Skip to main content

Complexity Reduction in Fuzzy Systems Using Functional Principal Component Analysis

  • Chapter
  • First Online:
Fuzzy Modeling and Control: Theory and Applications

Part of the book series: Atlantis Computational Intelligence Systems ((ATLANTISCIS,volume 9))

Abstract

The ability to build fuzzy logic applications for control problems has been hindered by well-known problem of combinatorial rules explosion, causing complexity in modeling

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bai, Y., Zhuang, H., & Wang, D. (2006). Advanced fuzzy logic technologies in industrial applications (advances in industrial control). Secaucus: Springer. ISBN 1846284686.

    Google ScholarĀ 

  • Baranyi, P., & Yam, Y. (1997). Singular value-based approximation with takagi-sugeno type fuzzy rule base. In: Proceedings of the Sixth IEEE International Conference on in Fuzzy Systems, vol. 1, pp. 265ā€“270. doi:10.1109/FUZZY.1997.616379.

  • Camacho, E., & Bordons, C. (2004). Model predictive control, advanced textbooks in control and signal processing. Springer. ISBN 9781852336943. http://books.google.es/books?id=Sc1H3f3E8CQC

  • CENELEC. (2000). Programmable controllers - Part 7: Fuzzy control programming (CENELEC).

    Google ScholarĀ 

  • CENELEC. (2013). Programmable controllers - Part 3: Programming languages. ed 3.0 (CENELEC).

    Google ScholarĀ 

  • Chen, Y.-J., & Teng, C.-C. (1996). Rule combination in a fuzzy neural network. Fuzzy Sets System, 82, 161ā€“166. doi:10.1016/0165-0114(95)00252-9.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  • Ciftcioglu, O. (2002). Studies on the complexity reduction with orthogonal transformation. In: Proceedings of the 2002 IEEE International Conference on Fuzzy Systems, FUZZ-IEEEā€™02, vol. 2, pp. 1476ā€“1481. doi:10.1109/FUZZ.2002.1006724.

  • Deville, J. (1974). MĆ©thodes statistiques et numĆ©riques de lā€™analyse harmonique, Annales de lā€™insĆ©Ć©, 15, 3, 5ā€“101.

    Google ScholarĀ 

  • EscaƱo, J., Bordons, C., Vilas, C., GarcĆ­a, M., & Alonso, A. (2009). Neurofuzzy model based predictive control for thermal batch processes. Journal of Process Control, 19(9), 1566ā€“1575.

    ArticleĀ  Google ScholarĀ 

  • Gegov, A. (2007). Complexity management in fuzzy systems: A rule base compression approach, studies in fuzziness and soft computing, vol. 211. Springer. ISBN 978-3-540-38883-8.

    Google ScholarĀ 

  • Gruber, J. K., Bordons, C., Bars, R. and Haber, R. (2010). Nonlinear predictive control of smooth nonlinear systems based on volterra models. application to a pilot plant. International Journal of Robust and Nonlinear Control 20(16), 1817ā€“1835. doi:10.1002/rnc.1549. http://dx.doi.org/10.1002/rnc.1549

  • Jang, J., Sun, C., & Mizutani, E. (1997). Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence, MATLAB curriculum series. Prentice Hall. ISBN 9780132610667, http://books.google.es/books?id=vN5QAAAAMAAJ

  • Jin, Y. (2000). Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement. IEEE Transactions on Fuzzy Systems, 8(2), 212ā€“221. doi:10.1109/91.842154.

    ArticleĀ  Google ScholarĀ 

  • Kiriakidis, K. (1998). Fuzzy model-based control of complex plants. IEEE Transactions on Fuzzy Systems, 6(4), 517ā€“529. doi:10.1109/91.728444.

    ArticleĀ  Google ScholarĀ 

  • Lu, C.-H., & Tsai, C.-C. (2007). Generalized predictive control using recurrent fuzzy neural networks for industrial processes. Journal of Process Control 17(1), 83ā€“92. doi:10.1016/j.jprocont.2006.08.003. http://www.sciencedirect.com/science/article/pii/S0959152406000904

  • Marusak, P., & Tatjewski, P. (2009). Effective dual-mode fuzzy dmc algorithms with on-line quadratic optimization and guaranteed stability. Internaitonal Journal of Application of Mathmatics and Computer Science, 19(1), 127ā€“142. doi:10.2478/v10006-009-0012-8. http://dx.doi.org/10.2478/v10006-009-0012-8

  • Ross, T. J. (2004). Fuzzy logic with engineering applications. Wiley. ISBN 0470860758. http://www.worldcat.org/isbn/0470860758

  • Schneider. (2009). Fuzzy control library v1.2, Technical Report 33004219.02, Schneider Electric.

    Google ScholarĀ 

  • Setnes, M., BabuÅ”ka, R., & Verbruggen, H. B. (1998). Complexity reduction in fuzzy modeling. Mathematics and Computer Simulation, 46, 507ā€“516. doi:10.1016/S0378-4754(98)00079-2. http://dl.acm.org/citation.cfm?id=284142.284163

  • Simon, D. (2000). Design and rule base reduction of a fuzzy filter for the estimation of motor currents. International Journal of Approximation Reasoning, 25(2), 145ā€“167.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15(1), 116ā€“132.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Tatjewski, P. (2007). Advanced control of industrial processes: Structures and algorithms, advances in industrial control. Springer. ISBN 9781846286346. http://books.google.es/books?id=e_QEnZB0PLoC.

  • Yam, Y. (1997). Fuzzy approximation via grid point sampling and singular value decomposition. IEEE Transactions on Systems, Man, and Cybernetics Part B, 27(6), 933ā€“951. doi:10.1109/3477.650055. http://dx.doi.org/10.1109/3477.650055

  • Yen, J., & Wang, L. (1999). Simplifying fuzzy rule-based models using orthogonal transformation methods. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 29(1), 13ā€“24. doi:10.1109/3477.740162.

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgments

Part of the work was supported by the project DPI2010-21589-C05-01 of the Spanish Ministry of Economy and Competitiveness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Manuel EscaƱo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2014 Atlantis Press and the authors

About this chapter

Cite this chapter

EscaƱo, J.M., Bordons, C. (2014). Complexity Reduction in Fuzzy Systems Using Functional Principal Component Analysis. In: Matƭa, F., Marichal, G., JimƩnez, E. (eds) Fuzzy Modeling and Control: Theory and Applications. Atlantis Computational Intelligence Systems, vol 9. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-082-9_3

Download citation

  • DOI: https://doi.org/10.2991/978-94-6239-082-9_3

  • Published:

  • Publisher Name: Atlantis Press, Paris

  • Print ISBN: 978-94-6239-081-2

  • Online ISBN: 978-94-6239-082-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics