Skip to main content

Nano-crystallization in Decorative Layers of Greek and Roman Ceramics

  • Chapter
  • First Online:
Nanoscience and Cultural Heritage

Abstract

Besides metallic nanocrystals of lusterware (Chapter “Lustre and Nanostructures—Ancient Technologies Revisited”), other nanoscale crystals can be found in ancient ceramics and more specifically in their decorative layers or coatings. These crystals can play a major role in the physical properties of these thin layers or can be an indicator of the manufacturing process. These thin layers are formed during firing and result from physicochemical reactions among the diverse compounds of raw preparation. In general, the firing conditions are not suitable for obtaining large crystals and many of the formed phases have crystal sizes of a few tens nanometres. Over a long period of time and throughout the world, the variety of raw preparations and firing conditions used are so diverse that it is not conceivable to give here an exhaustive rundown. In this chapter, we will focus our attention on some decorative layers of Greek and Roman potteries for which oxide nanocrystals play a key role regarding the optical and/or mechanical properties. These decorations were obtained from clay preparations and their physical properties result directly from the nanocrystalline size and the behaviour of clay minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angelini I, Artioli G, Bellintani P, Diella V, Gemmi M, Polla A, Rossi A (2004) Chemical analyses of bronze age glasses from Frattesina di Rovigo, northern Italy. J Archaeol Sci 31(8):1175–1184. doi:10.1016/j.jas.2004.02.015

    Article  Google Scholar 

  • Barber DJ, Freestone IC (1990) An investigation of the origin of the color of Lycurgus cup by analytical transmission electron-microscopy. Archaeometry 32:33–45

    Article  Google Scholar 

  • Brun N, Mazerolles L, Pernot M (1991) Microstructure of opaque red glass containing copper. J Mater Sci Lett 10(23):1418–1420. doi:10.1007/BF00735696

    Article  CAS  Google Scholar 

  • Bugoi R, Constantinescu B, Pantos E, Popovici D (2008) Investigation of Neolithic ceramic pigments using synchrotron radiation X-ray diffraction. Powder Diffr 23(3):195–199

    Article  CAS  Google Scholar 

  • Chazalon L (2010) Les céramiques attiques du Ve s. av n.è à Lattes. Première données sur le cinquième siécle avant notre ère dans la ville de Lattara, ADAL, Lattes (Lattara 21) 2:l.5, 618

    Google Scholar 

  • Cianchetta I, Trentelman K, Maish J, Saunders D, Foran B, Walton M, Sciau P, Wang T, Pouyet E, Cotte M, Meirer F, Liu Y, Pianetta P (2015) Evidence for an unorthodox firing sequence employed by the Berlin painter: deciphering ancient ceramic firing conditions through high-resolution material characterization and replication. J Anal At Spectrom 30:666–676. doi:10.1039/C4JA00376D

    Article  CAS  Google Scholar 

  • Colomban P (2009) The use of metal nanoparticles to produce yellow, red and iridescent colour, from bronze age to present times in lustre pottery and glass: solid state chemistry, spectroscopy and nanostructure. J Nano Res 8:109–132

    Article  CAS  Google Scholar 

  • Colomban P, Liem NQ, Sagon G, Tinh HX, Hoanh TB (2003) Microstructure, composition and processing of 15th century Vietnamese porcelains and celadons. J Cult Herit 4(3):187–197. doi:10.1016/s1296-2074(03)00045-1

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals. Pearson, Harlow

    Google Scholar 

  • Dejoie C, Sciau P, Li WD, Noe L, Mehta A, Chen K, Luo HJ, Kunz M, Tamura N, Liu Z (2014) Learning from the past: rare epsilon-Fe2O3 in the ancient black-glazed Jian (Tenmoku) wares. Sci Rep 4:4941. doi:10.1038/srep04941

    Article  CAS  Google Scholar 

  • Figueiredo MO, Silva TP, Veiga JP (2012) A XANES study of cobalt speciation state in blue-and-white glazes from 16th to 17th century Chinese porcelains. J Electron Spectrosc Relat Phenom 185(3–4):97–102. doi:10.1016/j.elspec.2012.02.007

    Article  CAS  Google Scholar 

  • Freestone I, Meeks N, Sax M, Higgitt C (2007) The Lycurgus cup—a Roman nanotechnology. Gold Bull. 40(4):270–277

    Article  CAS  Google Scholar 

  • Garcia D, d’ Anna A, Desbat A, Schmitt A, Verhaeghe F (2014) La Céramique: La poterie du Néolithique aux temps modernes. Editions Errance

    Google Scholar 

  • Gich M, Frontera C, Roig A, Fontcuberta J, Molins E, Bellido N, Simon C, Fleta C (2006) Magnetoelectric coupling in epsilon-Fe2O3 nanoparticles. Nanotechnology 17(3):687–691. doi:10.1088/0957-4484/17/3/012

    Article  CAS  Google Scholar 

  • Gich M, Gazquez J, Roig A, Crespi A, Fontcuberta J, Idrobo JC, Pennycook SJ, Varela M, Skumryev V (2010) Epitaxial stabilization of epsilon-Fe2O3 (00l) thin films on SrTiO3 (111). Appl Phys Lett 96(11):112508. doi:10.1063/1.3360217

    Article  Google Scholar 

  • Hartley BR (1971) Roman Samian Ware: Terra Sigillata. Herts Archaeol Soc

    Google Scholar 

  • Joannopoulos JD, Villeneuve PR, Fan SH (1997) Photonic crystals: putting a new twist on light. Nature 386(6621):143–149. doi:10.1038/386143a0

    Article  CAS  Google Scholar 

  • Jubier-Galinier C, Laurens A-F, Tsingarida A (2003) Les atelier de potiers en attique. In: Rouillard P, Verbanck-Pierard A (eds) Le vase grec et ses destins. Biering and Brinkmann, Munich, pp 27–43

    Google Scholar 

  • Keay SJ (1988) Roman Spain. University of California Press, California

    Google Scholar 

  • Kinoshita S, Yoshioka S (2005) Structural colors in nature: the role of regularity and irregularity in the structure. Chem Phys Chem 6(8):1442–1459. doi:10.1002/cphc.200500007

    CAS  Google Scholar 

  • Lee WE, Souza GP, McConville CJ, Tarvornpanich T, Iqbal Y (2008) Mullite formation in clays and clays-derived vitreous ceramics. J Eur Ceram Soc 28:465–471

    Article  CAS  Google Scholar 

  • Leon Y, Lofrumento C, Zoppi A, Carles R, Castellucci EM, Sciau P (2010) Micro-Raman investigations of terra sigillata slips: a comparative study of central italian and southern Gaul productions. J Raman Spectrosc 41(11):1550–1555

    Article  Google Scholar 

  • Leon Y, Sciau P, Passelac M, Sanchez C, Sablayrolles R, Goudeau P (2015) Evolution of terra sigillata technology from Italy to Gaul through a multi-technique approach. J Anal At Spectrom 30(3):658–665. doi:10.1039/C4JA00367E

    Article  CAS  Google Scholar 

  • Li WD, Luo HJ, Li JN, Li JZ, Guo JK (2008) Studies on the microstructure of the black-glazed bowl sherds excavated from the Jian kiln site of ancient China. Ceram Int 34(6):1473–1480. doi:10.1016/j.ceramint.2007.04.004

    Article  CAS  Google Scholar 

  • Lyons CL (2005) The Greek vase and its destinies. Am J Archaeol 109(1):113–114

    Google Scholar 

  • Maggetti M (1982) Phase analysis and its significance for technology and origin. In: Olin JS, Franklin AD (eds) Archaeological ceramics. Smithsonian Institution Press, Washington DC, pp 121–133

    Google Scholar 

  • McConville CJ, Lee WE (2005) Microstructural development on firing illite and smectite clays, compared with that in kaolinite. J Am Ceram Soc 88(8):2267–2276

    Article  CAS  Google Scholar 

  • Meirer F, Liu YJ, Pouyet E, Fayard B, Cotte M, Sanchez C, Andrews JC, Mehta A, Sciau P (2013) Full-field XANES analysis of Roman ceramics to estimate firing conditions—a novel probe to study hierarchical heterogeneous materials. J Anal At Spectrom 28(12):1870–1883

    Article  CAS  Google Scholar 

  • Mirti P, Davit P (2001) Technological characterization of Campanian pottery of type A, B and C and of regional products from ancient Calabria (southern Italy). Archaeometry 43:19–33. doi:10.1111/1475-4754.00002

    Article  CAS  Google Scholar 

  • Nakai I, Numako C, Hosono H, Yamasaki K (1999) Origin of the red color of satsuma copper-ruby glass as determined by EXAFS and optical absorption spectroscopy. J Am Ceram Soc 82(3):689–695

    Article  CAS  Google Scholar 

  • Noble JV (1965) The techniques of painted Attic pottery. Watson-Guptill edn, New York

    Google Scholar 

  • Picon M, Vernhet A (2008) Les très grands fours à sigillées en Gaule, et notamment à la Graufesenque. SFECAG, actes du Congrès de L’Escala-Empuries, pp 553–566

    Google Scholar 

  • Ricciardi P, Colomban P, Tournie A, Macchiarola M, Ayed N (2009) A non-invasive study of Roman Age mosaic glass tesserae by means of Raman spectroscopy. J Archaeol Sci 36(11):2551–2559. doi:10.1016/j.jas.2009.07.008

    Article  Google Scholar 

  • Schaad D (2007) La Graufesenque (Millau, Aveyron), volume I; Condatomagos une agglomération de confluent en territoire rutène., vol I. La Graufesenque (Millau, Aveyron), Editions de la Fédération Aquitania

    Google Scholar 

  • Sciau P (2012) Nanoparticles in ancient materials: the metallic lustre decoration of medieval ceramics. In: Hashim AA (ed) The delivery of nanoparticles. InTech, pp 525–540. doi:10.5772/34080

    Google Scholar 

  • Sciau P, Goudeau P (2015) Ceramics in art and archaeology: a review of the materials science aspects. Eur Phys J B 88(5):1–11. doi:10.1140/epjb/e2015-60253-8

    Article  CAS  Google Scholar 

  • Sciau P, Relaix S, Roucau C, Kihn Y (2006) Microstructural and microchemical characterization of roman period terra sigillate slips from archeological sites in southern France. J Am Ceram Soc 89(3):1053–1058

    Article  CAS  Google Scholar 

  • Sciau P, Relaix S, Mirguet C, Goudeau P, Bell AMT, Jones RL, Pantos E (2008) Synchrotron X-ray diffraction study of phase transformations in illitic clays to extract information on sigillata manufacturing processes. Appl Phys A 90:61–66

    Article  CAS  Google Scholar 

  • Tite MS (2008) Ceramic production, provenance and use, a review. Archaeometry 50(2):216–231

    Article  CAS  Google Scholar 

  • Tite MS, Bimson M, Freestone IC (1982) An examination of the high gloss surface finishes on Greek Attic and Roman Samian wares. Archaeometry 24:117–126

    Article  CAS  Google Scholar 

  • Tronc E, Chaneac C, Jolivet JP (1998) Structural and magnetic characterization of epsilon-Fe2O3. J Solid State Chem 139(1):93–104. doi:10.1006/jssc.1998.7817

    Article  CAS  Google Scholar 

  • Tucek J, Zboril R, Namai A, Ohkoshi S (2010) Epsilon-Fe2O3: an advanced nanomaterial exhibiting giant coercive field, millimeter-wave ferromagnetic resonance, and magnetoelectric coupling. Chem Mater 22(24):6483–6505. doi:10.1021/cm101967h

    Article  CAS  Google Scholar 

  • Vendrell-Saz M, Pradell T, Molera J, Aliaga S (1991) Proto-campanian and A-campanian ceramics: characterization of the differences between the black coatings. Archaeometry 33(1):109–117

    Article  CAS  Google Scholar 

  • Walton MS, Doehne E, Trentelman K, Chiari G, Maish J, Buxbaum A (2009) Characterization of coral red slips on Greek Attic pottery. Archaeometry 51(3):383–396

    Article  CAS  Google Scholar 

  • Walton M, Trentelman K, Cummings M, Poretti G, Maish J, Saunders D, Foran B, Brodie M, Mehta A (2013) Material evidence for multiple firings of ancient athenian red-figure pottery. J Am Ceram Soc 96(7):2031–2035

    Article  CAS  Google Scholar 

  • Wang L, Wang C (2011) Co speciation in blue decorations of blue-and-white porcelains from Jingdezhen kiln by using XAFS spectroscopy. J Anal At Spectrom 26(9):1796–1801. doi:10.1039/c0ja00240b

    Article  CAS  Google Scholar 

  • Wang T, Sciau P, Feng ZY, Fayard B, Pouyet E, Cotte M, De Nolf W, Zhu TQ (2016) Synchrotron-based multi-analytical study of Chinese Qinghua porcelains (Ming dynasty): micro-composition and chromogenic mechanisms of blue decors. Anal Chem (to be published)

    Google Scholar 

  • Wood N (1999) Chinese glazes, their origins, chemistry and recreation. University of Pennsylvania Press, Philadelphia

    Google Scholar 

  • Zuppiroli L, Bussac M-N, Grimm C (2003) Traité des couleurs. Presses polytechniques et universitaires romandes, Lausanne

    Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledge Eric Gailledrat, Cécile Jubier-Galinier and Corinne Sanchez (laboratoire Archéologie des Sociétés Méditerranéennes, UMR 5140) and Dragomir Nicolae Popovici (National Museum of Romania’s History) for the archaeological samples as well as Philippe de Parseval (GET, Toulouse University) for the elemental composition measurements, Christophe Deshayes (CEMES) for SEM investigations and Sébastien Joulié (CEMES) for TEM-ASTAR investigations. I would also like to thank Deborah Decamaret and Philippe Goudeau for their help. This article was partially funded by the ARCHIMEDE Labex programme: Investissement d’Avenir ANR-11-LABX-0032-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Sciau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Atlantis Press and the author(s)

About this chapter

Cite this chapter

Sciau, P. (2016). Nano-crystallization in Decorative Layers of Greek and Roman Ceramics. In: Dillmann, P., Bellot-Gurlet, L., Nenner, I. (eds) Nanoscience and Cultural Heritage. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-198-7_2

Download citation

Publish with us

Policies and ethics