Skip to main content

Structural Properties of Cu-Se-CuSe2 Thin Films

  • Conference paper
  • First Online:
Proceedings of the IV Advanced Ceramics and Applications Conference

Abstract

This paper describes the structural and optical properties of Cu-Se-CuSe2 thin films. The surface morphology of thin films was investigated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Formation of thin films is concluded to proceed unevenly, in the form of islands which later grew into agglomerates. The structural characterization of Cu-Se-CuSe2 thin film was investigated using X-ray diffraction pattern (XRD). The presence of two-phase system is observed. One is the solid solution of Cu in Se and the other is low-pressure modification of CuSe2. The Raman spectroscopy was used to identify and quantify the individual phases present in the films. Red shift and asymmetry of Raman mode characteristic for CuSe2 enable us to estimate nanocrystal dimension. In the analysis of the far-infrared reflection spectra, numerical model for calculating the reflectivity coefficient of layered system, which includes film with nanocrystallite inclusions (modeled by Maxwell–Garnet approximation) and substrate, has been applied. UV–VIS spectroscopy and photoluminescence spectroscopy are employed to estimate direct and indirect band gap of CuSe2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Gilic, J. Trajic, N. Romcevic, M. Romcevic, D. Timotijevic, G. Stanisic, I. Yahia, Optical properties of CdS thin films. Opt. Mat. 35, 1112–1117 (2013)

    Article  Google Scholar 

  2. N. Romcevic, M. Petrovic-Damjanovic, M. Romcevic, M. Gilic, L. Klopotowski, W. Dobrowolski, J. Kossut, I. Jankovic, M. Comor, Magnetic field influence on optical properties of Cd1−xMnxS (x = 0; 0.3) quantum dots: Photoluminescence study. J. Alloy. Comp. 553, 75–78 (2013)

    Article  Google Scholar 

  3. M. Gilic, N. Romcevic, M. Romcevic, D. Stojanovic, R. Kostic, J. Trajic, W. Dobrowolski, G. Karczewski, R. Galazka, Optical properties of CdTe/ZnTe self-assembled quantum dots: Raman and Photoluminescence spectroscopy. J. Alloy. Comp. 579, 330–335 (2013)

    Google Scholar 

  4. M. Rabasovic, D. Sevic, J. Krizan, M. Rabasovic, S. Savic-Sevic, M. Mitric, M. Petrovic, M. Gilic, N. Romcevic, Structural properties and luminescence kinetics of white nanophosphor YAG:Dy. Opt. Mat. 50, 250–255 (2015)

    Article  Google Scholar 

  5. B. Hadzic, N. Romcevic, M. Romcevic, I. Kuryliszin-Kudelska, W. Dobrowolski, M. Gilic, M. Petrovic Damjanovic, J. Trajic, U. Narkiewicz, D. Sibera, Raman study of surface optical phonons in ZnO(Co) nanoparticles prepared by calcination method. J. Optoelectron. Adv. Mat. 16, 508–512 (2014)

    Google Scholar 

  6. M. Petrović, N. Romčević, M. Romčević, G. Stanišić, D. Vasiljević-Radović, J. Trajić, Z. Lazarević, S. Kostić, Spectroscopy characterization of MnSe nanoclasters randomly distributed in HgMnTe single crystal. J. Crystal Growth 338, 75–79 (2012)

    Article  Google Scholar 

  7. R.D. Heyding, The copper/selenium system. Can. J. Chem. 44, 1233–1236 (1966)

    Article  Google Scholar 

  8. S. Gosavi, N. Deshpande, Y. Gudage, R. Sharma, Physical, optical and electrical properties of copper selenide (CuSe) thin films deposited by solution growth technique at room temperature. J. Alloy. Comp. 448, 334–338 (2008)

    Article  Google Scholar 

  9. P. Hankare, A. Khomane, P. Chate, K. Rathad, K. Garadkar, Preparation of copper selenide thin films by simple chemical route at low temperature and their characterization. J. Alloy. Comp. 469, 478–482 (2009)

    Article  Google Scholar 

  10. V.J. Fulari, V.P. Malekar, S.A. Gangawane, Measurement of properties of copper telluride thin films using holography. Prog. Electromagn. Res. C 12, 53–64 (2010)

    Article  Google Scholar 

  11. H.M. Pathan, C.D. Lokhande, D.P. Amalnerkar, T. Seth, Modified chemical deposition and physicochemical properties of copper (I) selenide thin films. Appl. Surf. Sci. 211, 48–56 (2003)

    Article  Google Scholar 

  12. Y. Takana, N. Uchiyama, S. Ogawa, N. Mori, Y. Kimishima, S. Arisawa, A. Ishii, T. Hatano, K. Togano, Superconducting properties of CuS2−xSex under high pressure. Phys. C 341, 739–740 (2000)

    Article  Google Scholar 

  13. G. Krill, P. Panissod, M.F. Lapierre, F. Gautier, C. Robert, M.N. Eddine, Magnetic properties and phase transitions of the metallic CuX2 dichalcogenides (X = S, Se, Te) with pyrite structure. J. Phys. C 9, 1521–1533 (1976)

    Article  Google Scholar 

  14. M. Kontani, T. Tutui, T. Moriwaka, T. Mizukoshi, Specific heat and NMR studies on the pyrite-type superconductors CuS2 and CuSe2. Phys. B 284, 675–676 (2000)

    Article  Google Scholar 

  15. V. Garcia, P. Nair, M. Nair, Copper selenide thin films by chemical bath deposition. J. Cryst. Growth 203, 113–124 (1999)

    Article  Google Scholar 

  16. A. Sobhani, M. Salavati-Niasari, A new simple route for the preparation of nanosized copper selenides under different conditions. Ceram. Inter. 40, 8173–8182 (2014)

    Google Scholar 

  17. P. Peranantham, Y. Jeyachandran, C. Viswanathan, N. Praveena, P. Chitra, D. Mangalaraj, S.K. Narayandass, The effect of annealing on vacuum-evaporated copper selenide and indium telluride thin films. Mater. Charact. 58, 756–764 (2007)

    Article  Google Scholar 

  18. H. Okimura, T. Matsumae, Electrical properties of Cu2−xSe thin films and their application for solar cells. Thin Solid Films 71, 53–59 (1980)

    Article  Google Scholar 

  19. G.G. Rusu, M. Rusu, M. Girtan, Optical characterization of vacuum evaporated CdZnTe thin films deposited by a multilayer method. Vacuum 81, 1476–1482 (2007)

    Article  Google Scholar 

  20. A.M. Hermman, L. Fabick, Research on polycrystalline thin-film photovoltaic devices. J. Crys. Growth 61, 658–664 (1983)

    Article  Google Scholar 

  21. D.J. Chakrabarti, D.E. Laughlin, The Cu-Se (Copper-Selenium) System. Bull. Alloy Phase Diagrams 2, 305–315 (1981)

    Article  Google Scholar 

  22. P. Cherin, P. Unger, The crystal structure of trigonal selenium locality: synthetic. Inorg. Chem. 6, 1589–1591 (1967)

    Article  Google Scholar 

  23. G. Gattow, Z. Arong, Allg. Chem. 340 (1965) (Calculated from ICSD using POWD-12++, 1997)

    Google Scholar 

  24. G. Lucovsky, A. Mooradian, W. Taylor, G.B. Wright, R.C. Keezer, Identification of the fundamental vibrational modes of trigonal, α-monoclinic and amorphous selenium. Solid State Commun. 5, 113–117 (1967)

    Article  Google Scholar 

  25. M.P. Chamberlain, C. Trallero-Giner, M. Cardona, Theory of one-phonon Raman scattering in semiconductor microcrystallites. Phys. Rev. B 51, 1680–1693 (1995)

    Article  Google Scholar 

  26. R. Roca, C. Trallero-Giner, M. Cardona, Polar optical vibrational modes in quantum dots. Phys. Rev. B 49, 13704–13711 (1994)

    Article  Google Scholar 

  27. E. Duval, Far-infrared and Raman vibrational transitions of a solid sphere: selection rules. Phys. Rev. B 46, 5795–5797 (1992)

    Article  Google Scholar 

  28. C. Trallero-Giner, A. Debernardi, M. Cardona, E. Menendez-Proupin, A.I. Ekimov, Optical vibrons in CdSe dots and dispersion relation of the bulk material. Phys. Rev. B 57, 4664–4669 (1998)

    Article  Google Scholar 

  29. J. Trajic, R. Kostic, N. Romčević, M. Romčević, M. Mitric, V. Lazovic, P. Balaz, D. Stojanovic, Raman spectroscopy of ZnS quantum dots. J. Alloy. Comp. 637, 401–406 (2015)

    Article  Google Scholar 

  30. C. Sourisseau, R. Cavagnat, M. Fouassier, The vibrational properties and valence force fields of FeS2, RuS2 Pyrites and FeS2 Marcasite. J. Phys. Chem. Solids, 52, 537–544 (1991)

    Google Scholar 

  31. X. Wu, M. Kanzaki, S. Qin, G. Steinle-Neumann, L. Dubrovinsky, Structural study of FeP2 at high pressure. High Press. Res. 29, 235–244 (2009)

    Article  Google Scholar 

  32. K. Karkkainen, A. Saviola, K. Nikoskinen, in IEEE Transaction on Geosciences and Remote Sensors, vol. 39, pp. 1013–1018 (2001)

    Google Scholar 

  33. M. Gilic, M. Petrovic, R. Kostic, D. Stojanovic, T. Barudzija, M. Mitric, N. Romcevic, U. Ralevic, J. Trajic, M. Romcevic, I. Yahia, Structural and optical properties of CuSe2 nanoparticles formed in thin solid Cu-Se film. Infrared Phys. Technol. 76, 276–284 (2015)

    Article  Google Scholar 

  34. J. Trajic, M. Gilic, N. Romcevic, M. Romcevic, G. Stanisic, Z. Lazarevic, D. Joksimovic, I. Yahia, Far-infrared investigations of the surface modes in CdS thin films. Phys. Scr. T162, 014031–014034 (2014)

    Article  Google Scholar 

  35. J. Trajić, N. Romčević, M. Gilić, M. Petrović Damjanović, M. Romčević, V.N. Nikiforov, Optical properties of PbTe0.95S0.05 single crystal at different temperatures: far-infrared study. J. Optoelectron. Adv. Mat. 6, 543–546 (2012)

    Google Scholar 

  36. R. Kostić, M. Petrović-Damjanović, N. Romčević, M. Romčević, D. Stojanović, M. Čomor, Far-infrared spectroscopy of Cd1−xMnxS quantum dots. J. Alloy. Comp. 521, 134–140 (2012)

    Article  Google Scholar 

  37. J.C.M. Garnett, Colours in metal glasses and in metallic films. Trans. R. Soc. CCIII, 385–420 (1904)

    Google Scholar 

  38. A. Saviola, I. Lindell, in PIER 6 Progress in Electromagnetic Research. Dielectric properties of heterogeneous materials (Amsterdam, Elsevier), pp. 101–51

    Google Scholar 

  39. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous Germanium. Phys. Status Solidi 15, 627 (1966)

    Article  Google Scholar 

  40. J. Tauc, F. Abeles, in Optical Properties of Solids (North Holland, 1972)

    Google Scholar 

  41. E. Davis, N. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Phil. Mag. 22, 903–922 (1970)

    Article  Google Scholar 

  42. P. Kubelka, F. Munk, Ein Beitrag zur Optik der Farbanstriche. Z. Tech. Phys. 12, 593–601 (1931)

    Google Scholar 

  43. R. Bari, V. Ganesan, S. Potadar, L. Patil, Structural, optical and electrical properties of chemically deposited copper selenide films. Bull. Mater. Sci. 32, 37–42 (2009)

    Article  Google Scholar 

  44. I. Grozdanov, Electroconductive copper selenide films on transparent polyester sheets. Synth. Metals. 63, 213 (1994)

    Google Scholar 

  45. G. Sakr, I. Yahia, M. Fadel, S. Fouad, N. Romcevic, Optical spectroscopy, optical conductivity, dielectric properties and new methods for determining the gap states of CuSe thin films. J. Alloy. Comp. 507, 557–562 (2010)

    Google Scholar 

  46. D. Rajesh, R. Chandrakanth, C. Sunandana, Annealing effects on the properties of copper selenide thin films for thermoelectric applications. J. Appl. Phys. 4, 65–69 (2013)

    Google Scholar 

  47. V.M. Bhuse, P.P. Hankare, K.M. Garadkar, A.S. Khomane, A simple, convenient, low temperature route to grow polycrystalline copper selenide thin films. Mater. Chem. Phys. 80, 82–87 (2003)

    Article  Google Scholar 

  48. G. Hodes, A. Albu-Yayor, F. Decker, P. Motisuke, High thin-film yield achieved at small substrate separation in chemical bath deposition of semiconductor thin films. Phys. Rev. B 36, 4215–4219 (1987)

    Article  Google Scholar 

  49. V. Garcı́a, M. Nair, P. Nair, R. Zingaro, Chemical deposition of bismuth selenide thin films using N,N-dimethylselenourea. Semicond. Sci. Technol. 12, 645–649 (1997)

    Google Scholar 

  50. S. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani, L. Laperriere, A. Reznik, J.A. Rowlands, Amorphous selenium and its alloys from early xeroradiography to high resolution X-ray image detectors and ultrasensitive imaging tubes. Phys. Status Solid 246, 1794–1801 (2009)

    Article  Google Scholar 

  51. M. Benkhedir, Defect levels in amorphous selenium bandgap. Katholieke Universiteit Leuven PhD Thesis (2006)

    Google Scholar 

  52. M. Singh, K. Bhahada, Y. Vijay, Optical band gap of In0.1Bi1.9Te3 thin films. Indian J. Pure Appl. Phys. 43, 129–135 (2005)

    Google Scholar 

  53. F.B. Li, H.Z. Li, Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment. Appl. Catal. A 228, 15–23 (2002)

    Article  Google Scholar 

  54. C.H. Shen, H.Y. Chen, H.-W. Lin, S. Gwo, A.A. Klochikhin, V.Y. Davydov, Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si (111) by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 88, 253104–253112 (2006)

    Article  Google Scholar 

  55. P. Wei, S. Chattopadhyay, F. Lin, C. Hsu, S. Jou, J. Chen, P. Huang, H. Hsu, H. Shih, K. Chen, L. Chen, Origin of the anomalous temperature evolution of Photoluminescence peak energy in degenerate InN nanocolumns. Opt. Express. 17, 1160–11697 (2009)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Serbian Ministry of Education, Science and Technological Development under Project III45003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gilić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Atlantis Press and the author(s)

About this paper

Cite this paper

Gilić, M. et al. (2017). Structural Properties of Cu-Se-CuSe2 Thin Films. In: Lee, B., Gadow, R., Mitic, V. (eds) Proceedings of the IV Advanced Ceramics and Applications Conference. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-213-7_18

Download citation

  • DOI: https://doi.org/10.2991/978-94-6239-213-7_18

  • Published:

  • Publisher Name: Atlantis Press, Paris

  • Print ISBN: 978-94-6239-212-0

  • Online ISBN: 978-94-6239-213-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics