Skip to main content

New Concepts for the Estimation of Takagi-Sugeno Model Based on Extended Kalman Filter

  • Chapter
  • First Online:
Fuzzy Modeling and Control: Theory and Applications

Abstract

This chapter describes new approaches to improve the local and global approximation (matching) and modeling capability of Takagi-Sugeno (TS) fuzzy model. The main aim is obtaining high function approximation accuracy and fast convergence. The main problem encountered is that TS identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the application of the TS method because this type of membership function has been widely used during the last two decades in the stability, controller design of fuzzy systems and is popular in industrial control applications. The approach developed here can be considered as a generalized version of TS identification method with optimized performance in approximating nonlinear functions. We propose a noniterative method through weighting of parameters approach and an iterative algorithm by applying the extended Kalman filter, based on the same idea of parameters’ weighting. We show that the Kalman filter is an effective tool in the identification of TS fuzzy model. An illustrative example of an inverted pendulum is chosen to evaluate the robustness and remarkable performance of the proposed method locally and globally in comparison with the original TS model. Simulation results indicate the potential, simplicity, and generality of the algorithm. In this chapter we prove that these algorithms converge very fast, thereby making them very practical to use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Hadithi, B. M., Jiménez, A., & Matía, F. (2011). New methods for the estimation of T-S model based extended Kalman filter and its applications to optimal control for nonlinear systems. Optimal Control, Applications and Methods, 33, 552–575 (Published online in Wiley InterScience)

    Google Scholar 

  • Al-Hadithi, B. M., Jiménez, A., & Matía, F. (2012). A new approach to fuzzy estimation of Takagi–Sugeno model and its applications to optimal control for nonlinear systems. Applied Soft Computing, 12, 280–290.

    Article  Google Scholar 

  • Cao, S. G., Rees, N. W., & Feng, G. (1997). Analysis and design for a class of complex control systems- part i: Fuzzy modeling and identification. Automatica, 33, 1017–1028.

    Article  MATH  MathSciNet  Google Scholar 

  • Chen, B., Xiaoping, L., & Shaocheng, T. (2007). Adaptive fuzzy output tracking control of MIMO nonlinear uncertain systems. IEEE Transactions on Fuzzy Systems, 15(2), 287–300.

    Article  Google Scholar 

  • Chen, W., & Saif, M. (2005). A novel fuzzy system with dynamic rule base. IEEE Transactions on Fuzzy Systems, 13(5), 569–582.

    Article  Google Scholar 

  • Cordon, O., Herrera, F., Magdalena, L., & Villar, P. (2001). A genetic learning process for the scaling factors, granularity and contexts of the fuzzy rule-based system data base. Information Sciences, 136, 85–107.

    Article  MATH  Google Scholar 

  • Gang, F. (2006). A survey on analysis and design of model-based fuzzy control systems. IEEE Transactions on Fuzzy Systems, 14(5), 676–697.

    Article  Google Scholar 

  • Gillespie, T. D. (1992). Fundamentals of vehicle dynamics. Warrendale: Society of Automotive Engineers Inc.

    Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization & machine learning. Cambridge: Addison-Wesley.

    Google Scholar 

  • Guerra, T. M., & Vermeiren, L. (2004). Lmi-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno’s form. Automatica, 40, 823–829.

    Article  MATH  MathSciNet  Google Scholar 

  • Herrera, F., Lozano, M., & Verdegay, J. L. (1995). Tuning fuzzy logic controllers by genetic algorithms. International Journal of Approximate Reasoning, 12(3–4), 299–315.

    Article  MATH  MathSciNet  Google Scholar 

  • Holland, J. H. (1992). Adaptation in natural and artificial systems. MIT Press. ISBN 0-262-58111-6.

    Google Scholar 

  • Hong, T. P., & Lee, C. Y. (1996). Induction of fuzzy rules and membership functions from training examples. Fuzzy Sets System, 84(1), 33–47.

    Article  MATH  MathSciNet  Google Scholar 

  • Hou, Y., Jacek, M., Zurada, W., Karwowski, W. S., & Davis, K. (2007). Identification of key variables using fuzzy average with fuzzy cluster distribution. IEEE Transactions on Fuzzy Systems, 15(4), 673–685.

    Article  Google Scholar 

  • Hseng, T., Li, S., & Tsai, S.-H. (2007). Fuzzy bilinear model and fuzzy controller design for a class of nonlinear systems. IEEE Transactions on Fuzzy Systems, 15(3), 494–506.

    Article  Google Scholar 

  • Jae-Hun, K., Hyun, C.-H., Kim, E., & Park, M. (2007). New adaptive synchronization of uncertain chaotic systems based on T-S fuzzy model. IEEE Transactions on Fuzzy Systems, 15(3), 359–369.

    Article  Google Scholar 

  • Jiang, X., & Han, Q.-L. (2007). Robust \( {H}_{\infty }\) control for uncertain Takagi-Sugeno fuzzy systems with interval time-varying delay. IEEE Transactions on Fuzzy Systems, 15(2), 321–331.

    Article  Google Scholar 

  • Jiménez, A., Al-Hadithi, B. M., & Matía, F. (2012). Improvement of Takagi-Sugeno fuzzy model for the estimation of nonlinear functions. Asian Journal of Control, 14(6), 1–15.

    MathSciNet  Google Scholar 

  • Johansen, T. A., Shorten, R., & Murray-Smith, R. (2000). On the interpretation and identification of dynamic Takagi-Sugeno models. IEEE Transactions on Fuzzy Systems, 8(3), 297–313.

    Article  Google Scholar 

  • Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Transactions on ASME-Journal of Basic Engineering, 82(series D), 35–45.

    Google Scholar 

  • Kotwicki, A. J. (1982). Dynamic models for torque converter equipped vehicles, Technical report. Warrendale: Society of Automotive Engineers Inc.

    Google Scholar 

  • Kumar, M., Stoll, R., & Stoll, N. (2006). A min-max approach to fuzzy clustering, estimation, and identification. IEEE Transactions on Fuzzy Systems, 14(2), 248–262.

    Article  Google Scholar 

  • Lee, T. C., Yang, D. R., Lee, K. S., & Yoon, T. W. (2001). Indirect adaptive backstepping control of a pH neutralization process based on recursive prediction error method for combined state and parameter estimation. Industrial and Engineering Chemistry Research, 40, 4889–4901.

    Google Scholar 

  • Lian, K.-Y., Su, C.-H., & Huang, C.-S. (2006). Performance enhancement for T-S fuzzy control using neural networks. IEEE Transactions on Fuzzy Systems, 14(5), 619–627.

    Article  Google Scholar 

  • Matía, F., Al-Hadithi, B. M., Jiménez, A., & San Segundo, P. (2011). An affine fuzzy model with local and global interpretation. Applied Soft Computing, 11, 4226–4235.

    Article  Google Scholar 

  • Matía, F., Jiménez, A., Al-Hadithi, B. M., Rodríguez-Losada, D., & Galán, R. (2006). The fuzzy Kalman filter: state estimation using possibilistic techniques. Fuzzy Sets and Systems, 157, 2145–2170.

    Article  MATH  MathSciNet  Google Scholar 

  • Matía, F., Jiménez, A., Sanz, R., & Galán, R. (1992). Fuzzy controllers: Lifting the linear-nonlinear frontier. Fuzzy Sets and Systems, 52(2), 113–128.

    Article  MathSciNet  Google Scholar 

  • Mollov, S., Babuska, R., Abonyi, J., & Verbruggen, H. B. (2004). Effective optimization for fuzzy model predictive control. IEEE Transactions on Fuzzy Systems, 12(5), 661–675.

    Article  Google Scholar 

  • Pacejka, H. B. (2006). Tyre and vehicle dynamics (2nd ed.). Oxford: Butterworth-Heinemann. ISBN 978-0-7506-6918-4.

    Google Scholar 

  • Puskorius, G., & Feldkamp, L. (1994). Neurocontrol of nonlinear dynamical systems with kalman filter trained recurrent networks. IEEE Transactions on Fuzzy Systems, 5, 279–297.

    Google Scholar 

  • Rajamani, R. (2012). Vehicle dynamics and control. Springer. ISBN 978-1-4614-1433-9.

    Google Scholar 

  • Servicio de Estadística. (2011). Subdirección General de Análisis y Vigilancia Estadística. Anuario estadístico de accidentes 2011, Technical report.

    Google Scholar 

  • Simon, D. (2000a). Design and rule base reduction of a fuzzy filter for the estimation of motor currents. International Journal of Approximate Reasoning, 25(2), 145–167.

    Google Scholar 

  • Simon, D. (2002b). Sum normal optimization of fuzzy membership functions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(4), 363–384.

    Google Scholar 

  • Simon, D. (2002c). Training fuzzy systems with the extended Kalman filter. Fuzzy Sets and Systems, 132(2), 189–199. doi:10.1016/S0165-0114(01)00241-X.

  • Skrjanc, I., Blazic, S., & Agamennoni, O. (2005). Interval fuzzy model identification using l-norm. IEEE Transactions on Fuzzy Systems, 13, 5.

    Article  Google Scholar 

  • Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15(1), 116–132.

    Article  MATH  Google Scholar 

  • Tanaka, K., Hori, T., & Wang, H. O. (2003). A multiple lyapunov function approach to stabilization of fuzzy control systems. IEEE Transactions on Fuzzy Systems, 11(4), 582–589.

    Article  Google Scholar 

  • Tanaka, K., & Wang, H. O. (2001). LaTeX, Fuzzy control systems design and analysis: A linear matrix inequality approach. New York: Wiley.

    Google Scholar 

  • Tao, C., & Taur, J. (1999). Design of fuzzy controllers with adaptive rule insertion. IEEE Transactions on Systems, Man, Cybern-Part B: Cybernetics, 29, 389–397.

    Article  Google Scholar 

  • Wangand, L., & Mendel, J. (1992). Back-propagation of fuzzy systems as nonlinear dynamic system identiers. In IEEE International Conference on Fuzzy Systems, San Diego, pp. 1409–1418.

    Google Scholar 

  • Woo, Z.-W., Chung, H.-Y., & Lin, J.-J. (2000). A PID type fuzzy controller with self-tuning scaling factors. Fuzzy Sets and Systems, 115(2), 321–326.

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Spanish Ministry of Economy and Competitiveness for its support to this work through projects DPI2010-21247-C02-01 and DPI2010-17123, the Regional Government of Andalusia (Spain) for supporting TEP-6124 project, as well as the European Union Regional Development for funding the last two projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basil Mohammed Al-Hadithi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Atlantis Press and the authors

About this chapter

Cite this chapter

Al-Hadithi, B.M., Jiménez, A., Matía, F., Andújar, J.M., Barragán, A.J. (2014). New Concepts for the Estimation of Takagi-Sugeno Model Based on Extended Kalman Filter. In: Matía, F., Marichal, G., Jiménez, E. (eds) Fuzzy Modeling and Control: Theory and Applications. Atlantis Computational Intelligence Systems, vol 9. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-082-9_1

Download citation

  • DOI: https://doi.org/10.2991/978-94-6239-082-9_1

  • Published:

  • Publisher Name: Atlantis Press, Paris

  • Print ISBN: 978-94-6239-081-2

  • Online ISBN: 978-94-6239-082-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics