Skip to main content

Ceramic Matrix Composites for High Performance Friction Applications

  • Conference paper
  • First Online:
Proceedings of the IV Advanced Ceramics and Applications Conference

Abstract

Ceramic Matrix Composites (CMC) show due to their fiber reinforcement high strength, thermal shock resistance and damage tolerance, a low coefficient of thermal expansion (CTE) and a partially porous and micro-cracks containing matrix. Hence, C-fiber reinforced silicon carbide materials (C/SiC resp. C/C-SiC), manufactured by the LSI (Liquid Silicon Infiltration) process, are very suitable for friction applications, e.g. for brake discs and pads, because of their low wear rates and high coefficients of friction (COF). Fundamental studies and ongoing investigations are the basis for the introduction of fiber reinforced ceramic brake discs for passenger cars since more than 10 years. Today, C/SiC friction materials can be found in emergency brakes for elevators, conveying systems and passenger cars. With respect to the selected friction couple, the tribological performance remains on a high level over a large range of sliding speed and braking pressure. In order to develop C/SiC lifetime brakes for passenger cars, the corresponding brake pads have to be modified appropriately as well. Within a certain friction system, the C/SiC ceramic brake discs withstand a mileage up to 300,000 km, compared with about 70,000 km of grey cast iron rotors. The economic success of these innovative, damage tolerant ceramics depends on the further reduction of the fabrication costs, which are considerable higher, compared to the competing metallic materials. This article describes the technological steps in the development of ceramic friction materials and the current status. It gives an overview about the most important, forthcoming challenges in terms of the material’s development and processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.L. Schmidt, K.E. Davidson, L.S. Theibert, Unique applications of carbon/carbon composite materials, part 1. SAMPE J. 25, 3 (1999)

    Google Scholar 

  2. D.J. Holt, Aircraft braking systems. Aerospace Eng. 1993

    Google Scholar 

  3. Concorde brakes by DUNLOP are C/C. Aircraft Eng. 48, 9 (1976)

    Google Scholar 

  4. G.M. Savage, Carbon/Carbon Composites (Chapman and Hall, London, 1993)

    Google Scholar 

  5. W. Krenkel, Entwicklung eines Verfahrens zur Herstellung von Bauteilen aus keramischen Verbundwerkstoffen, DLR-Forschungsbericht 2000–04 (2000)

    Google Scholar 

  6. H. Pfeiffer, W. Krenkel, B. Heidenreich, L. Schlenk, Bremsscheiben aus keramischen Verbundwerkstoffen für Schienenfahrzeuge, in Werkstoffe für die Verkehrstechnik, ed. by U. Koch (DGM Informationsgesellschaft, Frankfurt, Germany, 1997)

    Google Scholar 

  7. W. Krenkel, CMC materials for high performance brakes, Proceedings of the 27th International Symposium on Automotive Technology and Automation (ISATA). Conference on Hybrid and Alternative Fuel Vehicles and Supercars, Aachen, Germany, October 31–November 04 (1994)

    Google Scholar 

  8. B. Heidenreich, W. Krenkel, Development of C/C-SiC materials for friction applications, in Ceramics-Processing, Reliability, Tribology and Wear, EUROMAT 99, ed. by G. Müller, vol. 12 (Wiley-VCH, Weinheim, Germany, 1999)

    Google Scholar 

  9. J. Föhl, J. Wiedemeyer, Forschungsberichte der DKG 15, 1 (2000)

    Google Scholar 

  10. W. Krenkel, B. Heidenreich, R. Renz, C/C-SiC composites for advanced friction systems. Adv. Eng. Mater. 4(7) (2002)

    Google Scholar 

  11. W. Krenkel, R. Renz, B. Heidenreich, Lightweight and wear resistant CMC brakes, in Ceramic Materials and Components for Engines, ed. by J.G. Heinrich, F. Aldinger (Wiley-VCH, Weinheim, Germany, 2001)

    Google Scholar 

  12. W. Krenkel, Design of ceramic brake pads and disks. Ceram. Eng. Sci. Proc. 23(3) (2002)

    Google Scholar 

  13. W. Krenkel, T. Henke, N. Mason, In situ joined CMC components. Key Eng. Mater. Proceedings of the International Conference on Ceramic and Metal Matrix Composites CMMC 96, Part I (Trans Tech Publications Ltd., Zürich, Switzerland, 1997)

    Google Scholar 

  14. R. Renz, G. Seifert, W. Krenkel, Integration of CMC brake disks in automotive brake systems. Int. J. Appl. Ceram. Technol. 9(4) (2012)

    Google Scholar 

  15. J. Föhl, J. Wiedemeyer, Qualifikation von Faserverbundkeramik für Friktionsanwendungen [Kap. 8.3.1.3], in DKG-Handbuch, edited by J. Kriegesmann (Deutscher Wirtschaftsdienst, Köln, Germany, 2001)

    Google Scholar 

  16. W. Krenkel, Carbon fiber reinforced CMC for high-performance structures. Int. J. Appl. Ceram. Technol. I(2) (2004)

    Google Scholar 

  17. W. Krenkel, T. Henke, Design of high performance CMC brake disks, in High Temperature Ceramic Matrix Composites III, vol. 164–165, ed. by K Niihara, K. Nakano, T. Sekino, E. Yasuda, Key Engineering Materials (Trans Tech Publications, Zürich, Switzerland, 1998)

    Google Scholar 

  18. D. Neudeck, A. Wüllner, Bremsen mit nichtmetallischen Bremsscheiben, in Bremsenhandbuch, ed. by B. Breuer, K.H. Bill (Vieweg & Teubner/GWV Fachverlage, Wiesbaden, Germany, 2006)

    Google Scholar 

  19. Deutsches Institut für Normung, Gießereiwesen Gusseisen mit Lamellengraphit. DIN EN 1561 (Beuth Verlag, Berlin, Germany, 1997)

    Google Scholar 

  20. Duralcan Composites for Gravity Castings (Data Sheet Duralcan, San Diego, CA, USA, 1992)

    Google Scholar 

  21. Lanxide, ASM Al-342, Lanxide, 91-X-1060-30P-T6 (aluminum alloy-matrix composite). Alloy Digest (ASM International, Materials Park, OH, USA, AI-342, 2002)

    Google Scholar 

  22. P. Morgan, Carbon Fibers and Their Composites, 1st edn. (CRC Press, Boca Raton, FL, USA, 2005)

    Book  Google Scholar 

  23. SGL Group, SIGRASIC 6010 GNJ-Faserverstärkte Keramik für Bremsscheiben von SGL carbon (Data Sheet SGL Technik, Meitingen, Germany, 1999)

    Google Scholar 

  24. W. Krenkel, F. Berndt, Mater. Sci. Eng. A 412, 177–181 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Krenkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Atlantis Press and the author(s)

About this paper

Cite this paper

Krenkel, W., Langhof, N. (2017). Ceramic Matrix Composites for High Performance Friction Applications. In: Lee, B., Gadow, R., Mitic, V. (eds) Proceedings of the IV Advanced Ceramics and Applications Conference. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-213-7_2

Download citation

  • DOI: https://doi.org/10.2991/978-94-6239-213-7_2

  • Published:

  • Publisher Name: Atlantis Press, Paris

  • Print ISBN: 978-94-6239-212-0

  • Online ISBN: 978-94-6239-213-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics