Skip to main content

Radial Oscillations of Cylindrical and Spherical Shells

  • Chapter
  • First Online:
Mathematical Models with Singularities

Part of the book series: Atlantis Briefs in Differential Equations ((ABDE,volume 1))

  • 934 Accesses

Abstract

In this chapter, we study the radial vibrations of a cylindrical or spherical shell made of a hyperelastic, homogeneous, isotropic and incompressible material subjected to time-periodic pressures exerted at the inner and outer surface of the shell, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Rubber is the canonical example of material close to this ideal setting. From a physical point of view, rubber is simply a network of polymeric chains. Such chains are composed by linked monomers, and the nature of such links conforms the particular elastic properties of the material.

  2. 2.

    Precisely, the regularity condition on \(h\) is only used to prove the continuability of the solutions. In ny opinion, it may be a technical assumption.

References

  1. Antman, S.S.: Nonlinear Problems of Elasticity, 2nd edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  2. Antman, S.S., Lacarbonara, W.: Forced radial motions of nonlinearly viscoelastic shells. J. Elast. 96, 155–190 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Antman, S.S., Lacarbonara, W.: Parametric instabilities of the radial motions of non-linearly viscoelastic shells under pulsating pressures. Int. J. Non-Linear Mech. 47, 461–472 (2012)

    Article  Google Scholar 

  4. Calderer, M.C.: The dynamic behavior of nonlinear elastic spherical shells. J. Elast. 13, 17–47 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fosdick, R.L., Yu, J.-H.: Thermodynamics, stability and non-linear oscillations of viscoelastic solids—I. Differential type solids of second grade. Int. J. Non-Linear Mech. 31(4), 495–516 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fosdick, R.L., Yu, J.-H.: Thermodynamics, stability and non-linear oscillations of viscoelastic solids—II. History type solids. Int. J. Non-Linear Mech. 33(1), 165–188 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gaete, S., Manásevich, R.F.: Existence of a pair of periodic solutions of an O.D.E. generalizing a problem in nonlinear elasticity, via variational methods. J. Math. Anal. Appl. 134, 257–271 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Guo, Z.-H., Solecki, R.: Free and forced finite-amplitude oscillations of a thick-walled sphere of incompressible material. Bull. Acad. Pol. Sci. Ser. Sci. Tech. 11, 47–52 (1963)

    Google Scholar 

  9. Guo, Z.-H., Solecki, R.: Free and forced finite-amplitude oscillations of an elastic thick-walled hollow sphere made of incompressible material. Arch. Mech. Stos. 15, 427–433 (1963)

    MATH  MathSciNet  Google Scholar 

  10. Knowles, J.K.: Large amplitude oscillations of a tube of incompressible elastic material. Q. Appl. Math. 18, 71–77 (1960)

    MATH  MathSciNet  Google Scholar 

  11. Knowles, J.K.: On a class of oscillations in the finite deformation theory of elasticity. J. Appl. Mech. 29, 283–286 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mason, D.P., Maluleke, G.H.: Non-linear radial oscillations of a transversely isotropic hyperelastic incompressible tube. J. Math. Anal. Appl. 333, 365–380 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Pino, M.A., Manásevich, R.F.: Infinitely many T-Periodic solutions for a problem arising in nonlinear elasticity. J. Differ. Equ. 103(2), 260–277 (1993)

    Article  MATH  Google Scholar 

  14. Rachunková, I.: Existence of two positive solutions of a singular nonlinear periodic boundary value problem. J. Comput. Appl. Math. 113, 27–34 (2000)

    Article  MathSciNet  Google Scholar 

  15. Rogers, C., Baker, J.A.: The finite elastodynamics of hyperelastic thin tubes, internat. J. Non-Linear Mech. 15(3), 225–233 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  16. Roussos, N., Mason, D.P., Hill, D.L.: On non-linear radial oscillations of an incompressible, hyperelastic spherical shell. Math. Mech. Solids 7, 67–85 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Shahinpoor, M., Nowinski, J.L.: Exact solutions to the problem of forced large amplitude oscillations of a thin hyperelastic tube. Int. J. Non-Linear Mech. 6, 193–207 (1971)

    Article  MATH  Google Scholar 

  18. Wang, C.C.: On the radial oscillations of a spherical thin shell in the finite elasticity theory. Q. Appl. Math. 23(3), 270–274 (1965)

    Google Scholar 

  19. Zhang, Z., Wang, J.: On existence and multiplicity of positive solutions to periodic boundary value problems for singular nonlinear second order differential equations. J. Math. Anal. Appl. 281, 99–107 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro J. Torres .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Atlantis Press and the authors

About this chapter

Cite this chapter

Torres, P.J. (2015). Radial Oscillations of Cylindrical and Spherical Shells. In: Mathematical Models with Singularities. Atlantis Briefs in Differential Equations, vol 1. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-106-2_10

Download citation

Publish with us

Policies and ethics