Skip to main content

Nanoscale Aspects of Corrosion on Cultural Heritage Metals

  • Chapter
  • First Online:
Nanoscience and Cultural Heritage
  • 1618 Accesses

Abstract

Metallic artefacts are an important part of the cultural heritage and must be protected for the future generations. Unfortunately, classical metal protection methods used for example in industry, can in most of cases not be used in the context of the conservation of cultural heritage because artefacts must not be aesthetically modified and any protection treatment must be potentially removable without any damage to the artefact. For that reason, to set up efficient conservation strategies, it is necessary to understand and model the long term corrosion mechanisms. In addition to environmental monitoring and empirical approaches, the fine understanding of the corrosion systems, based on the use of multiscale characterisation techniques and methodologies is a key issue to understand the mechanisms and evaluate the degradation rates. This chapter reviews the cases for which investigations at nano scales are necessary to understand and model in a reliable way the corrosion behaviour of different metals (ferrous alloys and bronzes). Nanoscale investigation, also allows scientists to understand the way intentional patinas were made on ancient bronzes. Lastly, an example of the use of nanotechnology to set up an adapted and innovative protective treatment is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulagatov AI, Yan Y, Cooper JR, Zhang Y, Gibbs ZM, Cavanagh AS, Yang RG, Lee YC, George SM (2011) Al2O3 and TiO2 atomic layer deposition on copper for water corrosion resistance. ACS Appl Mater Interfaces 3:4593–4601. doi:10.1021/am2009579

    Article  CAS  Google Scholar 

  • Angelini E, Fracassi F, D’Agostino R, Grassini S, Rosalbino F (2004) PECVD of organosilicon thin films for corrosion protection of metals. In: Trends in electrochemistry and corrosion at the beginning of the 21st century, p 20

    Google Scholar 

  • Angelini E, Grassini S, Solorzano G, Campos GD, De Caro T (2006) Integrated approach to the characterization and conservation of artefacts of the Brazilian colonial period. Appl Phys A-Mater Sci Process 83:485–491. doi:10.1007/s00339-006-3544-x

    Article  CAS  Google Scholar 

  • Antony H, Peulon S, Legrand L, Chaussé A (2004) Electrochemical synthesis of lepidocrocite thin films on gold substrate—EQCM, IRRAS, SEM and XRD study. Electrochim Acta 50:1015–1021

    Article  CAS  Google Scholar 

  • Antony H, Legrand L, Maréchal L, Perrin S, Dillmann P, Chaussé A (2005) Study of lepidocrocite electrochemical reduction in neutral and slightly alkaline solutions at 25 °C. Electrochim Acta 51:745–753

    Article  CAS  Google Scholar 

  • Antony H, Perrin S, Dillmann P, Legrand L, Chaussé A (2007) Electrochemical study of indoor atmospheric corrosion layers formed on ancient iron artefacts. Electrochim Acta 52:7754–7759

    Article  CAS  Google Scholar 

  • Arribet-Deroin D (2001) Fondre le fer en gueuses au XVIe siècle. Le haut fourneau de Glinet en pays de Bray (Normandie). Paris I Sorbonne, Paris

    Google Scholar 

  • Aucouturier M, Mathis F, Robcis D, Castaing J, Salomon J, Pichon L, Delange E, Descamps S (2010) Intentional patina of metal archaeological artefacts: non-destructive investigation of Egyptian and Roman museum treasures. Corros Eng Sci Technol 45:314–321. doi:10.1179/147842210x12710800383567

    Article  CAS  Google Scholar 

  • Balta IZ, Pederzoli S, Iacob E, Bersani M (2009) Dynamic secondary ion mass spectrometry and X-ray photoelectron spectroscopy on artistic bronze and copper artificial patinas. Appl Surf Sci 255:6378–6385. doi:10.1016/j.apsusc.2009.02.020

    Article  CAS  Google Scholar 

  • Baše T, Bastl Z, Havránek V, Lang K, Bould J, Londesborough MGS, Macháček J, Plešek J (2010) Carborane–thiol–silver interactions. A comparative study of the molecular protection of silver surfaces. Surf Coat Technol 204:2639–2646. doi:10.1016/j.surfcoat.2010.02.019

    Article  Google Scholar 

  • Bataillon C, Musy C, Roy M (2001) Corrosion des surconteneurs de déchets, cas d’un surconteneur en acier faiblement allié. J Phys IV France 267–274

    Google Scholar 

  • Bataillon C, Bouchon F, Chainais-Hillairet C, Desgranges C, Hoarau E, Martin F, Perrin S, Tupin M, Talandier J (2010) Corrosion modelling of iron based alloy in nuclear waste repository. Electrochim Acta 55:4451–4467

    Article  CAS  Google Scholar 

  • Bernard MC, Joiret S (2009) Understanding corrosion of ancient metals for the conservation of cultural heritage. Electrochim Acta 54:5199–5205. doi:10.1016/j.electacta.2009.01.036

    Article  CAS  Google Scholar 

  • Bouchar M, Foy E, Neff D, Dillmann P (2013) The complex corrosion system of a medieval iron rebar from the Bourges’ Cathedral. Characterization and reactivity studies. Corros Sci 76:361–372. doi:10.1016/j.corsci.2013.07.007

    Article  CAS  Google Scholar 

  • Carcia PF, Mclean RS, Sauer BB, Reilly MH (2011) Atomic layer deposition ultra-barriers for electronic applications, strategies and implementation. J Nanosci Nanotechnol 11:7994–7998. doi:10.1166/jnn.2011.5075

    Article  CAS  Google Scholar 

  • Castro EB, Vilche JR, Arvia AJ (1991) Iron dissolution and passivation in K2CO3-KHCO3 solutions. rotating ring disc electrode and XPS studies. Corros Sci 32:37–50. doi:10.1016/0010-938X(91)90062-T

    Article  CAS  Google Scholar 

  • Chiavari C, Rahmouni K, Takenouti H, Joiret S, Vermaut P, Robbiola L (2007) Composition and electrochemical properties of natural patinas of outdoor bronze monuments. Electrochim Acta 52:7760–7769

    Article  CAS  Google Scholar 

  • Corfield M (1996) Preventive conservation for archaeological sites. In: Archaeological conservation and its consequences preprints of the contributions to the copenhagen congress, 26–30 August 1996. London, pp 32–37

    Google Scholar 

  • Corfield M, Williams J (2011) Review of “Preservation of archaeological remains in situ (PARIS 4).” e-conservation magazine 24–29

    Google Scholar 

  • D’Agostino R, Fracassi F, Favia P (1997) Plasma processing of polymers. Kluwer Academic Publishers, Berlin

    Google Scholar 

  • d’Agostino R, Fracassi F, Palumbo F, Angelini E, Grassini S, Rosalbino F (2005) Protection of silver-based alloys from tarnishing by means of plasma-enhanced chemical vapor deposition. Plasma Proc Polym 2:91–96. doi:10.1002/ppap.200400031

    Google Scholar 

  • Degrigny C (2010) Use of artificial metal coupons to test new protection systems on cultural heritage objects: manufacturing and validation. Corros Eng Sci Technol 45:367–374. doi:10.1179/147842210X12754747500649

    Article  CAS  Google Scholar 

  • Díaz B, Härkönen E, Światowska J, Maurice V, Seyeux A, Marcus P, Ritala M (2011a) Low-temperature atomic layer deposition of Al2O3 thin coatings for corrosion protection of steel: surface and electrochemical analysis. Corros Sci 53:2168–2175. doi:10.1016/j.corsci.2011.02.036

    Article  Google Scholar 

  • Díaz B, Światowska J, Maurice V, Seyeux A, Normand B, Härkönen E, Ritala M, Marcus P (2011b) Electrochemical and time-of-flight secondary ion mass spectrometry analysis of ultra-thin metal oxide (Al2O3 and Ta2O5) coatings deposited by atomic layer deposition on stainless steel. Electrochim Acta 56:10516–10523. doi:10.1016/j.electacta.2011.02.074

    Article  Google Scholar 

  • Dillmann P (2011) From Soissons to Beauvais : the use of iron in some French cathedrals. In: Hosek J, Cleere H, Lubomir Mihok (eds) The archaeometallurgy of iron—recent developments in archaeological and scientific research. Prague, pp 173–196

    Google Scholar 

  • Dillmann P, Arribet-Deroin D, Vega E, Benoit P (2003) Early modern cast iron and iron at Glinet. In: Jensen I-MP, Ohman U (eds). Jernkontorets Bergshistorika Utskott, pp 99–106

    Google Scholar 

  • Dillmann P, Mazaudier F, Hoerle S (2004) Advances in understanding atmospheric corrosion of iron I—rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion. Corros Sci 46:1401–1429

    Article  CAS  Google Scholar 

  • Dillmann P, Watkinson D, Angelini E, Adriens A (2013) Corrosion and conservation of cultural heritage metallic artefacts. Woodhead publishing, Oxford

    Book  Google Scholar 

  • Dillmann P, Neff D, Féron D (2014) Archaeological analogues and corrosion prediction: from past to future. A review. Corros Eng Sci Technol 49:567–576. doi:10.1179/1743278214Y.0000000214

    Article  CAS  Google Scholar 

  • Duran A, Herrera LK, de Haro MCJ, Justo A, Perez-Rodriguez JL (2008) Non-destructive analysis of cultural heritage artefacts from Andalusia, Spain, by X-ray diffraction with Göbel mirrors. Talanta 76:183–188. doi:10.1016/j.talanta.2008.02.025

    Article  CAS  Google Scholar 

  • Fracassi F, d’Agostino R, Palumbo F, Angelini E, Grassini S, Rosalbino F (2003) Application of plasma deposited organosilicon thin films for the corrosion protection of metals. Surf Coat Technol 174–175:107–111. doi:http://dx.doi.org/10.1016/S0257-8972(03)00422-5

    Google Scholar 

  • Hadsund P (1993) The tin-mercury mirror: its manufacturing technique and deterioration processes. Stud Conserv 38:3–16. doi:10.1179/sic.1993.38.1.3

    Google Scholar 

  • Han J, Young D, Colijn H, Tripathi A, Nešić S (2009) Chemistry and structure of the passive film on mild steel in CO2 corrosion environments. Ind Eng Chem Res 48:6296–6302. doi:10.1021/ie801819y

    Article  CAS  Google Scholar 

  • Herrera LK, Duran A, Franquelo M, Gonzales-Elipe A, Espinos J, Rubio-Zuazo J, Castro G, Justo A, Perez-Rodriguez JL (2008a) Study by grazing incident diffraction and surface spectroscopy of amalgams from ancient mirrors. Open Chemistry 7:47–53

    Google Scholar 

  • Herrera LK, Duran A, Franquelo ML, de Haro MCJ, Erbez AJ, Perez-Rodriguez JL (2008b) Studies of deterioration of the tin–mercury alloy within ancient Spanish mirrors. J Cult Heritage 9(Supplement):e41–e46. doi:10.1016/j.culher.2008.06.007

    Article  Google Scholar 

  • Herrera LK, Justo A, Perez-Rodriguez JL (2009) Study of nanocrystalline SnO2 particles formed during the corrosion processes of ancient amalgam mirrors. J Nano Res 8:99–107

    Article  CAS  Google Scholar 

  • Hiorns AH (1911) Metal-colouring and bronzing. MacMillan & Co, London

    Google Scholar 

  • Hollner S, Mirambet F, Rocca E, Reguer S (2010) Evaluation of new non-toxic corrosion inhibitors for conservation of iron artefacts. Corros Eng Sci Technol 45:362–366. doi:10.1179/147842210x12732285051311

    Article  CAS  Google Scholar 

  • Hughes R, Rowe M (1982) The colouring, bronzing and patination of metals. Crafts Council, London

    Google Scholar 

  • Ingo GM, De Caro T, Riccucci C, Angelini E, Grassini S, Balbi S, Bernardini P, Salvi D, Bousselmi L, Cilingiroglu A, Gener M, Gouda VK, Al Jarrah O, Khosroff S, Mahdjoub Z, Al Saad Z, El-Saddik W, Vassiliou P (2006) Large scale investigation of chemical composition, structure and corrosion mechanism of bronze archeological artefacts from Mediterranean basin. Appl Phys A-Mater Sci Process 83:513–520. doi:10.1007/s00339-006-3550-z

    Article  CAS  Google Scholar 

  • Kashima K, Hara S, Kishikawa H, Miyuki H (2001) Evaluation of protective ability of rust layers on weathering steels by potential measurement. Corros Eng 49:25–37

    Google Scholar 

  • Leon Y, Saheb M, Drouet E, Neff D, Foy E, Leroy E, Dynes JJ, Dillmann P (2014) Interfacial layer on archaeological mild steel corroded in carbonated anoxic environments studied with coupled micro and nano probes. Corros Sci 88:23–35. doi:10.1016/j.corsci.2014.07.005

    Article  CAS  Google Scholar 

  • Leroy S, L’Héritier M, Delqué-Kolic E, Dumoulin J-P, Moreau C, Dillmann P (2015) Consolidation or initial design? Radiocarbon dating of ancient iron alloys sheds light on the reinforcements of French Gothic Cathedrals. J Archaeol Sci 53:190–201. doi:10.1016/j.jas.2014.10.016

    Article  CAS  Google Scholar 

  • Leskelä M, Ritala M (2002) Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films 409:138–146. doi:10.1016/S0040-6090(02)00117-7

    Article  Google Scholar 

  • Marquardt AE, Breitung EM, Drayman-Weisser T, Gates G, Phaneuf RJ (2015) Protecting silver cultural heritage objects with atomic layer deposited corrosion barriers. Heritage Sci 3:1–12. doi:10.1186/s40494-015-0066-x

    Article  Google Scholar 

  • Matero R, Ritala M, Leskelä M, Salo T, Aromaa J, Forsén O (1999) Atomic layer deposited thin films for corrosion protection. J Phys IV France 09:Pr8–493–Pr8–499. doi:10.1051/jp4:1999862

    Google Scholar 

  • Matthiesen H, Gregory D, Jensen P, Sørensen B (2004a) Environmental monitoring at Nydam, a waterlogged site with weapon sacrifices from the Danish Iron age. I: a comparison of methods used and results from undisturbed conditions. J Wetland Archaeol 4:55–74

    Article  Google Scholar 

  • Matthiesen H, Salomonsen E, Sørensen B (2004b) The use of radiography and GIS to assess the deterioration of archaeological iron objects from a water logged environment. J Archaeol Sci 31:1451–1461

    Article  Google Scholar 

  • Michelin A, Drouet E, Foy E, Dynes JJ, Neff D, Dillmann P (2013) Investigation at the nanometer scale on the corrosion mechanisms of the archaeological ferrous artifacts by STXM. J Anal At Spectrom 28:59–66

    Article  CAS  Google Scholar 

  • Monnier J, Dillmann P, Legrand L, Guillot I (2010a) Corrosion of iron from heritage buildings: proposal for degradation indexes based on rust layer composition and electrochemical reactivity. Corros Eng Sci Technol 45:375–380

    Article  CAS  Google Scholar 

  • Monnier J, Neff D, Réguer S, Dillmann P, Bellot-Gurlet L, Leroy E, Foy E, Legrand L, Guillot I (2010b) A corrosion study of the ferrous medieval reinforcement of the Amiens cathedral. Phase characterisation and localisation by various microprobes techniques. Corros Sci 52:695–710

    Article  CAS  Google Scholar 

  • Monnier J, Guillot I, Legrand L, Dillmann P (2013) Reactivity studies of atmospheric corrosion of heritage iron artefacts. In: Dillmann P, Watkinson D, Angelini E, Adriens A (eds) Corrosion and conservation of cultural heritage metallic artefacts. Woodhead Publishing, Oxford, pp 285–310

    Chapter  Google Scholar 

  • Muller J, Lorang G, Leroy E, Laik B, Guillot I (2010) Electrochemically synthesised bronze patina: characterisation and application to the cultural heritage. Corros Eng Sci Technol 45:322–326. doi:10.1179/147842210X12692706339265

    Article  CAS  Google Scholar 

  • Muller J, Laïk B, Guillot I (2013) α-CuSn bronzes in sulphate medium: influence of the tin content on corrosion processes. Corros Sci 77:46–51. doi:10.1016/j.corsci.2013.07.025

    Article  CAS  Google Scholar 

  • Neff D, Dillmann P, Bellot-Gurlet L, Beranger G (2005) Corrosion of iron archaeological artefacts in soil: characterisation of the corrosion system. Corros Sci 47:515–535. doi:10.1016/j.corsci.2004.05.029

    Article  CAS  Google Scholar 

  • Paussa L, Guzman L, Marin E, Isomaki N, Fedrizzi L (2011) Protection of silver surfaces against tarnishing by means of alumina/titania-nanolayers. Surf Coat Technol 206:976–980. doi:10.1016/j.surfcoat.2011.03.101

    Article  CAS  Google Scholar 

  • Pourbaix M (1977) Electrochemical corrosion and reduction. Corrosion and metal artifatcs : a dialogue between conservators and archaeologists 1–16

    Google Scholar 

  • Puurunen RL (2005) Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J Appl Phys. doi:10.1063/1.1940727

    Google Scholar 

  • Rangel CM, Fonseca IT, Leitão RA (1986) Some aspects of the electrochemical behaviour of mild steel in carbonate/bicarbonate solutions. Electrochim Acta 31:1659–1662. doi:10.1016/0013-4686(86)87089-X

    Article  CAS  Google Scholar 

  • Robbiola L, Blengino J-M, Fiaud C (1998) Morphology and mechanisms of formation of natural patinas on archaeological Cu–Sn alloys. Corros Sci 40:2083–2111. doi:10.1016/S0010-938X(98)00096-1

    Article  CAS  Google Scholar 

  • Saheb M, Descostes M, Neff D, Matthiesen H, Michelin A, Dillmann P (2010a) Iron corrosion in an anoxic soil: comparison between thermodynamic modelling and ferrous archaeological artefacts characterised along with the local in situ geochemical conditions. Appl Geochem 25:1937–1948. doi:10.1016/j.apgeochem.2010.10.010

    Article  CAS  Google Scholar 

  • Saheb M, Neff D, Demory J, Foy E, Dillmann P (2010b) Characterisation of corrosion layers formed on ferrous artefacts buried in anoxic media. Corros Eng Sci Technol 45:381–387

    Article  CAS  Google Scholar 

  • Schlegel ML, Bataillon C, Benhamida K, Blanc C, Menut D, Lacour J-L (2008) Metal corrosion and argillite transformation at the water-saturated, high-temperature iron–clay interface: a microscopic-scale study. Appl Geochem 23:2619–2633

    Article  CAS  Google Scholar 

  • Schlegel ML, Bataillon C, Brucker F, Blanc C, Prêt D, Foy E, Chorro M (2014) Corrosion of metal iron in contact with anoxic clay at 90 °C: characterization of the corrosion products after two years of interaction. Appl Geochem 51:1–14

    Article  CAS  Google Scholar 

  • Scott D, Eggert G (2009) Iron and steel in art: corrosion, colorants, conservation. Archetype Publications Ltd, Plymouth

    Google Scholar 

  • Selwyn LS, Binnie NE, Poitras J, Laver ME, Downham DA (1996) Outdoor bronze statues: analysis of metal and surface samples. Stud Conserv 41:205–228. doi:10.1179/sic.1996.41.4.205

    CAS  Google Scholar 

  • Shashoua Y, Matthiesen H (2010) Protection of iron and steel in large outdoor industrial heritage objects. Corros Eng Sci Technol 45:357–361. doi:10.1179/147842210X12710800383648

    Article  CAS  Google Scholar 

  • Spoto G, Ciliberto E, Allen GC, Younes CM, Piccardo P, Pinasco MR, Stagno E, Ienco MG, Maggi R (2000) Chemical and structural properties of ancient metallic artefacts: multitechnique approach to study of early bronzes. Br Corros J 35:43–47

    Article  CAS  Google Scholar 

  • Stratmann M (1987) The investigation of the corrosion properties of metals, covered with adsorbed electrolyte layers—a new experimental technique. Corros Sci 27:869–872

    Article  CAS  Google Scholar 

  • Stratmann M, Streckel H (1990) On the atmospheric corrosion of metals which are covered with thin electrolyte layers—II. Experimental results. Corros Sci 30:697–714

    Article  CAS  Google Scholar 

  • Stratmann M, Streckel H, Kim KT, Crockett S (1990) On the atmospheric corrosion of metals which are covered with thin electrolyte layers—III. The measurement of polarisation curves on metal surfaces which are covered by thin electrolyte layers. Corros Sci 30:715–734

    Article  CAS  Google Scholar 

  • Wang C, Lu B, Zuo J, Zhang S, Tan S, Suzuki M, Chase WT (1995) Structural and elemental analysis on the nanocrystalline SnO2 in the surface of ancient Chinese black mirrors. Nanostruct Mater 5:489–496. doi:10.1016/0965-9773(95)002

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Dillmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Atlantis Press and the author(s)

About this chapter

Cite this chapter

Dillmann, P. (2016). Nanoscale Aspects of Corrosion on Cultural Heritage Metals. In: Dillmann, P., Bellot-Gurlet, L., Nenner, I. (eds) Nanoscience and Cultural Heritage. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-198-7_8

Download citation

Publish with us

Policies and ethics