similar magnetic response as indicated by similarities in the curve shape. Crystallography measurements showed the imprint process did not affect the grain growth and orientation regardless of the surface feature size as indicated by all films having virtually identical diffraction patterns. The lower limit of surface patterning here was shown to be around 500 nm. Below 750 nm, the pattern quality degraded and the feature height reduced. The domain configurations of the planar and patterned films were investigated. Deviation from the expected domain configuration was found in the patterned films. The origin of the observed domain structure and coercivity reduction has been shown to be the surface topography induced change in the minimum energy configuration of the sample. This results in the minimization of the total sample magnetization through formation of stripe domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.D. Cullity, C.D. Graham, Introduction to magnetic materials, 2nd edn. (IEEE/Wiley, Hoboken, NJ, 2009)

    Google Scholar 

  2. H. Kronmüller, S.S.P. Parkin, Handbook of magnetism and advanced magnetic materials (Wiley, Hoboken, NJ, 2007)

    Book  Google Scholar 

  3. N.A. Spaldin, Magnetic materials: fundamentals and applications, 2nd edn. (Cambridge University Press, Cambridge, New York, 2011)

    Google Scholar 

  4. J.D. Adam, S.V. Krishnaswamy, S.H. Talisa, K.C. Yoo, Thin-Film Ferrites for Microwave and Millimeter-Wave Applications. J. Magn. Magn. Mater. 83, 419–424 (1990)

    Article  Google Scholar 

  5. E. Otsuki, S. Yamada, T. Otsuka, K. Shoji, T. Sato, Microstructure and physical properties of Mn-Zn ferrites for high-frequency power supplies. J. Appl. Phys. 69, 5942–5944 (1991)

    Article  Google Scholar 

  6. J. Smit, H.P.J. Wijn, G.E. Luton, Ferrites: physical properties of ferrimagnetic oxides in relation to their technical applications. [S.l.: s.n.] (Wiley, USA, 1959)

    Google Scholar 

  7. U. Luders, A. Barthelemy, M. Bibes, K. Bouzehouane, S. Fusil, E. Jacquet, et al., NiFe2O4: A versatile spinel material brings new opportunities for spintronics. Adv. Mat. 18, 1733–1736 (2006)

    Google Scholar 

  8. G. Dixit, J.P. Singh, R.C. Srivastava, H.M. Agrawal, R.J. Choudhary, A. Gupta, Structural and magnetic behaviour of NiFe2O4 thin film grown by pulsed laser deposition. Indian J. Pure Appl. Phys. 48, 287–291 (2010)

    Google Scholar 

  9. R.C. Rai, S. Wilser, M. Guminiak, B. Cai, M.L. Nakarmi, Optical and electronic properties of NiFe2O4 and CoFe2O4 thin films. Appl. Phys. A-Mat. Sci. Process 106, 207–211 (2012)

    Article  Google Scholar 

  10. M. Srivastava, A.K. Ojha, S. Chaubey, A. Materny, Synthesis and optical characterization of nanocrystalline NiFe2O4 structures. J. Alloy. Compd. 481, 515–519 (2009)

    Article  Google Scholar 

  11. M.G. Chapline, S.X. Wang, Spin filter based tunnel junctions. J. Appl. Phys. 100 (2006)

    Google Scholar 

  12. P. Zhao, Z.L. Zhao, D. Hunter, R. Suchoski, C. Gao, S. Mathews, et al., Fabrication and characterization of all-thin-film magnetoelectric sensors. Appl. Phys. Lett. 94 (2009)

    Google Scholar 

  13. S.Y. Chou, Patterned magnetic nanostructures and quantized magnetic disks. Proc. IEEE 85, 652–671 (1997)

    Article  Google Scholar 

  14. C.A. Ross, S. Haratani, F.J. Castano, Y. Hao, M. Hwang, M. Shima et al., Magnetic behavior of lithographically patterned particle arrays (invited). J. Appl. Phys. 91, 6848–6853 (2002)

    Article  Google Scholar 

  15. M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D-Appl. Phys. 38, R123–R152 (2005)

    Article  Google Scholar 

  16. L.Z. Lin, Y.W. Li, A.K. Soh, F.X. Li, A pencil-like magnetoelectric sensor exhibiting ultrahigh coupling properties. J. Appl. Phys. 113 (2013)

    Google Scholar 

  17. C.N. Chinnasamy, S.D. Yoon, A. Yang, A. Baraskar, C. Vittoria, V.G. Harris, Effect of growth temperature on the magnetic, microwave, and cation inversion properties on NiFe2O4 thin films deposited by pulsed laser ablation deposition. J. Appl. Phys. 101 (2007)

    Google Scholar 

  18. G.H. Jaffari, A.K. Rumaiz, J.C. Woicik, S.I. Shah, Influence of oxygen vacancies on the electronic structure and magnetic properties of NiFe2O4 thin films. J. Appl. Phys. 111 (2012)

    Google Scholar 

  19. C.M. Williams, D.B. Chrisey, P. Lubitz, K.S. Grabowski, C.M. Cotell, The magnetic and structural-properties of pulsed-laser deposited epitaxial MnZn-ferrite films. J. Appl. Phys. 75, 1676–1680 (1994)

    Article  Google Scholar 

  20. R. Datta, S. Kanuri, S.V. Karthik, D. Mazumdar, J.X. Ma, A. Gupta, Formation of antiphase domains in NiFe2O4 thin films deposited on different substrates, Appl. Phys. Lett. 97 (2010)

    Google Scholar 

  21. P. Samarasekara, R. Rani, F.J. Cadieu, S.A. Shaheen, Variable texture NiO/Fe2O3 ferrite films prepared by pulsed laser deposition. J. Appl. Phys. 79, 5425–5427 (1996)

    Article  Google Scholar 

  22. J.H. Park, Y.K. Jeong, S. Ryu, J.Y. Son, H.M. Jang, Electric-field-control of magnetic remanence of NiFe2O4 thin film epitaxially grown on Pb(Mg1/3Nb2/3)O-3-PbTiO3. Appl. Phys. Lett. 96 (2010)

    Google Scholar 

  23. M.T. Johnson, P.G. Kotula, C.B. Carter, Growth of nickel ferrite thin films using pulsed-laser deposition. J. Cryst. Growth 206, 299–307 (1999)

    Article  Google Scholar 

  24. F. Rigato, S. Estrade, J. Arbiol, F. Peiro, U. Luders, X. Marti et al., Strain-induced stabilization of new magnetic spinel structures in epitaxial oxide heterostructures. Mat. Sci. Eng. B-Solid State Mat. Adv. Technol. 144, 43–48 (2007)

    Article  Google Scholar 

  25. S. Venzke, R.B. van Dover, J.M. Phillips, E.M. Gyory, T. Siegrist, C.H. Chen, et al., Epitaxial growth and magnetic behavior of NiFe2O4 thin films. J. Mat. Res. 11, 1187–1198 (1996)

    Google Scholar 

  26. R. Datta, B. Loukya, N. Li, A. Gupta, Structural features of epitaxial NiFe2O4 thin films grown on different substrates by direct liquid injection chemical vapor deposition. J. Cryst. Growth 345, 44–50 (2012)

    Article  Google Scholar 

  27. N. Li, Y.H.A. Wang, M.N. Iliev, T.M. Klein, A. Gupta, Growth of atomically smooth epitaxial nickel ferrite films by direct liquid injection CVD. Chem. Vap. Deposition 17, 261–269 (2011)

    Article  Google Scholar 

  28. A.G. Fitzgerald, An investigation of the growth of nickel ferrite films on magnesium-oxide substrates. J. Mat. Sci. 22, 1887–1893 (1987)

    Article  Google Scholar 

  29. D.M. Lind, S.D. Berry, G. Chern, H. Mathias, L.R. Testardi, Characterization of the structural and magnetic-ordering of Fe3O4/NiO superlattices grown by oxygen-plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 70, 6218–6220 (1991)

    Article  Google Scholar 

  30. R.J. Kennedy, Growth of epitaxial films of iron oxide, nickel oxide, cobalt oxide, strontium hexagonal ferrite, and yttrium iron garnet by laser ablation. J. Appl. Phys. 79, 4570 (1996)

    Article  Google Scholar 

  31. G.F. Qiao, Y. Hong, G.P. Song, Potential sensor based on electrochemical NiFe2O4 film prepared by EB-PVD. IEEE Sens. J. 12, 2664–2665 (2012)

    Article  Google Scholar 

  32. S. Seifikar, B. Calandro, E. Deeb, E. Sachet, J.J. Yang, J.P. Maria, et al., Structural and magnetic properties of biaxially textured NiFe2O4 thin films grown on c-plane sapphire. J. Appl. Phys. 112 (2012)

    Google Scholar 

  33. S. Seifikar, B. Calandro, G. Rasic, E. Deeb, J. Yang, N. Bassiri-Gharb et al., Optimized growth of heteroepitaxial (111) NiFe2O4 thin films on (0001) sapphire with two in-plane variants via chemical solution deposition. J. Am. Ceram. Soc. 96, 3050–3053 (2013)

    Google Scholar 

  34. S. Seifikar, A. Tabei, E. Sachet, T. Rawdanowicz, N. Bassiri-Gharb, J. Schwartz, Growth of (111) oriented NiFe2O4 polycrystalline thin films on Pt(111) via sol-gel processing. J. Appl. Phys. 112 (2012)

    Google Scholar 

  35. Y.N. Xia, G.M. Whitesides, Soft lithography. Angewandte Chemie-International Edition 37, 551–575 (1998)

    Article  Google Scholar 

  36. L.J. Guo, Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495–513 (2007)

    Article  Google Scholar 

  37. O.F. Gobel, M. Nedelcu, U. Steiner, Soft lithography of ceramic patterns. Adv. Funct. Mater. 17, 1131–1136 (2007)

    Article  Google Scholar 

  38. C. Peroz, V. Chauveau, E. Barthel, E. Sondergard, Nanoimprint lithography on silica sol-gels: a simple route to sequential patterning. Adv. Mat. 21, 555–558 (2009)

    Google Scholar 

  39. S.S. Dinachali, M.S.M. Saifullah, R. Ganesan, E.S. Thian, C.B. He, A universal scheme for patterning of oxides via thermal nanoimprint lithography. Adv. Funct. Mater. 23, 2201–2211 (2013)

    Article  Google Scholar 

  40. T. Higashiki, T. Nakasugi, I. Yoneda, Nanoimprint lithography for semiconductor devices and future patterning innovation. Altern. Lithogr. Technolo. Iii, 7970 (2011)

    Google Scholar 

  41. M. Malloy, L.C. Litt, Step and flash imprint lithography for semiconductor high volume manufacturing. J. Photopolym. Sci. Technol. 23, 749–756 (2010)

    Article  Google Scholar 

  42. D. Cheyns, K. Vasseur, C. Rolin, J. Genoe, J. Poortmans, P. Heremans, Nanoimprinted semiconducting polymer films with 50 nm features and their application to organic heterojunction solar cells. Nanotechnology, 19 (2008)

    Google Scholar 

  43. R.F. Pease, S.Y. Chou, Lithography and other patterning techniques for future electronics. Proc. IEEE 96, 248–270 (2008)

    Article  Google Scholar 

  44. W. Wu, Z.N. Yu, S.Y. Wang, R.S. Williams, Y.M. Liu, C. Sun, et al., Midinfrared metamaterials fabricated by nanoimprint lithography. Appl. Phys. Lett. 90 (2007)

    Google Scholar 

  45. S.X. Dai, Y. Wang, D.B. Zhang, X. Han, Q. Shi, S.J. Wang et al., Fabrication of surface-patterned ZnO thin films using sol-gel methods and nanoimprint lithography. J. Sol-Gel. Sci. Technol. 60, 17–22 (2011)

    Article  Google Scholar 

  46. T. Glinsner, P. Lindner, M. Muhlberger, I. Bergmair, R. Schoftner, K. Hingerl et al., Fabrication of 3D-photonic crystals via UV-nanoimprint lithography. J. Vac. Sci. Technol. B 25, 2337–2340 (2007)

    Article  Google Scholar 

  47. J.B. Goodenough, Summary of losses in magnetic materials. IEEE Transac. Magnet. 38, 3398–3408 (2002)

    Article  Google Scholar 

  48. S. Sakka, Handbook of sol-gel science and technology: processing, characterization and applications. Kluwer Academic, Boston, Mass, London (2005)

    Google Scholar 

  49. C.J. Brinker, G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing (Academic Press, Boston, 1990)

    Google Scholar 

  50. N. Sahu, B. Parija, S. Panigrahi, Fundamental understanding and modeling of spin coating process: a review. Indian J. Phys. Proceed. Indian Assoc. Cultivation Sci. 83, 493–502 (2009)

    Google Scholar 

  51. G.A. Luurtsema, Spin coating for rectangular substrates: electronics research laboratory, college of engineering, University of California (1997)

    Google Scholar 

  52. V. Trabadelo, H. Schift, S. Merino, S. Bellini, and J. Gobrecht, Measurement of demolding forces in full wafer thermal nanoimprint. Microelectro. Eng. 85, 907–909 (2008)

    Google Scholar 

  53. R. Kirchner, A. Finn, R. Landgraf, L. Nueske, M. Vogler, W.J. Fischer, UV-based nanoimprint lithography: Toward direct patterning of functional polymers. J. Photopolym. Sci. Technol. 25, 197–206 (2012)

    Article  Google Scholar 

  54. G. Kreindl, T. Glinsner, R. Miller, D. Treiblmayr, R. Fodisch, High accuracy UV-nanoimprint lithography step-and-repeat master stamp fabrication for wafer level camera application. J. Vacuum Sci. Technol. B, 28, C6m57–C6m62 (2010)

    Google Scholar 

  55. K. Ishibashi, H. Goto, T. Kasahara, J. Mizuno, S. Shoji, Large area nano pattern fabrication using improved step and repeat UV nanoimprint. J. Photopolym. Sci. Technol. 25, 235–238 (2012)

    Article  Google Scholar 

  56. C. Peroz, S. Dhuey, M. Volger, Y. Wu, D. Olynick, S. Cabrini, Step and repeat UV nanoimprint lithography on pre-spin coated resist film: a promising route for fabricating nanodevices. Nanotechnology, 21 (2010)

    Google Scholar 

  57. H. Yoshikawa, J. Taniguchi, G. Tazaki, T. Zento, Fabrication of high-aspect-ratio pattern via high throughput roll-to-roll ultraviolet nanoimprint lithography. Microelectron. Eng. 112, 273–277 (2013)

    Article  Google Scholar 

  58. R. Inanami, T. Ojima, K. Matsuki, T. Kono, T. Nakasugi, Sub-100 nm pattern formation by roll-to-roll nanoimprint. Altern. Lithogr. Technol. Iv, 8323 (2012)

    Google Scholar 

  59. T. Ruotsalainen, K. Solehmainen, J. Hiitola-Keinanen, J. Hast, M. Kansakoski, H. Gold, et al., Towards roll-to-roll manufacturing: organic thin film transistors based on nanoimprint lithography technique. In: Proceedings of the 8th International Conference on Multi-Material Micro Manufacture (4 m 2011), pp. 325–327

    Google Scholar 

  60. H. Lan, Y. Ding, H. Liu, Nanoimprint lithography: principles, processes and materials (Nova Science Publishers Inc, New York, 2011)

    Google Scholar 

  61. W. Zhou, Nanoimprint lithography: an enabling process for nanofabrication (Springer, New York, 2012)

    Google Scholar 

  62. H. Kim, D. Kim, C. Lee, J. Kim, Laser interference lithography using spray/spin photoresist development method for consistent periodic nanostructures. Curr. Appl. Phys. 14, 209–214 (2014)

    Article  Google Scholar 

  63. J. de Boor, D.S. Kim, V. Schmidt, Sub-50 nm patterning by immersion interference lithography using a Littrow prism as a Lloyd’s interferometer. Opt. Lett. 35, 3450–3452 (2010)

    Article  Google Scholar 

  64. T.M. Bloomstein, M.F. Marchant, S. Deneault, D.E. Hardy, M. Rothschild, 22-nm immersion interference lithography. Opt. Express 14, 6434–6443 (2006)

    Article  Google Scholar 

  65. A. Bagal, C.-H. Chang, Fabrication of subwavelength periodic nanostructures using liquid immersion Lloyd’s mirror interference lithography. Opt. Lett. 38, 2531–2534 (2013)

    Article  Google Scholar 

  66. J.-H. Jang, C.K. Ullal, T. Gorishnyy, V.V. Tsukruk, E.L. Thomas, Mechanically tunable three-dimensional elastomeric network/air structures via interference lithography. Nano Lett. 6, 740–743 (2006)

    Article  Google Scholar 

  67. H.I. Smith, Low cost nanolithography with nanoaccuracy. Physica E 11, 104–109 (2001)

    Article  Google Scholar 

  68. C.G. Chen, P.T. Konkola, R.K. Heilmann, C. Joo, M.L. Schattenburg, Nanometer-accurate grating fabrication with scanning beam interference lithography (2002), pp. 126–134

    Google Scholar 

  69. K.H. Ralf, G.C. Carl, T.K. Paul, L.S. Mark, Dimensional metrology for nanometre-scale science and engineering: towards sub-nanometre accurate encoders. Nanotechnology 15, S504 (2004)

    Article  Google Scholar 

  70. T.B. O’Reilly, H.I. Smith, Linewidth uniformity in Lloyd’s mirror interference lithography systems. J. Vac. Sci. Technol., B 26, 2131–2134 (2008)

    Article  Google Scholar 

  71. R.K. Heilmann, C.G. Chen, P.T. Konkola, M.L. Schattenburg, Dimensional metrology for nanometre-scale science and engineering: towards sub-nanometre accurate encoders. Nanotechnology 15, S504–S511 (2004)

    Article  Google Scholar 

  72. G. Rasic, J. Schwartz, Nanoimprint lithographic surface patterning of sol–gel fabricated nickel ferrite (NiFe2O4). MRS Communications 3, 207–211 (2013)

    Article  Google Scholar 

  73. G. Rasic, J. Schwartz, Coercivity reduction in nickel ferrite (NiFe2O4) thin films through surface patterning. Mag. Lett. IEEE 5, 1–4 (2014)

    Article  Google Scholar 

  74. G. Rasic, J. Schwartz, On the origin of coercivity reduction in surface patterned magnetic thin films, Physica Status Solidi (a), 212, 449–458 (2015)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the NSF (HRD-1345219 and DMR-1523617) and NASA (NNX09AV07A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goran Rasic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Atlantis Press and the author(s)

About this paper

Cite this paper

Rasic, G., Vlahovic, B., Schwartz, J. (2017). Reducing Losses in Magnetic Thin Films Through Nanoscale Surface Patterning. In: Lee, B., Gadow, R., Mitic, V. (eds) Proceedings of the IV Advanced Ceramics and Applications Conference. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-213-7_4

Download citation

  • DOI: https://doi.org/10.2991/978-94-6239-213-7_4

  • Published:

  • Publisher Name: Atlantis Press, Paris

  • Print ISBN: 978-94-6239-212-0

  • Online ISBN: 978-94-6239-213-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics