Skip to main content

Part of the book series: Atlantis Studies in Mathematics for Engineering and Science ((ASMES,volume 12))

  • 400 Accesses

Abstract

In this survey paper we will consider the dyadic version of the classical theorem of Lebesgue. Schipp [13] proved that the dyadic derivative of the dyadic integral of a function f ∈ L 1[0, 1) is almost everywhere f. The theory of Hardy spaces can be well applied in harmonic analysis as well as in the theory of dyadic derivative (see e.g. [19, 24] and the references therein).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. L. Butzer and W. Engels. Dyadic calculus and sampling theorems for functions with multidimensional domain. Information and Control., 52:333–351, 1982.

    Google Scholar 

  2. *P. L. Butzer and H. J. Wagner. Walsh-Fiurier series and the concept of a derivative. Applic. Anal., 3:29–46, 1973.

    Google Scholar 

  3. *P. L. Butzer and H. J. Wagner. On dyadic analysis based on the pointwise dyadic derivative. Anal. Math., 1:171–196, 1975.

    Google Scholar 

  4. R. R. Coifman and G.Weiss. Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc., 83:569–645, 1977.

    Google Scholar 

  5. G. Gát. On the two-dimensional pointwise dyadic calculus. J. Appr. Theory, 92:191–215, 1998.

    Google Scholar 

  6. G. Gát and K. Nagy. The fundamental theorem of two-parameter pointwise derivate on Vilenkin groups. Anal. Math., 25:33–55, 1999.

    Google Scholar 

  7. J. E. Gibbs. Some properties of functions of the non-negative integers less than 2n. Technical Report DES 3, NPL National Physical Laboratory Middlesex, England, 1969.

    Google Scholar 

  8. U. Goginava. The Hardy type inequality for the maximal operator of the one-dimensional dyadic derivative. Acta Math. Sci., Ser. B, Engl. Ed., 31(4):1489–1493, 2011.

    Google Scholar 

  9. U. Goginava. Weak type inequality for the one-dimensional dyadic derivative. Math. Inequal. Appl., 14(4):839–848, 2011.

    Google Scholar 

  10. C. Herz. Bounded mean oscillation and regulated martingales. Trans. Amer. Math. Soc., 193:199–215, 1974.

    Google Scholar 

  11. J. Pál and P. Simon. On a generalization of the concept of derivative. Acta Math. Hungar., 29:155–164, 1977.

    Google Scholar 

  12. J. Pál and P. Simon. On the generalized Butzer-Wagner type a.e. differentiability of integral function. Annales Univ. Sci. Budapest, Sectio Math., 20:157–165, 1977.

    Google Scholar 

  13. F. Schipp. Über einen Ableitungsbegriff von P.L. Butzer and H.J. Wagner. Mat. Balkanica., 4:541–546, 1974.

    Google Scholar 

  14. F. Schipp and P. Simon. On some (H, L 1)-type maximal inequalities with respect to theWalsh-Paley system. In Functions, Series, Operators, Proc. Conf. in Budapest, 1980, volume 35 of Coll. Math. Soc. J. Bolyai, pages 1039–1045. North Holland, Amsterdam, 1981.

    Google Scholar 

  15. F. Schipp and W. R. Wade. A fundamental theorem of dyadic calculus for the unit square. Applic. Anal., 34:203–218, 1989.

    Google Scholar 

  16. F. Schipp, W. R. Wade, P. Simon, and J. Pál. Walsh Series: An Introduction to Dyadic Harmonic Analysis. Adam Hilger, Bristol, New York, 1990.

    Google Scholar 

  17. P. Simon and F. Weisz. On the two-parameter Vilenkin derivative. Math. Pannonica, 12:105–128, 2000.

    Google Scholar 

  18. P. Simon and F. Weisz. Hardy spaces and the generalization of the dyadic derivative. In L. Leindler, F. Schipp, and J. Szabados, editors, Functions, Series, Operators, Alexits Memorial Conference, Budapest, (Hungary, 1999), pages 367–388, 2002.

    Google Scholar 

  19. F. Weisz. Martingale Hardy Spaces and their Applications in Fourier Analysis, volume 1568 of Lecture Notes in Math. Springer, Berlin, 1994.

    Google Scholar 

  20. F. Weisz. (Hp, Lp)-type inequalities for the two-dimensional dyadic derivative. Studia Math., 120:271–288, 1996.

    Google Scholar 

  21. F. Weisz. Some maximal inequalities with respect to two-parameter dyadic derivative and Cesáro summability. Applic. Anal., 62:223–238, 1996.

    Google Scholar 

  22. F. Weisz. Martingale Hardy spaces and the dyadic derivative. Anal. Math., 24:59–77, 1998.

    Google Scholar 

  23. F. Weisz. The two-parameter dyadic derivative and the dyadic Hardy spaces. Anal. Math., 26:143–160, 2000.

    Google Scholar 

  24. F. Weisz. Summability of Multi-dimensional Fourier Series and Hardy Spaces. Mathematics and Its Applications. Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.

    Google Scholar 

  25. F. Weisz. Boundedness of operators on Hardy spaces. Acta Sci. Math. (Szeged), 78:541–557, 2012.

    Google Scholar 

  26. X. Zhang, X. Yu, and C. Zhang. The boundedness of two-dimensional maximal operator of dyadic derivative. J. Math., Wuhan Univ., 31(3):395–400, 2011.

    Google Scholar 

  27. A. Zygmund. Trigonometric Series. Cambridge Press, London, 3rd edition, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferenc Weisz .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Atlantis Press and the author(s)

About this chapter

Cite this chapter

Weisz, F. (2015). Hardy Spaces in the Theory of Dyadic Derivative. In: Dyadic Walsh Analysis from 1924 Onwards Walsh-Gibbs-Butzer Dyadic Differentiation in Science Volume 1 Foundations. Atlantis Studies in Mathematics for Engineering and Science, vol 12. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-160-4_8

Download citation

Publish with us

Policies and ethics