Skip to main content

Surface-Enhanced Raman Spectroscopy: Using Nanoparticles to Detect Trace Amounts of Colorants in Works of Art

  • Chapter
  • First Online:
Book cover Nanoscience and Cultural Heritage

Abstract

In recent years, powerful physical processes occurring in the vicinity of nanoscale metal surfaces have been exploited in the art world for the detection of trace amounts of colorants with surface-enhanced Raman spectroscopy (SERS). With this technique, naturally occurring and man-made organic molecules used as dyes and pigments in objects from antiquity to the present day are being detected with high molecular specificity and unprecedented sensitivity. This chapter reviews the broad spectrum of SERS analytical methodologies and instrumental improvements that have been developed over the years in the field of cultural heritage science, and discusses significant case studies within different types of works of art and archaeological artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aceto M, Arrais A, Marsano F, Agostino A, Fenoglio G, Idone A, Gulmini M (2015) A diagnostic study on folium and orchil dyes with non-invasive and micro-destructive methods. Spectrochim Acta Part A Mol Biomol Spectrosc 142:159–168. doi:10.1016/j.saa.2015.02.001

    Article  CAS  Google Scholar 

  • Ahn C, Obendorf SK (2004) Dyes on archaeological textiles: analyzing alizarin and its degradation products. Text Res J 74:949–954. doi:10.1177/004051750407401102

    Article  CAS  Google Scholar 

  • Ahn C, Obendorf SK (2007) GGMS analysis of curcumin dye after selective degradation treatment. Fibers Polym 8:278–283. doi:10.1007/BF02877270

    Article  CAS  Google Scholar 

  • Albrecht M, Creighton J (1977) Anomalously Intense Raman-Spectra of Pyridine at a Silver Electrode. J Am Chem Soc 99:5215–5217. doi:10.1021/ja00457a071

    Article  CAS  Google Scholar 

  • Alfeld M, De Nolf W, Cagno S, Appel K, Siddons DP, Kuczewski A, Janssens K, Dik J, Trentelman K, Walton M, Sartorius A (2013a) Revealing hidden paint layers in oil paintings by means of scanning macro-XRF: a mock-up study based on Rembrandt’s “An old man in military costume”. J Anal At Spectrom 28:40–51. doi:10.1039/c2ja30119a

    Article  CAS  Google Scholar 

  • Alfeld M, Pedroso JV, van Eikema Hommes M, Van der Snickt G, Tauber G, Blaas J, Haschke M, Erler K, Dik J, Janssens K (2013b) A mobile instrument for in situ scanning macro-XRF investigation of historical paintings. J Anal At Spectrom 28:760–767. doi:10.1039/c3ja30341a

    Google Scholar 

  • Amat A, Miliani C, Romani A, Fantacci S (2015) DFT/TDDFT investigation on the UV-vis absorption and fluorescence properties of alizarin dye. Phys Chem Chem Phys 17:6374–6382. doi:10.1039/c4cp04728a

    Article  CAS  Google Scholar 

  • Bacci M, Baldini F, Carla R, Linari R (1991) A color analysis of the Brancacci Chapel frescoes. Appl Spectrosc 45:26–31. doi:10.1366/0003702914337713

    Article  CAS  Google Scholar 

  • Baglioni P, Carretti E, Chelazzi D (2015) Nanomaterials in art conservation. Nat Nanotechnol 10:287–290. doi:10.1038/nnano.2015.38

    Article  CAS  Google Scholar 

  • Baran A, Wrzosek B, Bukowska J, Proniewicz LM, Baranska M (2009) Analysis of alizarin by surface-enhanced and FT-Raman spectroscopy. J Raman Spectrosc 40:436–441. doi:10.1002/jrs.2147

    Article  CAS  Google Scholar 

  • Bell SEJ, Spence SJ (2001) Disposable, stable media for reproducible surface-enhanced Raman spectroscopy. Analyst 126:1–3. doi:10.1039/b009519m

    Article  CAS  Google Scholar 

  • Bell IM, Clark RJH, Gibbs PJ (1997) Raman spectroscopic library of natural and synthetic pigments (pre- ≈ 1850 AD). Spectrochim Acta Part A Mol Biomol Spectrosc 53:2159–2179. doi:10.1016/S1386-1425(97)00140-6

    Article  Google Scholar 

  • Benedetti DP, Zhang J, Tague TJ, Lombardi JR, Leona M (2014) In situ microanalysis of organic colorants by inkjet colloid deposition surface-enhanced Raman scattering. J Raman Spectrosc 45:123–127. doi:10.1002/jrs.4424

    Article  CAS  Google Scholar 

  • Braz A, Lopez-Lopez M, Garcia-Ruiz C (2013) Raman spectroscopy for forensic analysis of inks in questioned documents. Forensic Sci Int 232:206–212. doi:10.1016/j.forsciint.2013.07.017

    Article  CAS  Google Scholar 

  • Brosseau CL, Gambardella A, Casadio F, Grzywacz CM, Wouters J, Van Duyne RP (2009a) Ad-hoc surface-enhanced Raman spectroscopy methodologies for the detection of artist dyestuffs: thin layer chromatography-surface enhanced Raman spectroscopy and in situ on the fiber analysis. Anal Chem 81:3056–3062. doi:10.1021/ac802761v

    Article  CAS  Google Scholar 

  • Brosseau CL, Rayner KS, Casadio F, Grzywacz CM, van Duyne RP (2009b) Surface-enhanced Raman spectroscopy: a direct method to identity colorants in various artist media. Anal Chem 81:7443–7447. doi:10.1021/ac901219m

    Google Scholar 

  • Brosseau CL, Casadio F, Van Duyne RP (2011) Revealing the invisible: using surface-enhanced Raman spectroscopy to identify minute remnants of color in Winslow Homer’s colorless skies. J Raman Spectrosc 42:1305–1310. doi:10.1002/jrs.2877

    Article  CAS  Google Scholar 

  • Bruni S, Guglielmi V, Pozzi F (2010) Surface-enhanced Raman spectroscopy (SERS) on silver colloids for the identification of ancient textile dyes: tyrian purple and madder. J Raman Spectrosc 41:175–180. doi:10.1002/jrs.2456

    CAS  Google Scholar 

  • Bruni S, Guglielmi V, Pozzi F (2011a) Historical organic dyes: a surface-enhanced Raman scattering (SERS) spectral database on Ag Lee-Meisel colloids aggregated by NaClO4. J Raman Spectrosc 42:1267–1281. doi:10.1002/jrs.2872

    Article  CAS  Google Scholar 

  • Bruni S, Guglielmi V, Pozzi F, Mercuri AM (2011b) Surface-enhanced Raman spectroscopy (SERS) on silver colloids for the identification of ancient textile dyes. Part II: pomegranate and sumac. J Raman Spectrosc 42:465–473. doi:10.1002/jrs.2736

    Article  CAS  Google Scholar 

  • Calcerrada M, Garcia-Ruiz C (2015) Analysis of questioned documents: a review. Anal Chim Acta 853:143–166. doi:10.1016/j.aca.2014.10.057

    Article  CAS  Google Scholar 

  • Cañamares MV, Leona M (2007) Surface-enhanced Raman scattering study of the red dye laccaic acid. J Raman Spectrosc 38:1259–1266. doi:10.1002/jrs.1761

    Article  CAS  Google Scholar 

  • Cañamares MV, Lombardi JR (2015) Raman, SERS, and DFT of Mauve Dye: adsorption on Ag nanoparticles. J Phys Chem C 119:14297–14303. doi:10.1021/acs.jpcc.5b02619

    Google Scholar 

  • Cañamares MV, Garcia-Ramos JV, Domingo C, Sanchez-Cortes S (2004) Surface-enhanced Raman scattering study of the adsorption of the anthraquinone pigment alizarin on Ag nanoparticles. J Raman Spectrosc 35:921–927. doi:10.1002/jrs.1228

    Article  CAS  Google Scholar 

  • Cañamares MV, Garcia-Ramos JV, Domingo C, Sanchez-Cortes S (2006a) Surface-enhanced Raman scattering study of the anthraquinone red pigment carminic acid. Vib Spectrosc 40:161–167. doi:10.1016/j.vibspec.2005.08.002

    Article  CAS  Google Scholar 

  • Cañamares MV, Sanchez-Cortes S, Garcia-Ramos JV (2006b) In: IRUG7 proceedings, New York, 28–31 Mar 2006. Museum of Modern Art, p 19

    Google Scholar 

  • Cañamares MV, Garcia-Ramos JV, Gomez-Varga JD, Domingo C, Sanchez-Cortes S (2007) Ag nanoparticles prepared by laser photoreduction as substrates for in situ surface-enhanced raman scattering analysis of dyes. Langmuir 23:5210–5215. doi:10.1021/la063445v

    Article  CAS  Google Scholar 

  • Cañamares MV, Chenal C, Birke RL, Lombardi JR (2008a) DFT, SERS, and single-molecule SERS of crystal violet. J Phys Chem C 112:20295–20300. doi:10.1021/jp807807j

    Article  CAS  Google Scholar 

  • Cañamares MV, Lombardi JR, Leona M (2008b) Surface-enhanced Raman scattering of protoberberine alkaloids. J Raman Spectrosc 39:1907–1914. doi:10.1002/jrs.2057

    Article  CAS  Google Scholar 

  • Cañamares MV, Garcia-Ramos JV, Sanchez-Cortes S, Castillejo M, Oujja M (2008c) Comparative SERS effectiveness of silver nanoparticles prepared by different methods: a study of the enhancement factor and the interfacial properties. J Colloid Interface Sci 326:103–109. doi:10.1016/j.jcis.2008.06.052

    Article  CAS  Google Scholar 

  • Cañamares MV, Lombardi J, Leona M (2009) Raman and surface enhanced Raman spectra of 7-hydroxyflavone and 3′,4′-dihydroxyflavone. E-PS, pp 81–88

    Google Scholar 

  • Cañamares MV, Leona M, Bouchard M, Grzywacz CM, Wouters J, Trentelman K (2010) Evaluation of Raman and SERS analytical protocols in the analysis of Cape Jasmine dye (Gardenia augusta L.). J Raman Spectrosc 41:391–397. doi:10.1002/jrs.2462

    Google Scholar 

  • Cañamares MV, Reagan DA, Lombardi JR, Leona M (2014) TLC-SERS of mauve, the first synthetic dye. J Raman Spectrosc 45:1147–1152. doi:10.1002/jrs.4508

    Article  CAS  Google Scholar 

  • Cardon D (2007) Natural dyes: sources, tradition, technology and science. Archetype, London

    Google Scholar 

  • Carretti E, Bonini M, Dei L, Berrie BH, Angelova LV, Baglioni P, Weiss RG (2010) New Frontiers in materials science for art conservation: responsive gels and beyond Acc Chem Res 43:751–760. doi:10.1021/ar900282h

    Google Scholar 

  • Casadio F, Leona M, Lombardi JR, Van Duyne R (2010) Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy. Acc Chem Res 43:782–791. doi:10.1021/ar100019q

    Article  CAS  Google Scholar 

  • Casanova-González E, García-Bucio A, Ruvalcaba-Sil JL, Santos-Vasquez V, Esquivel B, Falcón T, Arroyo E, Zetina S, Roldán ML, Domingo C (2012) Surface-enhanced Raman spectroscopy spectra of Mexican dyestuffs. J Raman Spectrosc 43:1551–1559. doi:10.1002/jrs.4086

    Article  CAS  Google Scholar 

  • Castro R, Pozzi F, Leona M, Melo MJ (2014) Combining SERS and microspectrofluorimetry with historically accurate reconstructions for the characterization of lac dye paints in medieval manuscript illuminations. J Raman Spectrosc 45:1172–1179. doi:10.1002/jrs.4608

    Article  CAS  Google Scholar 

  • Centeno SA, Shamir J (2008) Surface enhanced Raman scattering (SERS) and FTIR characterization of the sepia melanin pigment used in works of art. J Mol Struct 873:149–159. doi:10.1016/j.molstruc.2007.03.026

    Article  CAS  Google Scholar 

  • Centeno SA, Meller T, Kennedy N, Wypyski M (2008) The daguerreotype surface as a SERS substrate: characterization of image deterioration in plates from the 19th century studio of Southworth & Hawes. J Raman Spectrosc 39:914–921. doi:10.1002/jrs.1934

    Article  CAS  Google Scholar 

  • Cesaratto A, Leona M, Lombardi JR, Comelli D, Nevin A, Londero P (2014) Detection of organic colorants in historical painting layers using UV laser ablation surface-enhanced Raman microspectroscopy. Angew Chem Int Ed 53:14373–14377. doi:10.1002/anie.201408016

    Article  CAS  Google Scholar 

  • Chang J, Cañamares MV, Aydin M, Vetter W, Schreiner M, Xu W, Lombardi JR (2009) Surface-enhanced Raman spectroscopy of indanthrone and flavanthrone. J Raman Spectrosc 40:1557–1563. doi:10.1002/jrs.2298

    Article  CAS  Google Scholar 

  • Chen K, Leona M, Vo-Dinh KC, Yan F, Wabuyele MB, Vo-Dinh T (2006) Application of surface-enhanced Raman scattering (SERS) for the identification of anthraquinone dyes used in works of art. J Raman Spectrosc 37:520–527. doi:10.1002/jrs.1426

    Article  CAS  Google Scholar 

  • Chen K, Leona M, Vo-Dinh T (2007) Surface-enhanced Raman scattering for identification of organic pigments and dyes in works of art and cultural heritage material. Sens Rev 27:109–120. doi:10.1108/02602280710731678

    Article  Google Scholar 

  • Claro A, Melo MJ, Schafer S, de Melo JSS, Pina F, van den Berg KJ, Burnstock A (2008) The use of microspectrofluorimetry for the characterization of lake pigments. Talanta 74:922–929. doi:10.1016/j.talanta.2007.07.036

    Article  CAS  Google Scholar 

  • Claro A, Melo MJ, Seixas de Melo JS, van den Berg KJ, Burnstock A, Montague M, Newman R (2010) Identification of red colorants in van Gogh paintings and ancient Andean textiles by microspectrofluorimetry. J Cult Herit 11:27–34. doi:10.1016/j.culher.2009.03.006

    Article  Google Scholar 

  • Clementi C, Nowik W, Romani A, Cibin F, Favaro G (2007) A spectrometric and chromatographic approach to the study of ageing of madder (Rubia tinctorum L.) dyestuff on wool. Anal Chim Acta 596:46–54. doi:10.1016/j.aca.2007.05.036

    Article  CAS  Google Scholar 

  • Clementi C, Basconi G, Pellegrino R, Romani A (2014) Carthamus tinctorius L.: a photophysical study of the main coloured species for artwork diagnostic purposes. Dyes Pigm 103:127–137. doi:10.1016/j.dyepig.2013.12.002

    Article  CAS  Google Scholar 

  • Collins D, Groom G, Ireson N, Keegan K, Shaw J, Nichols K (2014) Renoir paintings and drawings at the Art Institute of Chicago. Art Institute of Chicago, Chicago, USA

    Google Scholar 

  • Colombini MP, Andreotti A, Baraldi C, Degano I, Lucejko JJ (2007) Colour fading in textiles: a model study on the decomposition of natural dyes. Microchem J 85:174–182. doi:10.1016/j.microc.2006.04.002

    Article  CAS  Google Scholar 

  • Cooksey C, Sinclair RS (2005) Colour variations in tyrian purple dyeing. Dyes Hist Archaeol 20:127

    CAS  Google Scholar 

  • Corredor C, Teslova T, Cañamares MV, Chen Z, Zhang J, Lombardi JR, Leona M (2009) Raman and surface-enhanced Raman spectra of chrysin, apigenin and luteolin. Vib Spectrosc 49:190–195. doi:10.1016/j.vibspec.2008.07.012

    Article  CAS  Google Scholar 

  • Creighton J, Blatchford C, Albrecht M (1979) Plasma resonance enhancement of Raman-scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J Chem Soc, Faraday Trans 75:790–798. doi:10.1039/f29797500790

    Article  CAS  Google Scholar 

  • Daher C, Drieu L, Bellot-Gurlet L, Percot A, Paris C, Le Hô A-S (2014) Combined approach of FT-Raman, SERS and IR micro-ATR spectroscopies to enlighten ancient technologies of painted and varnished works of art. J Raman Spectrosc 45:1207–1214. doi:10.1002/jrs.4565

    Article  CAS  Google Scholar 

  • de Oliveira LFC, Edwards HGM, Velozo ES, Nesbitt M (2002) Vibrational spectroscopic study of brazilin and brazilein, the main constituents of brazilwood from Brazil. Vib Spectrosc 28:243–249. doi:10.1016/S0924-2031(01)00138-2

    Article  Google Scholar 

  • Degano I, Ribechini E, Modugno F, Colombini MP (2009) Analytical methods for the characterization of organic dyes in artworks and in historical textiles. Appl Spectrosc Rev 44:363–410. doi:10.1080/05704920902937876

    Article  CAS  Google Scholar 

  • Degano I, Biesaga M, Colombini MP, Trojanowicz M (2011) Historical and archaeological textiles: An insight on degradation products of wool and silk yarns. J Chromatogr A 1218:5837–5847. doi:10.1016/j.chroma.2011.06.095

    Article  CAS  Google Scholar 

  • Delaney JK, Zeibel JG, Thoury M, Littleton R, Palmer M, Morales KM, de la Rie ER, Hoenigswald A (2010) Visible and infrared imaging spectroscopy of Picasso’s Harlequin musician: mapping and identification of artist materials in situ. Appl Spectrosc 64:584–594

    Article  CAS  Google Scholar 

  • Delaney JK, Ricciardi P, Glinsman LD, Facini M, Thoury M, Palmer M, de la Rie ER (2014) Use of imaging spectroscopy, fiber optic reflectance spectroscopy, and X-ray fluorescence to map and identify pigments in illuminated manuscripts. Stud Conserv 59:91–101. doi:10.1179/2047058412Y.0000000078

    Article  CAS  Google Scholar 

  • Dik J, Janssens K, Van der Snickt G, van der Loeff L, Rickers K, Cotte M (2008) Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based X-ray fluorescence elemental mapping. Anal Chem 80:6436–6442. doi:10.1021/ac800965g

    Article  CAS  Google Scholar 

  • Doherty B, Brunetti BG, Sgamellotti A, Miliani C (2011) A detachable SERS active cellulose film: a minimally invasive approach to the study of painting lakes. J Raman Spectrosc 42:1932–1938. doi:10.1002/jrs.2942

    Article  CAS  Google Scholar 

  • Doherty B, Gabrieli F, Clementi C, Cardon D, Sgamellotti A, Brunetti B, Miliani C (2014) Surface enhanced Raman spectroscopic investigation of orchil dyed wool from Roccella tinctoria and Lasallia pustulata. J Raman Spectrosc 45:723–729. doi:10.1002/jrs.4543

    Article  CAS  Google Scholar 

  • Dooley KA, Lomax S, Zeibel JG, Miliani C, Ricciardi P, Hoenigswald A, Loew M, Delaney JK (2013) Mapping of egg yolk and animal skin glue paint binders in Early Renaissance paintings using near infrared reflectance imaging spectroscopy. Analyst 138:4838–4848. doi:10.1039/c3an00926b

    Article  CAS  Google Scholar 

  • Edwards HGM, de Oliveira LFC, Nesbitt M (2003) Fourier-transform Raman characterization of brazilwood trees and substitutes. Analyst 128:82–87. doi:10.1039/b209052j

    Article  CAS  Google Scholar 

  • El Bakkali A, Lamhasni T, Lyazidi SA, Haddad M, Rosi F, Miliani C, Sanchez-Cortes S, El Rhaiti M (2014) Assessment of a multi-technical non-invasive approach for the typology of inks, dyes and pigments in two 19th century’s ancient manuscripts of Morocco. Vib Spectrosc 74:47–56. doi:10.1016/j.vibspec.2014.07.008

    Article  CAS  Google Scholar 

  • Fan M, Andrade GFS, Brolo AG (2011) A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chim Acta 693:7–25. doi:10.1016/j.aca.2011.03.002

    Article  CAS  Google Scholar 

  • Farquharson S, Maksymiuk P (2003) Simultaneous chemical separation and surface-enhanced Raman spectral detection using silver-doped sol-gels. Appl Spectrosc 57:479–482. doi:10.1366/00037020360626041

    Article  CAS  Google Scholar 

  • Ferreira ESB, Quye A, McNab H, Hulme AN, Wouters J, Boon JJ (2001) Development of analytical techniques for the study of natural yellow dyes in historical textiles. Dyes Hist Archaeol 16(17):179–186

    Google Scholar 

  • Fleischmann M, Hendra P, Mcquilla AJ (1974) Raman-spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166. doi:10.1016/0009-2614(74)85388-1

    Article  CAS  Google Scholar 

  • Frano KA, Mayhew HE, Svoboda SA, Wustholz KL (2014) Combined SERS and Raman analysis for the identification of red pigments in cross-sections from historic oil paintings. Analyst 139:6450–6455. doi:10.1039/c4an01581a

    Article  CAS  Google Scholar 

  • Geiman I, Leona M, Lombardi JR (2009) Application of Raman spectroscopy and surface-enhanced Raman scattering to the analysis of synthetic dyes found in ballpoint pen inks. J Forensic Sci 54:947–952. doi:10.1111/j.1556-4029.2009.01058.x

    Google Scholar 

  • Gillard RD, Hardman SM, Thomas RG, Watkinson DE (1994) The detection of dyes by FTIR microscopy. Stud Conserv 39:187–192. doi:10.2307/1506597

    CAS  Google Scholar 

  • Greeneltch NG, Davis AS, Valley NA, Casadio F, Schatz GC, Van Duyne RP, Shah NC (2012) Near-infrared surface-enhanced Raman spectroscopy (NIR-SERS) for the identification of Eosin Y: theoretical calculations and evaluation of two different nanoplasmonic substrates. J Phys Chem A 116:11863–11869. doi:10.1021/jp3081035

    Article  CAS  Google Scholar 

  • Grosjean D, Whitmore P, Demoor C, Cass G, Druzik J (1988) Ozone fading of organic colorants—products and mechanism of the reaction of ozone with curcumin. Environ Sci Technol 22:1357–1361. doi:10.1021/es00176a017

    Article  CAS  Google Scholar 

  • Guineau B, Guichard V (1987) Identification des colorants organiques naturels par microspectrometrie Raman de resonance et par effet Raman exalte de surface (SERS). The Getty Conservation Institute, Sydney, pp 659–666

    Google Scholar 

  • Gulmini M, Idone A, Diana E, Gastaldi D, Vaudan D, Aceto M (2013) Identification of dyestuffs in historical textiles: Strong and weak points of a non-invasive approach. Dyes Pigm 98:136–145. doi:10.1016/j.dyepig.2013.02.010

    Article  CAS  Google Scholar 

  • Halpine SM (1996) An improved dye and lake pigment analysis method for high-performance liquid chromatography and diode-array detector. Stud Conserv 41:76–94. doi:10.2307/1506519

    CAS  Google Scholar 

  • Henzel (1977) Journal of chromatography library. Elsevier, Amsterdam

    Google Scholar 

  • Hofenk de Graaff JH, Roelofs WGT, Van Bommel MR (2004) The colourful past: origins, chemistry and identification of natural dyestuffs. Archetype Publications, London ; Abegg-Stiftung, Riggisberg, Switzerland

    Google Scholar 

  • Idone A, Gulmini M, Henry A-I, Casadio F, Chang L, Appolonia L, Van Duyne RP, Shah NC (2013) Silver colloidal pastes for dye analysis of reference and historical textile fibers using direct, extractionless, non-hydrolysis surface-enhanced Raman spectroscopy. Analyst 138:5895–5903. doi:10.1039/c3an00788j

    Article  CAS  Google Scholar 

  • Idone A, Aceto M, Diana E, Appolonia L, Gulmini M (2014) Surface-enhanced Raman scattering for the analysis of red lake pigments in painting layers mounted in cross sections. J Raman Spectrosc 45:1127–1132. doi:10.1002/jrs.4491

    Article  CAS  Google Scholar 

  • Jeanmaire D, Vanduyne R (1977) Surface Raman spectroelectrochemistry. 1. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode. J Electroanal Chem 84:1–20. doi:10.1016/S0022-0728(77)80224-6

    Article  CAS  Google Scholar 

  • Jurasekova Z, Garcia-Ramos JV, Domingo C, Sanchez-Cortes S (2006) Surface-enhanced Raman scattering of flavonoids. J Raman Spectrosc 37:1239–1241. doi:10.1002/jrs.1634

    Article  CAS  Google Scholar 

  • Jurasekova Z, Domingo C, Garcia-Ramos JV, Sanchez-Cortes S (2008) In situ detection of flavonoids in weld-dyed wool and silk textiles by surface-enhanced Raman scattering. J Raman Spectrosc 39:1309–1312. doi:10.1002/jrs.2053

    Article  CAS  Google Scholar 

  • Jurasekova Z, del Puerto E, Bruno G, Garcia-Ramos JV, Sanchez-Cortes S, Domingo C (2010) Extractionless non-hydrolysis surface-enhanced Raman spectroscopic detection of historical mordant dyes on textile fibers. J Raman Spectrosc 41:1455–1461. doi:10.1002/jrs.2651

    Article  CAS  Google Scholar 

  • Jurasekova Z, Domingo C, Garcia-Ramos JV, Sanchez-Cortes S (2012) Adsorption and catalysis of flavonoid quercetin on different plasmonic metal nanoparticles monitored by SERS. J Raman Spectrosc 43:1913–1919. doi:10.1002/jrs.4114

    Article  CAS  Google Scholar 

  • Kim D, Campos AR, Datt A, Gao Z, Rycenga M, Burrows ND, Greeneltch NG, Mirkin CA, Murphy CJ, Van Duyne RP, Haynes CL (2014) Microfluidic-SERS devices for one shot limit-of-detection. Analyst 139:3227–3234. doi:10.1039/c4an00357h

    Article  CAS  Google Scholar 

  • Koperska M, Lojewski T, Lojewska J (2011) Vibrational spectroscopy to study degradation of natural dyes. Assessment of oxygen-free cassette for safe exposition of artefacts. Anal Bioanal Chem 399:3271–3283. doi:10.1007/s00216-010-4460-7

    Article  CAS  Google Scholar 

  • Koren Z (1994) HPLC analysis of the natural scale insect, madder and indigoid dyes. J Soc Dye Colour 110:273–277. doi: 10.1111/j.1478-4408.1994.tb01656.x

    Google Scholar 

  • Kurouski D, Zaleski S, Casadio F, Van Duyne RP, Shah NC (2014) Tip-enhanced Raman spectroscopy (TERS) for in situ identification of indigo and iron gall ink on paper. J Am Chem Soc 136:8677–8684. doi:10.1021/ja5027612

    Article  CAS  Google Scholar 

  • Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395. doi:10.1021/j100214a025

    Article  CAS  Google Scholar 

  • Leona M (2008) Non-invasive identification of fluorescent dyes in historic textiles by matrix transfer-surface enhanced Raman scattering. United States Patent and Trademark Office; 7,362,431 B2. Filed 9 Aug 2006; awarded 22 Apr 2008

    Google Scholar 

  • Leona M (2009) Microanalysis of organic pigments and glazes in polychrome works of art by surface-enhanced resonance Raman scattering. Proc Natl Acad Sci USA 106:14757–14762. doi:10.1073/pnas.0906995106

    Article  CAS  Google Scholar 

  • Leona M, Lombardi JR (2007) Identification of berberine in ancient and historical textiles by surface-enhanced Raman scattering. J Raman Spectrosc 38:853–858. doi:10.1002/jrs.1726

    Article  CAS  Google Scholar 

  • Leona M, Tague T (2010) Method and apparatus for in situ measurement of material properties by surface enhanced raman spectroscopy. United States Patent and Trademark Office; US 7,787,117 B1. Filed 24 June 2008; awarded 31 Aug 2010

    Google Scholar 

  • Leona M, Stenger J, Ferloni E (2006) Application of surface-enhanced Raman scattering techniques to the ultrasensitive identification of natural dyes in works of art. J Raman Spectrosc 37:981–992. doi:10.1002/jrs.1582

    Article  CAS  Google Scholar 

  • Leona M, Decuzzi P, Kubic TA, Gates G, Lombardi JR (2011) Nondestructive identification of natural and synthetic organic colorants in works of art by surface enhanced Raman scattering. Anal Chem 83:3990–3993. doi:10.1021/ac2007015

    Article  CAS  Google Scholar 

  • Leona M, Smith HD II, Cesaratto A, Luo YB (2015) Synthetic dyes in the woodblock prints of Meiji Japan. In: Technart 2015, non-destructive and microanalytical techniques in art and cultural heritage, Catania, 27–30 Apr 2015

    Google Scholar 

  • Leopold N, Lendl B (2003) A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J Phys Chem B 107:5723–5727. doi:10.1021/jp027460u

    Article  CAS  Google Scholar 

  • Lewis PA (1988) Organic pigments. Federation of Societies for Coatings Technology, Philadelphia, PA, USA (1315 Walnut St., Philadelphia 19107)

    Google Scholar 

  • Lofrumento C, Ricci M, Platania E, Becucci M, Castellucci E (2013) SERS detection of red organic dyes in Ag-agar gel. J Raman Spectrosc 44:47–54. doi:10.1002/jrs.4162

    Article  CAS  Google Scholar 

  • Lombardi JR, Birke RL (2009) A unified view of surface-enhanced Raman scattering. Acc Chem Res 42:734–742. doi:10.1021/ar800249y

    Article  CAS  Google Scholar 

  • Lombardi JR, Birke RL (2012) The theory of surface-enhanced Raman scattering. J Chem Phys 136:144704. doi:10.1063/1.3698292

    Article  CAS  Google Scholar 

  • Londero PS, Lombardi JR, Leona M (2013) Laser ablation surface-enhanced Raman microspectroscopy. Anal Chem 85:5463–5467. doi:10.1021/ac400440c

    Article  CAS  Google Scholar 

  • Luo Z, Smith JC, Goff TM, Adair JH, Castleman AW (2013) Gold cluster coatings enhancing Raman scattering from surfaces: Ink analysis and document identification. Chem Phys 423:73–78. doi:10.1016/j.chemphys.2013.06.021

    Article  CAS  Google Scholar 

  • Manhita A, Ferreira V, Vargas H, Ribeiro I, Candeias A, Teixeira D, Ferreira T, Dias CB (2011) Enlightening the influence of mordant, dyeing technique and photodegradation on the colour hue of textiles dyed with madder—a chromatographic and spectrometric approach. Microchem J 98:82–90. doi:10.1016/j.microc.2010.12.002

    Article  CAS  Google Scholar 

  • Manhita A, Santos V, Vargas H, Candeias A, Ferreira T, Dias CB (2013) Ageing of brazilwood dye in wool—a chromatographic and spectrometric study. J Cult Herit 14:471–479. doi:10.1016/j.culher.2012.10.016

    Article  Google Scholar 

  • Masschelein-Kleiner L, Heylen JB (1968) Analyse des laques rouges anciennes. Stud Conserv 13:87–97

    CAS  Google Scholar 

  • Mayhew HE, Fabian DM, Svoboda SA, Wustholz KL (2013) Surface-enhanced Raman spectroscopy studies of yellow organic dyestuffs and lake pigments in oil paint. Analyst 138:4493–4499. doi:10.1039/C3AN00611E

    Article  CAS  Google Scholar 

  • Melo MJ, Claro A (2010) Bright light: microspectrofluorimetry for the characterization of lake pigments and dyes in works of art. Acc Chem Res 43:857–866. doi:10.1021/ar9001894

    Article  CAS  Google Scholar 

  • Mills JS, White R (1987) The organic chemistry of museum objects. Butterworths, London

    Google Scholar 

  • Montagner C, Bacci M, Bracci S, Freeman R, Picollo M (2011) Library of UV-Vis-NIR reflectance spectra of modern organic dyes from historic pattern-card coloured papers. Spectrochim Acta Part A Mol Biomol Spectrosc 79:1669–1680. doi:10.1016/j.saa.2011.05.033

    Article  CAS  Google Scholar 

  • Oakley LH, Dinehart SA, Svoboda SA, Wustholz KL (2011) Identification of organic materials in historic oil paintings using correlated extractionless surface-enhanced Raman scattering and fluorescence microscopy. Anal Chem 83:3986–3989. doi:10.1021/ac200698q

    Article  CAS  Google Scholar 

  • Oakley LH, Fabian DM, Mayhew HE, Svoboda SA, Wustholz KL (2012) Pretreatment strategies for sers analysis of indigo and prussian blue in aged painted surfaces. Anal Chem 84:8006–8012. doi:10.1021/ac301814e

    Article  CAS  Google Scholar 

  • Platania E, Lombardi JR, Leona M, Shibayama N, Lofrumento C, Ricci M, Becucci M, Castellucci E (2014) Suitability of Ag-agar gel for the micro-extraction of organic dyes on different substrates: the case study of wool, silk, printed cotton and a panel painting mock-up. J Raman Spectrosc 45:1133–1139. doi:10.1002/jrs.4531

    Article  CAS  Google Scholar 

  • Platania E, Lofrumento C, Lottini E, Azzaro E, Ricci M, Becucci M (2015) Tailored micro-extraction method for Raman/SERS detection of indigoids in ancient textiles. Anal Bioanal Chem 407:6505–6514. doi:10.1007/s00216-015-8816-x

    Article  CAS  Google Scholar 

  • Pozzi F, Lombardi JR, Bruni S, Leona M (2012a) Sample treatment considerations in the analysis of organic colorants by surface-enhanced Raman scattering. Anal Chem 84:3751–3757. doi:10.1021/ac300380c

    Article  CAS  Google Scholar 

  • Pozzi F, Poldi G, Bruni S, De Luca E, Guglielmi V (2012b) Multi-technique characterization of dyes in ancient Kaitag textiles from Caucasus. Archaeol Anthropol Sci 4:185–197. doi:10.1007/s12520-012-0092-5

    Article  Google Scholar 

  • Pozzi F, Shibayama N, Leona M, Lombardi JR (2013a) TLC-SERS study of Syrian rue (Peganum harmala) and its main alkaloid constituents. J Raman Spectrosc 44:102–107. doi:10.1002/jrs.4140

    Article  CAS  Google Scholar 

  • Pozzi F, Porcinai S, Lombardi JR, Leona M (2013b) Statistical methods and library search approaches for fast and reliable identification of dyes using surface-enhanced Raman spectroscopy (SERS). Anal Methods 5:4205–4212. doi:10.1039/C3AY40673C

    Article  CAS  Google Scholar 

  • Pozzi F, Lombardi JR, Leona M (2013c) Winsor & Newton original handbooks: a surface-enhanced Raman scattering (SERS) and Raman spectral database of dyes from modern watercolor pigments. Heritage Sci 1(23):1–8. doi:10.1186/2050-7445-1-23

    Google Scholar 

  • Pozzi F, van den Berg KJ, Fiedler I, Casadio F (2014a) A systematic analysis of red lake pigments in French Impressionist and Post-Impressionist paintings by surface-enhanced Raman spectroscopy (SERS). J Raman Spectrosc 45(11–12):1119–1126. doi:10.1002/jrs.4483

    Google Scholar 

  • Pozzi F, Chang LK, Casadio F (2014b) The Navajo blankets from the Art Institute of Chicago collection: technical analysis of yarn and weavings coupled with dye identification by normal Raman and surface-enhanced Raman spectroscopy (SERS). In: BridglandJ (ed) ICOM-CC 17th triennial conference preprints, Melbourne, 15–19 Sept 2014, art. 1808, 8pp. International Council of Museums, Paris (ISBN 978-92-9012-410-8)

    Google Scholar 

  • Prikhodko SV, Rambaldi DC, King A, Burr E, Muros V, Kakoulli I (2015) New advancements in SERS dye detection using interfaced SEM and Raman spectromicroscopy (μRS). J Raman Spectrosc 46:632–635. doi:10.1002/jrs.4710

    Article  CAS  Google Scholar 

  • Rambaldi DC, Pozzi F, Shibayama N, Leona M, Preusser FD (2015) Surface-enhanced Raman spectroscopy of various madder species on wool fibers: the role of pseudopurpurin in the interpretation of the spectra. J Raman Spectrosc 46(11):1073–1081. doi:10.1002/jrs.4726

    Google Scholar 

  • Ramesova S, Sokolova R, Degano I, Bulickova J, Zabka J, Gal M (2012) On the stability of the bioactive flavonoids quercetin and luteolin under oxygen-free conditions. Anal Bioanal Chem 402:975–982. doi:10.1007/s00216-011-5504-3

    Article  CAS  Google Scholar 

  • Raza A, Saha B (2013) Silver nanoparticles doped agarose disk: highly sensitive surface-enhanced Raman scattering substrate for in situ analysis of ink dyes. Forensic Sci Int 233:21–27. doi:10.1016/j.forsciint.2013.08.004

    Article  CAS  Google Scholar 

  • Retko K, Ropret P, Korosec RC (2014) Surface-enhanced Raman spectroscopy (SERS) analysis of organic colourants utilising a new UV-photoreduced substrate. J Raman Spectrosc 45:1140–1146. doi:10.1002/jrs.4533

    Article  CAS  Google Scholar 

  • Ricciardi P, Delaney JK, Facini M, Zeibel JG, Picollo M, Lomax S, Loew M (2012) Near infrared reflectance imaging spectroscopy to map paint binders in situ on illuminated manuscripts. Angew Chem Int Ed 51:5607–5610. doi:10.1002/anie.201200840

    Article  CAS  Google Scholar 

  • Ringe E, Sharma B, Henry A-I, Marks LD, Van Duyne RP (2013) Single nanoparticle plasmonics. Phys Chem Chem Phys 15:4110–4129. doi:10.1039/c3cp44574g

    Article  CAS  Google Scholar 

  • Rodger C, Dent G, Watkinson J, Smith WE (2000) Surface-enhanced resonance Raman scattering and near-infrared Fourier transform Raman scattering as in situ probes of ink jet dyes printed on paper. Appl Spectrosc 54:1567–1576. doi:10.1366/0003702001948817

    Article  CAS  Google Scholar 

  • Roldán ML, Centeno SA, Rizzo A (2014) An improved methodology for the characterization and identification of sepia in works of art by normal Raman and SERS, complemented by FTIR, Py-GC/MS, and XRF. J Raman Spectrosc 45:1160–1171. doi:10.1002/jrs.4620

    Article  CAS  Google Scholar 

  • Romani A, Clementi C, Miliani C, Favaro G (2010) Fluorescence spectroscopy: a powerful technique for the noninvasive characterization of artwork. Acc Chem Res 43:837–846. doi:10.1021/ar900291y

    Article  CAS  Google Scholar 

  • Rosi F, Miliani C, Braun R, Harig R, Sali D, Brunetti BG, Sgamellotti A (2013) Noninvasive analysis of paintings by mid-infrared hyperspectral imaging. Angew Chem Int Ed 52:5258–5261. doi:10.1002/anie.201209929

    Article  CAS  Google Scholar 

  • Saunders D, Kirby J (1994) Light-induced colour changes in red and yellow lake pigments. Natl Gallery Tech Bull 15:79–97

    Google Scholar 

  • Scherrer NC, Stefan Z, Francoise D, Annette F, Renate K (2009) Synthetic organic pigments of the 20th and 21st century relevant to artist’s paints: Raman spectra reference collection. Spectrochim Acta Part A Mol Biomol Spectrosc 73:505–524. doi:10.1016/j.saa.2008.11.029

    Article  CAS  Google Scholar 

  • Schmid T, Opilik L, Blum C, Zenobi R (2013) Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review. Angew Chem-Int Ed 52:5940–5954. doi:10.1002/anie.201203849

    Article  CAS  Google Scholar 

  • Schweppe H (1993) Handbuch der Naturfarbstoffe: Vorkommen, Verwendung, Nachweis. Nikol-Verl.-Ges, Hamburg

    Google Scholar 

  • Sciutto G, Prati S, Bonacini I, Litti L, Meneghetti M, Mazzeo R (2015) In Technart 2015, non-destructive and microanalytical techniques in art and cultural heritage, Catania, 27–30 Apr 2015

    Google Scholar 

  • Seifar RM, Verheul JM, Ariese F, Brinkman Ua T, Gooijer C (2001) Applicability of surface-enhanced resonance Raman scattering for the direct discrimination of ballpoint pen inks. Analyst 126:1418–1422. doi:10.1039/b103042f

    Article  CAS  Google Scholar 

  • Sgamellotti A, Brunetti B, Miliani C (2014) Science and art: the painted surface. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Shadi QT, Chowdhry BZ, Snowden MJ, Withnall R (2004) Semi-quantitative analysis of alizarin and purpurin by surface-enhanced resonance Raman spectroscopy (SERRS) using silver colloids. J Raman Spectrosc 35:800–807. doi:10.1002/jrs.1199

    Article  CAS  Google Scholar 

  • Sharma B, Cardinal MF, Kleinman SL, Greeneltch NG, Frontiera RR, Blaber MG, Schatz GC, Van Duyne RP (2013) High-performance SERS substrates: advances and challenges. MRS Bull 38:615–624. doi:10.1557/mrs.2013.161

    Article  CAS  Google Scholar 

  • Taylor GW (1983) Detection and identiflcation of dyes on Anglo-Scandinavian textiles. Stud Conserv 28:153–160

    CAS  Google Scholar 

  • Teslova T, Corredor C, Livingstone R, Spataru T, Birke RL, Lombardi JR, Cañamares MV, Leona M (2007) Raman and surface-enhanced Raman spectra of flavone and several hydroxy derivatives. J Raman Spectrosc 38:802–818. doi:10.1002/jrs.1695

    Article  CAS  Google Scholar 

  • Tiedemann EJ, Yang Y (1995) Fiber-safe extraction of red mordant dyes from hair fibers. J Am Inst Conserv 34:195–206. doi:10.1179/019713695806124657

    Article  Google Scholar 

  • van Bommel MR, Berghe IV, Wallert AM, Boitelle R, Wouters J (2007) High-performance liquid chromatography and non-destructive three-dimensional fluorescence analysis of early synthetic dyes. J Chromatogr A 1157:260–272. doi:10.1016/j.chroma.2007.05.017

    Article  CAS  Google Scholar 

  • Van Elslande E, Lecomte S, Le Ho A-S (2008) Micro-Raman spectroscopy (MRS) and surface-enhanced Raman scattering (SERS) on organic colourants in archaeological pigments. J Raman Spectrosc 39:1001–1006. doi:10.1002/jrs.1994

    Article  CAS  Google Scholar 

  • Vellekoop M, Bakker N, van Dijk M, Geldof M, Hendriks E, Reissland B, Holberton P, Alkins T, Hoyle M, Jackson B, van Gogh V, Van Gogh Museum A (2013) Van Gogh at work

    Google Scholar 

  • Wagner E, Clement S (2001) Surface enhanced resonance Raman scattering (Serrs) spectroscopy—study on inks. Probl Forensic Sci 46:437–441

    CAS  Google Scholar 

  • Wang M, Teslova T, Xu F, Spataru T, Lombardi JR, Birke RL, Leona M (2007) Raman and surface enhanced Raman scattering of 3-hydroxyflavone. J Phys Chem C 111:3038–3043. doi:10.1021/jp062100i

    Article  CAS  Google Scholar 

  • White PC (2003) In situ surface enhanced resonance Raman scattering (SERRS) spectroscopy of biro inks—long term stability of colloid treated samples. Sci Justice 43:149–152. doi:10.1016/S1355-0306(03)71762-6

    Article  CAS  Google Scholar 

  • Whitney AV, Van Duyne RP, Casadio F (2006) An innovative surface-enhanced Raman spectroscopy (SERS) method for the identification of six historical red lakes and dyestuffs. J Raman Spectrosc 37:993–1002. doi:10.1002/jrs.1576

    Article  CAS  Google Scholar 

  • Whitney AV, Casadio F, Van Duyne RP (2007) Identification and characterization of artists’ red dyes and their mixtures by surface-enhanced Raman spectroscopy. Appl Spectrosc 61:994–1000. doi:0003-7028/07/6109-0994$2.00/0

  • Wouters J (1985) High performance liquid chromatography of anthraquinones: analysis of plant and insect extracts and dyed textiles. Stud Conserv 30:119–128. doi:10.2307/1505927

    CAS  Google Scholar 

  • Wouters J, Verhecken A (1989) The coccid insect dyes: HPLC and computerized diode-array analysis of dyed yarns. Stud Conserv 34:189–200. doi:10.2307/1506286

    CAS  Google Scholar 

  • Wustholz KL, Brosseau CL, Casadio F, Van Duyne RP (2009) Surface-enhanced Raman spectroscopy of dyes: from single molecules to the artists’ canvas. Phys Chem Chem Phys 11:7350–7359. doi:10.1039/b904733f

    Article  CAS  Google Scholar 

  • Xie Y, Li Y, Sun Y, Wang H, Qian H, Yao W (2012) Theoretical calculation (DFT), Raman and surface-enhanced Raman scattering (SERS) study of ponceau 4R. Spectrochim Acta Part A Mol Biomol Spectrosc 96:600–604. doi:10.1016/j.saa.2012.06.055

    Article  CAS  Google Scholar 

  • Yoshizumi K, Crews PC (2003) Characteristics of fading of wool cloth dyed with selected natural dyestuffs on the basis of solar radiant energy. Dyes Pigm 58:197–204. doi:10.1016/S0143-7208(03)00065-2

    Article  CAS  Google Scholar 

  • Zaffino C, Bruni S, Guglielmi V, De Luca E (2014) Fourier-transform surface-enhanced Raman spectroscopy (FT-SERS) applied to the identification of natural dyes in textile fibers: an extractionless approach to the analysis. J Raman Spectrosc 45:211–218. doi:10.1002/jrs.4443

    Article  CAS  Google Scholar 

  • Zaffino C, Russo B, Bruni S (2015) Surface-enhanced Raman scattering (SERS) study of anthocyanidins. Spectrochim Acta A Mol Biomol Spectrosc 149:41–47. doi:10.1016/j.saa.2015.04.039

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SZ, FC and RPVD would like to acknowledge the National Science Foundation (MRSEC NSF DMR-1121262, NSF CHE-1152547, and NSF CHE-1041812) and the Northwestern University/Art Institute of Chicago Center for Scientific Studies in the Arts (NU-ACCESS) for their support. Additionally, this work made use of the EPIC facility (NUANCE Center-Northwestern University), which has received support from the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); and the State of Illinois, through the IIN. JL and ML thank the National Science Foundation (CHE-1402750) for funding. FC and FP are indebted to the Andrew W. Mellon Foundation for funding a postdoctoral research position and providing support for Conservation Science at the Art Institute of Chicago.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Pozzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Atlantis Press and the author(s)

About this chapter

Cite this chapter

Pozzi, F., Zaleski, S., Casadio, F., Leona, M., Lombardi, J.R., Van Duyne, R.P. (2016). Surface-Enhanced Raman Spectroscopy: Using Nanoparticles to Detect Trace Amounts of Colorants in Works of Art. In: Dillmann, P., Bellot-Gurlet, L., Nenner, I. (eds) Nanoscience and Cultural Heritage. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-198-7_6

Download citation

Publish with us

Policies and ethics