Skip to main content

Interaction of UV Irradiation with Thin Films of Organic Molecules

  • Conference paper
  • First Online:

Abstract

There is an ongoing interest in organic materials due to their application in various organic electronic devices. However stability of organic materials limits their potential use. They are prone to degradation both during the working life and storage. One of the main causes is extrinsic degradation, under the influence of oxygen and moisture. This problem can be solved by encapsulation of devices. However no encapsulation is perfect. This paper presents a study of interaction of thin films of well-known organic blue emitters, namely N,N′-bis(3-methylphenyl)-N,N′-bis(phenyl)benzidine (TPD) and 4,4′-bis(2,2-diphenylvinyl)-1,1′-biphenyl (DPVBi), with UV light in air. Films of both materials are stable in vacuum, but readily degrade in the presence of oxygen. Thus, the necessary condition for interaction (degradation) is the simultaneous presence of UV light and oxygen. Chemical analysis of irradiated films by mass and infrared spectroscopy revealed presence of oxidized species (impurities). These impurities are responsible for increased morphological stability of irradiated films and quenching of photoluminescence (PL). Only small amount of impurities, 0.4 % (0.2 %) for TPD (DPVBi), causes 50 % decrease of PL. This implies a non-trivial mechanism of quenching. For both molecules it was found that distance between impurities is smaller or equal to exciton diffusion length, which is the necessary condition for quenching. Following mechanism of quenching is proposed: exciton diffuses by hopping form one host molecule (DPVBi or TPD) to another through Förster resonant energy transfer in a random walk manner. If, during its lifetime, it comes to proximity of an impurity, a PL quenching process occurs. Findings of this study are important because they show that even a small amount of oxygen that penetrates a blue emitter layer would impair luminescence efficiency of a device. Moreover, the absorption of its own radiation would additionally contribute to the rate of degradation of a device. It is reasonable to expect that transport properties would also be affected when materials are used as a hole-transporting layer in OLEDs.

This work was supported by the Serbian Ministry of Education, Science and Technological Development, projects nos. 171033 and 41028.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H. Neugebauer, C. Brabec, J.C. Hummelen, N.S. Sariciftci, Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells. Sol. Energy Mater. Sol. Cells 61, 35–42 (2000)

    Article  Google Scholar 

  2. K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D.D.C. Bradley, J.R. Durrant, Degradation of organic solar cells due to air exposure. Sol. Energy Mater. Sol. Cells 90, 3520–3530 (2006)

    Article  Google Scholar 

  3. R. Pacios, A.J. Chatten, K. Kawano, J.R. Durrant, D.D.C. Bradley, J. Nelson, Effects of photo-oxidation on the performance of poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylene vinylene]:[6]-phenyl C61-butyric acid methyl ester solar cells. Adv. Funct. Mater. 16, 2117–2126 (2006)

    Article  Google Scholar 

  4. S. Cook, A. Furube, R. Katoh, Matter of minutes degradation of poly(3-hexylthiophene) under illumination in air. J. Mater. Chem. 22, 4282–4289 (2012)

    Article  Google Scholar 

  5. S. Schmidbauer, A. Hohenleutner, B. König, Studies on the photodegradation of red, green and blue phosphorescent OLED emitters. Beilstein J. Org. Chem. 9, 2088–2096 (2013)

    Article  Google Scholar 

  6. P.E. Burrows, V. Bulovic, S.R. Forrest, L.S. Sapochak, D.M. McCarty, M.E. Thompson, Reliability and degradation of organic light emitting devices. Appl. Phys. Lett. 65, 2922–2924 (1994)

    Article  Google Scholar 

  7. A.B. Chwang, M.A. Rothman, S.Y. Mao, R.H. Hewitt, M.S. Weaver, J.A. Silvernail, K. Rajan, M. Hack, J.J. Brown, X. Chu, L. Moro, T. Krajewski, N. Rutherford, Thin film encapsulated flexible organic electroluminescent displays. Appl. Phys. Lett. 83, 413–415 (2003)

    Article  Google Scholar 

  8. J.-S. Park, H. Chae, H.K. Chung, S.I. Lee, Thin film encapsulation for flexible AM-OLED: a review. Semicond. Sci. Technol. 26, 034001 (2011)

    Article  Google Scholar 

  9. F. So, D. Kondakov, Degradation mechanisms in small-molecule and polymer organic light emitting diodes. Adv. Mater. 22, 3762–3777 (2010)

    Article  Google Scholar 

  10. R. Siefert, S. Scholz, B. Lüssem, K. Leo, Comparison of ultraviolet- and charge-induced degradation phenomena in blue fluorescent organic light emitting diodes. Appl. Phys. Lett. 97, 013308 (2010)

    Article  Google Scholar 

  11. A. Maliakal, K. Raghavachari, H. Katz, E. Chandross, T. Siegrist, Photochemical stability of pentacene and a substituted pentacene in solution and in thin films. Chem. Mater. 16, 4980–4986 (2004)

    Article  Google Scholar 

  12. A.B. Djurišić, T.W. Lau, C.Y. Kwong, L.S.M. Lam, W.K. Chan, Evolution of optical properties of tris (8-hydroxyquinoline) aluminum (Alq3) with atmosphere exposure. Proc. SPIE 4800, 200–207 (2003)

    Article  Google Scholar 

  13. V.K. Shukla, S. Kumar, D. Deva, Light induced effects on the morphology and optical properties of tris-(8-hydroxyquinoline) aluminium (Alq3) small molecular thin film. Synth. Metals 156, 387–391 (2006)

    Article  Google Scholar 

  14. T. Zyung, J.-J. Kim, Photodegradation of poly(p-phenylenevinylene) by laser light at the peak wavelength of electroluminescence. Appl. Phys. Lett. 67, 3420–3422 (1995)

    Article  Google Scholar 

  15. H. Hintz, H.-J. Egelhaaf, L. Lüer, J. Hauch, H. Peisert, T. Chassé, Photodegradation of P3HT—a systematic study of environmental factors. Chem. Mater. 23, 145–154 (2011)

    Article  Google Scholar 

  16. L. Lüer, H.-J. Egelhaaf, D. Oelkrug, G. Cerullo, G. Lanzani, B.-H. Huisman, D. de Leeuw, Oxygen-induced quenching of photoexcited states in polythiophene films. Org. Electron. 5, 83–89 (2004)

    Article  Google Scholar 

  17. K.W. Von Benz, H.C. Wolf, Die konzentrationsabhängigkeit der energie-übertragung in anthracen-tetracen-mischkristallen. Z. Naturforschg. 19a, 177–181 (1964)

    Google Scholar 

  18. M. Pope, C.E. Swenberg, Electronic processes in organic crystals and polymers, 2nd edn. (Oxford University Press, New York, 1999)

    Google Scholar 

  19. S. Winter, S. Reineke, K. Walzer, K. Leo, Photoluminescence degradation of blue OLED emitters. Proc. SPIE 6999, 69992N (2008)

    Article  Google Scholar 

  20. G. Nenna, M. Barra, A. Cassinese, R. Miscioscia, T. Fasolino, P. Tassini, C. Minarini, D. della Sala, Insights into thermal degradation of organic light emitting diodes induced by glass transition through impedance spectroscopy. J. App. Phys. 105, 123511 (2009)

    Google Scholar 

  21. H. Mattoussi, H. Murata, C.D. Merritt, Y. Iizumi, J. Kido, Z.H. Kafafi, Photoluminescence quantum yield of pure and molecularly doped organic solid films. J. App. Phys. 86, 2642–2650 (1999)

    Article  Google Scholar 

  22. T. Fukuda, B. Wei, M. Ichikawa, Y. Taniguchi, Transient characteristics of organic light-emitting diodes with efficient energy transfer in emitting material. Thin Solid Films 518, 567–570 (2009)

    Article  Google Scholar 

  23. K. Naito, A. Miura, Molecular design for non-polymeric organic dye glasses with thermal stability: relations between thermodynamic parameters and amorphous properties. J. Phys. Chem. 97, 6240–6248 (1993)

    Article  Google Scholar 

  24. S. Wang, W.J. Oldham Jr., R.A. Hudack Jr., G.C. Bazan, Synthesis, morphology, and optical properties of tetrahedral oligo(phenylenevinylene) materials. J. Am. Chem. Soc. 122, 5695–5709 (2000)

    Article  Google Scholar 

  25. WSxM software can be downloaded from the following address http://www.wsxmsolutions.com/

  26. M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. van Dam, D. Wang, J. Nieplocha, E. Apra, T.L. Windus, W.A. de Jong, NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 181, 1477–1489 (2010)

    Article  MATH  Google Scholar 

  27. E.M. Han, J.J. Yun, G.C. Oh, S.M. Park, N.K. Park, Y.S. Yoon, M. Fujihira, Enhanced stability of organic thin films for electroluminescence by photoirradiation. Opt. Mater. 21, 243–248 (2003)

    Article  Google Scholar 

  28. Y. Qiu, J. Qiao, Photostability and morphological stability of hole transporting materials used in organic electroluminescence. Thin Solid Films 372, 265–270 (2000)

    Article  Google Scholar 

  29. E. Suljovrujić, M. Mićić, S. Demic, V.I. Srdanov, Combinatorial approach to morphology studies of epitaxial thin films. Appl. Phys. Lett. 88, 121902 (2006)

    Article  Google Scholar 

  30. X. Zhang, Z. Wuan, B. Jiao, D. Wang, D. Wang, X. Hou, W. Huang, Solution-processed white organic light-emitting diodes with mixed-host structures. J. Lumin. 132, 697–701 (2012)

    Article  Google Scholar 

  31. P.M. Borsenberger, J.J. Fitzgerald, Effects of the dipole moment on charge transport in disordered molecular solids. J. Phys. Chem. 97, 4815–4819 (1993)

    Article  Google Scholar 

  32. R. Blossey, Thin film rupture and polymer flow. Phys. Chem. Chem. Phys. 10, 5177–5183 (2008)

    Article  Google Scholar 

  33. D. Kondakov, Role of chemical reactions of arylamine hole transport materials in operational degradation of organic light-emitting diodes. J. Appl. Phys. 104, 084520–084528 (2008)

    Article  Google Scholar 

  34. S.-Z. Wang, X. Fan, A.-L. Zheng, Y.-G. Wang, Y.-Q. Dou, X.-Y. Wei, Y.-P. Zhao, R.-Y. Wang, Z.-M. Zong, W. Zhao, Evaluation of atmospheric solids analysis probe mass spectrometry for the analysis of coal-related model compounds. Fuel 117, 556–563 (2014)

    Article  Google Scholar 

  35. I. Reva, L. Lapinski, N. Chattopadhyay, R. Fausto, Vibrational spectrum and molecular structure of triphenylamine monomer: a combined matrix-isolation FTIR and theoretical study. Phys. Chem. Chem. Phys. 5, 3844–3850 (2003)

    Article  Google Scholar 

  36. J. Workman Jr., The Handbook of Organic Compounds (Academic Press, San Diego, 2000)

    Google Scholar 

  37. F.-C. Wu, H.-L. Cheng, W.-Y. Chou, Studies of blue organic electroluminescent devices using the polymer/dopant systems as a light-emitting layer. Proc. SPIE 6655, 66551P (2007)

    Article  Google Scholar 

  38. R. Scholz, L. Gisslén, C. Himcinschi, I. Vragović, E.M. Calzado, E. Louis, E.S.F. Maroto, M.A. Díaz-García, Asymmetry between absorption and photoluminescence line shapes of TPD: spectroscopic fingerprint of the twisted biphenyl core. J. Phys. Chem. A 113, 315–324 (2009)

    Article  Google Scholar 

  39. P.E. Burrows, Z. Shen, V. Bulovic, D.M. McCarty, S.R. Forrest, J.A. Cronin, M.E. Thompson, Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices. J. Appl. Phys. 79, 7991–8006 (1996)

    Article  Google Scholar 

  40. D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953)

    Article  Google Scholar 

  41. Th Förster, 10th Spiers memorial lecture. Transfer mechanisms of electronic excitation. Discuss. Faraday Soc. 27, 7–17 (1959)

    Article  Google Scholar 

  42. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer Science+Business Media, New York, 2006)

    Book  Google Scholar 

  43. T. Tsuboi, A.K. Bansal, A. Penzkofer, Fluorescence and phosphorescence behavior of TPD doped and TPD neat films. Thin Solid Films 518, 835–838 (2009)

    Article  Google Scholar 

  44. K.O. Cheon, J. Shinar, Förster energy transfer in combinatorial arrays of selective doped organic light-emitting devices. Appl. Phys. Lett. 84, 1201–1203 (2004)

    Article  Google Scholar 

  45. W. Holzer, A. Penzkofer, H.-H. Horhold, Travelling-wave lasing of TPD solutions and neat films. Synth. Met. 113, 281–287 (2000)

    Article  Google Scholar 

  46. M.P. Joshi, S. Raj Mohan, T.S. Dhami, B. Jain, M.K. Singh, H. Ghosh, T. Shripathi, U.P. Deshpande, Enhanced optoelectronic properties of UV-light-induced photodegraded TPD. Appl. Phys. A 90, 351–358 (2008)

    Article  Google Scholar 

  47. S. Raj Mohan, M.P. Joshi, S.K. Tiwari, V.K. Dixit, T.S. Dhami, Electrical and optical characterization of photooxidized TPD. J. Mater. Chem. 17, 343–348 (2007)

    Article  Google Scholar 

  48. H.-N. Liu, G. Zhang, L. Hu, P.-F. Su, Y.-F. Li, 4,4′-Bis(2,2-diphenylvinyl)-1,1′-biphenyl. Acta Cryst. E67, o220 (2011)

    Google Scholar 

  49. T. Virgili, D.G. Lidzey, D.D.C. Bradley, Efficient energy transfer from blue to red in tetraphenylporphyrin-doped poly(9,9-dioctylfluorene) light-emitting diodes. Adv. Mater. 12, 58–62 (2000)

    Article  Google Scholar 

  50. E. Suljovrujic, A. Ignjatovic, V.I. Srdanov, T. Mitsumori, F. Wudl, Intermolecular energy transfer involving an iridium complex studied by a combinatorial method. J. Chem. Phys. 121, 3745–3750 (2004)

    Article  Google Scholar 

  51. W. Klöpffer, Transfer of electronic excitation energy in polyvinyl carbazole. J. Chem. Phys. 50, 2337–2343 (1969)

    Article  Google Scholar 

  52. D.C. Northrop, O. Simpson, Electronic properties of aromatic hydrocarbons. II Fluorescence transfer in solid Solutions. Proc. R. Soc. Lond. A 234, 136–149 (1956)

    Article  Google Scholar 

  53. C. Madigan, V. Bulović, Modeling of exciton diffusion in amorphous organic thin films. Phys. Rev. Lett. 96, 046404 (2006)

    Article  Google Scholar 

  54. T.-S. Ahn, N. Wright, C.J. Bardeen, The effects of orientational and energetic disorder on Forster energy migration along a one-dimensional lattice. Chem. Phys. Lett. 446, 43–48 (2007)

    Google Scholar 

  55. S.M. Menke, R.J. Holmes, Exciton diffusion in organic photovoltaic cells. Energy Environ. Sci. 7, 499–512 (2014)

    Article  Google Scholar 

  56. H. Choukri, A. Fischer, S. Forget, S. Chénais, M.-C. Castex, D. Adès, A. Siove, B. Geffroy, White organic light-emitting diodes with fine chromaticity tuning via ultrathin layer position shifting. Appl. Phys. Lett. 89, 183513 (2006)

    Article  Google Scholar 

  57. O.V. Mikhnenko, M. Kuik, J. Lin, N. van der Kaap, T.-Q. Nguyen, P.W.M. Blom, Trap-limited exciton diffusion in organic semiconductors. Adv. Mater. 26, 1912–1917 (2014)

    Article  Google Scholar 

  58. Z. Zhang, E. Burkholderb, J. Zubieta, Non-merohedrally twinned crystals of N, N′-bis(3-methylphenyl)-N, N′-bis(phenyl)benzidine: an excellent triphenylamine-based hole transporter. Acta Cryst. C60, o452–o454 (2004)

    Google Scholar 

  59. Z.H. Kafafi, H. Murata, L.C. Picciolo, H. Mattoussi, C.D. Merritt, Y. Iizumi, J. Kido, Electroluminescent properties of functional π-electron molecular systems. Pure Appl. Chem. 71, 2085–2094 (1999)

    Article  Google Scholar 

  60. G.J. Kavarnos, Fundamentals of photoinduced electron transfer (VCH Publishers, New York, 1993)

    Google Scholar 

  61. G. Schwartz, Novel concepts for high-efficiency white organic light-emitting diodes (PhD thesis), Dresden: Technischen Universität Dresden, 2007

    Google Scholar 

  62. J.B. Birks, The photophysics of aromatic excimers, in The exciplex, ed. by M. Gordon, W.R. Ware (Academic Press, New York, 1975), pp. 39–73

    Chapter  Google Scholar 

Download references

Acknowledgment

We thank Vojislav I. Srdanov for generous donation of his PVD apparatus and fruitful discussion. We acknowledge Zoran Velikić and Dragan Dramlić for UV−Vis spectroscopy, Suzana Veličković and Branislav Nastasijević for mass spectroscopy and Katarina Radulović for IR spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar Ž. Tomović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Atlantis Press and the author(s)

About this paper

Cite this paper

Tomović, A.Ž., Đurišić, I., Žikić, R., Pejić, M., Jovanović, V.P. (2017). Interaction of UV Irradiation with Thin Films of Organic Molecules. In: Lee, B., Gadow, R., Mitic, V. (eds) Proceedings of the IV Advanced Ceramics and Applications Conference. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-213-7_23

Download citation

  • DOI: https://doi.org/10.2991/978-94-6239-213-7_23

  • Published:

  • Publisher Name: Atlantis Press, Paris

  • Print ISBN: 978-94-6239-212-0

  • Online ISBN: 978-94-6239-213-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics