Skip to main content

Newton–Krylov Power Flow Solver

  • Chapter
  • First Online:
Computational Methods in Power System Analysis

Part of the book series: Atlantis Studies in Scientific Computing in Electromagnetics ((ASSCE,volume 1))

  • 2034 Accesses

Abstract

Newton power flow solvers traditionally use a direct method to solve the linear systems. For large linear systems of equations with a sparse coefficient matrix, iterative linear solvers are generally more efficient than direct solvers. Using a Krylov method to solve the Jacobian systems in the Newton-Raphson method, leads to a Newton-Krylov method. In this chapter, computational aspects of Newton-Krylov power flow solvers are discussed. It is shown that direct solvers, and other methods using the LU factorisation, scale very badly in the problem size. The alternatives proposed in this chapter are faster for all tested problems and have near linear scaling, thus being much faster for large power flow problems. The largest test problem, with a million buses, takes over an hour to solve using a direct solver, while a Newton-Krylov solver can solve it in less than 30 seconds. That is 120 times faster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 149.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tinney, W.F., Hart, C.E.: Power flow solution by Newton’s method. IEEE Trans. Power Apparatus and Syst. PAS 86(11), 1449–1449 (1967)

    Google Scholar 

  2. Tinney, W.F., Walker, J.W.: Direct solutions of sparse network equations by optimally ordered triangular factorization. Proc. IEEE 55(11), 1801–1809 (1967)

    Article  Google Scholar 

  3. Semlyen, A.: Fundamental concepts of a Krylov subspace power flow methodology. IEEE Trans. Power Syst. 11(3), 1528–1537 (1996)

    Article  Google Scholar 

  4. Pai, M.A., Dag, H.: Iterative solver techniques in large scale power system computation. In: Proceedings of the 36th Conference on Decision & Control, pp. 3861–3866 (1997)

    Google Scholar 

  5. Flueck, A.J., Chiang, H.D.: Solving the nonlinear power flow equations with an inexact Newton method using GMRES. IEEE Trans. Power Syst. 13(2), 267–273 (1998)

    Article  Google Scholar 

  6. de León, F., Semlyen, A.: Iterative solvers in the Newton power flow problem: preconditioners, inexact solutions and partial Jacobian updates. IEE Proc. Gener. Transm. Distrib 149(4), 479–484 (2002)

    Article  Google Scholar 

  7. Chaniotis, D., Pai, M.A.: A new preconditioning technique for the GMRES algorithm in power flow and \(P-V\) curve calculations. Electr. Power Energy Syst. 25, 239–245 (2003)

    Article  Google Scholar 

  8. Zhang, Y.S., Chiang, H.D.: Fast Newton-FGMRES solver for large-scale power flow study. IEEE Trans. Power Syst. 25(2), 769–776 (2010)

    Article  Google Scholar 

  9. Idema, R., Lahaye, D.J.P., Vuik, C., van der Sluis, L.: Scalable Newton-Krylov solver for very large power flow problems. IEEE Trans. Power Syst. 27(1), 390–396 (2012)

    Article  Google Scholar 

  10. Idema, R., Papaefthymiou, G., Lahaye, D.J.P., Vuik, C., van der Sluis, L.: Towards faster solution of large power flow problems. IEEE Trans. Power Syst. 28(4), 4918–4925 (2013)

    Article  Google Scholar 

  11. Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14(2), 461–469 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic Press, New York (2001)

    Google Scholar 

  13. Amestoy, P.R., Davis, T.A., Duff, I.S.: An approximate minimum degree ordering algorithm. SIAM J. Matrix Anal. Appl. 17(4), 886–905 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chang, S.K., Brandwajn, V.: Adjusted solutions in fast decoupled load flow. IEEE Trans. Power Syst. 3(2), 726–733 (1988)

    Article  Google Scholar 

  15. Peterson, N.M., Meyer, W.S.: Automatic adjustment of transformer and phase-shifter taps in the Newton power flow. IEEE Trans. Power Apparatus Syst. PAS-90(1), 103–108 (1971)

    Google Scholar 

  16. Mamandur, K.R.C., Berg, G.J.: Automatic adjustment of generator voltages in Newton-Raphson method of power flow solutions. IEEE Trans. Power Apparatus Syst. PAS-101(6), 1400–1409 (1982)

    Google Scholar 

  17. Dembo, R.S., Steihaug, T.: Truncated-Newton algorithms for large-scale unconstrained optimization. Math. Program. 26, 190–212 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  18. Eisenstat, S.C., Walker, H.F.: Choosing the forcing terms in an inexact Newton method. SIAM J. Sci. Comput. 17(1), 16–32 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reijer Idema .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Atlantis Press and the authors

About this chapter

Cite this chapter

Idema, R., Lahaye, D.J.P. (2014). Newton–Krylov Power Flow Solver. In: Computational Methods in Power System Analysis. Atlantis Studies in Scientific Computing in Electromagnetics, vol 1. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-064-5_8

Download citation

  • DOI: https://doi.org/10.2991/978-94-6239-064-5_8

  • Published:

  • Publisher Name: Atlantis Press, Paris

  • Print ISBN: 978-94-6239-063-8

  • Online ISBN: 978-94-6239-064-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics