Skip to main content

The Biology of HDAC8, a Unique Class I Histone Deacetylase

  • Chapter
Histone Deacetylases

Abstract

HDAC8 is a class I member of the histone deacetylases family, although lying phylogenetically close to the evolutionary boundary between class I and class II HDACs. After a comprehensive review of the current understanding of the biology of HDAC8 and its gene, we present recent evidenc indicating that this HDAC is selectively expressed by cells showing smooth muscle cell differentiation, including smooth muscle, myofibro-blastic, and myoepithelial cells. The possible involvement of HDAC8 in the regulation of the smooth muscle cytoskeleton is also presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hu E, Chen Z, Fredrickson T, et al. Cloning and characterization of a novel human class I histone deacetylase that functions as a transcription repressor. J Biol Chem 2000;275:15,254–15,264.

    Article  PubMed  CAS  Google Scholar 

  2. Buggy JJ, Sideris ML, Mak P, Lorimer DD, McIntosh B, Clark JM. Cloning and characterization of a novel human histone deacetylase, HDAC8. Biochem J 2000;350:199–205.

    Article  PubMed  CAS  Google Scholar 

  3. Van den Wyngaert I, de Vries W, Kremer A, et al. Cloning and characterization of human histone deacetylase 8. FEBS Lett 2000;478:77–83.

    Article  PubMed  Google Scholar 

  4. De Ruijter AJ, Van Gennip AH, Caron HN, Kemp S, Van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 2003;370:737–749.

    Article  PubMed  Google Scholar 

  5. Finnin MS, Donigian JR, Cohen A, et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 1999;401:188–193.

    Article  PubMed  CAS  Google Scholar 

  6. Somoza JR, Skene RJ, Katz BA, et al. Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure (Camb) 2004;12:1325–1334.

    Article  PubMed  CAS  Google Scholar 

  7. Ayer DE. Histone deacetylases: transcriptional repression with SINers and NuRDs. Trends Cell Biol 1999;9:193–198.

    Article  PubMed  CAS  Google Scholar 

  8. Yang WM, Tsai SC, Wen YD, Fejer G, Seto E. Functional domains of histone deacetylase-3. J Biol Chem 2002;277:9447–9454.

    Article  PubMed  CAS  Google Scholar 

  9. Pflum MK, Tong JK, Lane WS, Schreiber SL. Histone deacetylase 1 phosphorylation promotes enzymatic activity and complex formation. J Biol Chem 2001;276:47,733–47,741.

    Article  PubMed  CAS  Google Scholar 

  10. Tsai SC, Seto E. Regulation of histone deacetylase 2 by protein kinase CK2. J Biol Chem 2002;277:31,826–31,833.

    Article  PubMed  CAS  Google Scholar 

  11. David G, Neptune MA, DePinho RA. SUMO-1 modification of histone deacetylase 1 (HDAC1) modulates its biological activities. J Biol Chem 2002;277: 23,658–23,663.

    Article  PubMed  CAS  Google Scholar 

  12. Lee H, Rezai-Zadeh N, Seto E. Negative regulation of histone deacetylase 8 activity by cyclic AMP-dependent protein kinase A. Mol Cell Biol 2004;24: 765–773.

    Article  PubMed  CAS  Google Scholar 

  13. Galasinski SC, Resing KA, Goodrich JA, Ahn NG. Phosphatase inhibition leads to histone deacetylases 1 and 2 phosphorylation and disruption of corepressor interactions. J Biol Chem 2002;277:19,618–19,626.

    Article  PubMed  CAS  Google Scholar 

  14. Waltregny D, de Leval L, Glénisson W, et al. Expression of HDAC8, a class I histone deacetylase, is restricted to cells showing smooth muscle differentiation in normal human tissues. Am J Pathol 2004;165:553–564.

    PubMed  CAS  Google Scholar 

  15. Durst KL, Lutterbach B, Kummalue T, Friedman AD, Hiebert SW. The inv(16) fusion protein associates with corepressors via a smooth muscle myosin heavychain domain. Mol Cell Biol 2003;23:607–619.

    Article  PubMed  CAS  Google Scholar 

  16. Waltregny D, North BJ, VanMellaert F, de Leval J, Verdin E, Castronovo V. Screening of histone deacetylase (HDAC) expression in human prostate cancer reveals distinct class I HDAC profiles between epithelial and stromal cells. Eur J Histochem 2004;48:273–290.

    PubMed  CAS  Google Scholar 

  17. Skalli O, Ropraz P, Trzeciak A, Benzonana G, Gillessen D, Gabbiani G. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 1986;103:2787–2796.

    Article  PubMed  CAS  Google Scholar 

  18. Longtine JA, Pinkus GS, Fujiwara K, Corson JM. Immunohistochemical localization of smooth muscle myosin in normal human tissues. J Histochem Cytochem 1985;33:179–184.

    PubMed  CAS  Google Scholar 

  19. Benzonana G, Skalli O, Gabbiani G. Correlation between the distribution of smooth muscle or non muscle myosins and alpha-smooth muscle actin in normal and pathological soft tissues. Cell Motil Cytoskelet 1988; 11:260–274.

    Article  CAS  Google Scholar 

  20. Gugliotta P, Sapino A, Macri L, Skalli O, Gabbiani G, Bussolati G. Specific demonstration of myoepithelial cells by anti-alpha smooth muscle actin antibody. J Histochem Cytochem 1988;36:659–663.

    PubMed  CAS  Google Scholar 

  21. Amsterdam A, Lindner HR, Groschel-Stewart U. Localization of actin and myosin in the rat oocyte and follicular wall by immunofluorescence. Anat Rec 1977;187:311–328.

    Article  PubMed  CAS  Google Scholar 

  22. Leslie KO, Mitchell JJ, Woodcock-Mitchell JL, Low RB. Alpha smooth muscle actin expression in developing and adult human lung. Differentiation 1990;44: 143–149.

    Article  PubMed  CAS  Google Scholar 

  23. Walles B, Groschel-Stewart U, Kannisto P, Owman C, Sjoberg NO, Unsicker K. Immunocytochemical demonstration of contractile cells in the human ovarian follicle. Experientia 1990;46:682–683.

    Article  PubMed  CAS  Google Scholar 

  24. Schmitt-Graff A, Desmouliere A, Gabbiani G. Heterogeneity of myofibroblast phenotypic features: an example of fibroblastic cell plasticity. Virchows Arch 1994;425:3–24.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang HY, Gharaee-Kermani M, Zhang K, Karmiol S, Phan SH. Lung fibroblast alpha-smooth muscle actin expression and contractile phenotype in bleomycininduced pulmonary fibrosis. Am J Pathol 1996;148:527–537.

    PubMed  CAS  Google Scholar 

  26. Jostarndt-Fogen K, Djonov V, Draeger A. Expression of smooth muscle markers in the developing murine lung: potential contractile properties and lineal descent. Histochem Cell Biol 1998;110:273–284.

    Article  PubMed  CAS  Google Scholar 

  27. Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol 1999;277:C1–C9.

    PubMed  CAS  Google Scholar 

  28. Ramadori G, Veit T, Schwogler S, et al.Expression of the gene of the alphasmooth muscle-actin isoform in rat liver and in rat fat-storing (ITO) cells. Virchows Arch B Cell Pathol Incl Mol Pathol 1990;59:349–357.

    Article  PubMed  CAS  Google Scholar 

  29. Nouchi T, Tanaka Y, Tsukada T, Sato C, Marumo F. Appearance of alpha-smoothmuscle-actin-positive cells in hepatic fibrosis. Liver 1991;11:100–105.

    PubMed  CAS  Google Scholar 

  30. Schmitt-Graff A, Kruger S, Bochard F, Gabbiani G, Denk H. Modulation of alpha smooth muscle actin and desmin expression in perisinusoidal cells of normal and diseased human livers. Am J Pathol 1991;138:1233–1242.

    PubMed  CAS  Google Scholar 

  31. Rockey DC, Boyles JK, Gabbiani G, Friedman SL. Rat hepatic lipocytes express smooth muscle actin upon activation in vivo and in culture. J Submicrosc Cytol Pathol 1992;24:193–203.

    PubMed  CAS  Google Scholar 

  32. Elger M, Drenckhahn D, Nobiling R, Mundel P, Kriz W. Cultured rat mesangial cells contain smooth muscle alpha-actin not found in vivo. Am J Pathol 1993; 142:497–509.

    PubMed  CAS  Google Scholar 

  33. Lazard D, Sastre X, Frid MG, G lukhova MA, Thiery JP, Koteliansky VE. Expression of smooth muscle-specific proteins in myoepithelium and stromal myofibroblasts of normal and malignant human breast tissue. Proc Natl Acad Sci USA1993;90:999–1003.

    Article  PubMed  CAS  Google Scholar 

  34. Apte MV, Haber PS, Applegate TL, et al. Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut 1998;43:128–133.

    Article  PubMed  CAS  Google Scholar 

  35. Matsuyama A, Shimazu T, Sumida Y, et al. In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J 2002;21:6820–6831.

    Article  PubMed  CAS  Google Scholar 

  36. Takami Y, Nakayama T. N-terminal region, C-terminal region, nuclear export signal, and deacetylation activity of histone deacetylase-3 are essential for the viability of the DT40 chicken B cell line. J Biol Chem 2000;275: 16,191–16,201.

    Article  PubMed  CAS  Google Scholar 

  37. Wijmenga C, Gregory PE, Hajra A, et al. Core binding factor beta-smooth muscle myosin heavy chain chimeric protein involved in acute myeloid leukemia forms unusual nuclear rod-like structures in transformed NIH 3T3 cells. Proc Natl Acad Sci U S A 1996;93:1630–1635.

    Article  PubMed  CAS  Google Scholar 

  38. Waltregny D, Glénisson W, Tran SL, et al. Histone deacetylase HDAC8 associates with smooth muscle alpha-actin and is essential for smooth muscle contractility. FASEB J 2005; 19:966–968.

    PubMed  CAS  Google Scholar 

  39. Nagy L, Kao HY, Chakravarti D, et al. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 1997;89: 373–380.

    Article  PubMed  CAS  Google Scholar 

  40. Alland L, Muhle R, Hou H Jr, et al. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 1997;387:49–55.

    Article  PubMed  CAS  Google Scholar 

  41. Koipally J, Renold A, Kim J, Georgopoulos K. Repression by Ikaros and Aiolos is mediated through histone deacetylase complexes. EMBO J 1999;18: 3090–3100.

    Article  PubMed  CAS  Google Scholar 

  42. Johnson CA, Turner BM. Histone deacetylases: complex transducers of nuclear signals. Semin Cell Dev Biol 1999;10:179–188.

    Article  PubMed  CAS  Google Scholar 

  43. Khochbin S, Wolffe AP. The origin and utility of histone deacetylases. FEBS Lett 1997;419:157–160.

    Article  PubMed  CAS  Google Scholar 

  44. Knoepfler PS, Eisenman RN. Sin meets NuRD and other tails of repression. Cell 1999;99:447–450.

    Article  PubMed  CAS  Google Scholar 

  45. Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 1999;13:1924–1935.

    Article  PubMed  CAS  Google Scholar 

  46. Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependentp53 deacetylase. Cell 2001;107:149–159.

    Article  PubMed  CAS  Google Scholar 

  47. Langley E, Pearson M, Faretta M, et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 2002;21:2383–2396.

    Article  PubMed  CAS  Google Scholar 

  48. Luo J, Su F, Chen D, Shiloh A, Gu W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 2000;408:377–381.

    Article  PubMed  CAS  Google Scholar 

  49. Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 2001; 107:137–148.

    Article  PubMed  CAS  Google Scholar 

  50. Avalos JL, Celic I, Muhammad S, Cosgrove MS, Boeke JD, Wolberger C. Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol Cell 2002; 10:523–535.

    Article  PubMed  CAS  Google Scholar 

  51. Smith J. Human Sir2 and the’ silencing’ of p53 activity. Trends Cell Biol 2002; 12:404–406.

    Article  PubMed  CAS  Google Scholar 

  52. Zeng L, Zhang Y, Chien S, Liu X, Shyy JY. The role of p53 deacetylation in p21Waf1 regulation by laminar flow. J Biol Chem 2003;278:24,594–24,599.

    Article  PubMed  CAS  Google Scholar 

  53. Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci U S A 2003; 100:4389–4394.

    Article  PubMed  CAS  Google Scholar 

  54. Hubbert C, Guardiola A, Shao R, et al. HDAC6 is a microtubule-associated deacetylase. Nature 2002;417:455–458.

    Article  PubMed  CAS  Google Scholar 

  55. North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 2003;11: 437–444.

    Article  PubMed  CAS  Google Scholar 

  56. Zhang Y, Li N, Caron C, et al. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J 2003;22:1168–1179.

    Article  PubMed  CAS  Google Scholar 

  57. Onyango P, Celic I, McCaffery JM, Boeke JD, Feinberg AP. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci U S A 2002;99:13,653–13,658.

    Article  PubMed  CAS  Google Scholar 

  58. Schwer B, North BJ, Frye RA, Ott M, Verdin E. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol 2002;158:647–657.

    Article  PubMed  CAS  Google Scholar 

  59. Gregoretti I, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 2004; 338:17–31.

    Article  PubMed  CAS  Google Scholar 

  60. Amann JM, Nip J, Strom DK, et al. ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain. Mol Cell Biol 2001;21:6470–6483.

    Article  PubMed  CAS  Google Scholar 

  61. Kummalue T, Lou J, Friedman AD. Multimerization via its myosin domain facilitates nuclear localization and inhibition of core binding factor (CBF) activities by the CBFβ-smooth muscle myosin heavy chain myeloid leukemia protein. Mol Cell Biol 2002;22:8278–8291.

    Article  PubMed  CAS  Google Scholar 

  62. Sohn RL, Vikstrom KL, Strauss M, Cohen C, Szent-Gyorgyi AG, Leinwand LA. A 29 residue region of the sarcomeric myosin rod is necessary for filament formation. J Mol Biol 1997;266:317–330.

    Article  PubMed  CAS  Google Scholar 

  63. Hu E, Dul E, Sung CM, et al. Identification of novel isoform-selective inhibitors within class I histone deacetylases. J Pharmacol Exp Ther 2003;307:720–728.

    Article  PubMed  CAS  Google Scholar 

  64. McKinsey TA, Zhang CL, Lu J, Olson EN. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 2000;408:106–111.

    Article  PubMed  CAS  Google Scholar 

  65. McKinsey TA, Zhang CL, Olson EN. Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci U S A 2000; 97:14,400–14,405.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Waltregny, D., Castronovo, V. (2006). The Biology of HDAC8, a Unique Class I Histone Deacetylase. In: Verdin, E. (eds) Histone Deacetylases. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59745-024-3:87

Download citation

Publish with us

Policies and ethics