Skip to main content

HDAC Inhibitors

An Emerging Anticancer Therapeutic Strategy

  • Chapter
Histone Deacetylases

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Coordinated and tight transcriptional regulation of genetic information is vital for maintenance of normal cell growth and differentiation. Cancer is typified by inappropriate gene expression-aberrant expression of genes associated with increased cellular proliferation and survival (e.g., oncogenes), as well as alterations in genes encoding tumor suppressor proteins. Therefore, targeting the gene expression machinery to restore its normalcy promises to be a useful anticancer therapeutic strategy. In the past, targeting the DNA binding multiprotein transcription factors with reasonable potency and specificity has been challenging owing to difficulties in disrupting protein-protein and protein-DNA interactions. However, recent studies showed that epigenetic modifications by enzymes play key roles in regulating gene expression, providing an opportunity to target such enzymes with small molecules for therapeutic purposes. Histone deacetylases (HDACs) can regulate gene expression by deacetylating histones, leading to repressed chromatin structure. In addition, HDACs can target nonhistone substrates, including several oncoproteins and tumor suppressors. Thus abnormal HDAC activity may lead to aberrant gene expression as well as perturbation in critical pathways. HDAC inhibitors have demonstrated efficacy in a variety of solid and hematological malignancies in early clinical trials. The current review focuses on the emerging utility of histone deacetylase inhibition as an anticancer therapeutic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 1998;12:599–606.

    PubMed  CAS  Google Scholar 

  2. Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000;403:41–45.

    Article  PubMed  CAS  Google Scholar 

  3. Schreiber SL, Bernstein BE. Signaling network model of chromatin. Cell 2002; 111:771–778.

    Article  PubMed  CAS  Google Scholar 

  4. Giles RH, Peters DJ, Breuning MH. Conjunction dysfunction: CBP/p300 in human disease. Trends Genet 1998;14:178–183.

    Article  PubMed  CAS  Google Scholar 

  5. Gayther SA, Batley SJ, Linger L, et al. Mutations truncating the EP300 acetylase in human cancers. Nat Genet 2000;24:300–303.

    Article  PubMed  CAS  Google Scholar 

  6. Petrij F, Giles RH, Dauwerse HG, et al. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 1995;376:348–351.

    Article  PubMed  CAS  Google Scholar 

  7. Murata T, Kurokawa R, Krones A, et al. Defect of histone acetyltransferase activity of the nuclear transcriptional coactivator CBP n Rubinstein-Taybi syndrome. Hum Mol Genet 2001; 10:1071–1076.

    Article  PubMed  CAS  Google Scholar 

  8. Muraoka M, Konishi M, Kikuchi-Yanoshita R, et al. p300 gene alterations in col-orectal and gastric carcinomas. Oncogene 1996;12:1565–1569.

    PubMed  CAS  Google Scholar 

  9. Rowley JD, Reshmi S, Sobulo O, et al. All patients with the T(1 1;16)(q23;p13.3) that involves MLL and CBP have treatment-related hematologic disorders. Blood 1997;90:535–541.

    PubMed  CAS  Google Scholar 

  10. Borrow J, Stanton VP Jr, Andresen JM, et al. The translocation t(8;16)(p1 1;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet 1996;14:33–41.

    Article  PubMed  CAS  Google Scholar 

  11. Ida K, Kitabayashi I, Taki T, et al. Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(q23;q13). Blood 1997;90: 4699–4704.

    PubMed  CAS  Google Scholar 

  12. Anzick SL, Kononen J, Walker RL, et al. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 1997;277:965–968.

    Article  PubMed  CAS  Google Scholar 

  13. Grignani F, De Matteis S, Nervi C, et al. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 1998;391:815–818.

    Article  PubMed  CAS  Google Scholar 

  14. David G, Alland L, Hong SH, Wong CW, DePinho RA, Dejean A. Histone deacetylase associated with mSin3A mediates repression by the acute promyelocytic leukemia-associated PLZF protein. Oncogene 1998;16:2549–2556.

    Article  PubMed  CAS  Google Scholar 

  15. Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK. Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 2001;1: 194–202.

    Article  PubMed  CAS  Google Scholar 

  16. Lin RJ, Nagy L, Inoue S, Shao W, Miller WH Jr, Evans RM. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 1998;391:811–814.

    Article  PubMed  CAS  Google Scholar 

  17. Amann JM, Nip J, Strom DK, et al. ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain. Mol Cell Biol 2001;21:6470–6483.

    Article  PubMed  CAS  Google Scholar 

  18. Wang J, Saunthararajah Y, Redner RL, Liu JM. Inhibitors of histone deacetylase relieve ETO-mediated repression and induce differentiation of AML1-ETO leukemia cells. Cancer Res 1999;59:2766–2769.

    PubMed  CAS  Google Scholar 

  19. Lutterbach B, Westendorf JJ, Linggi B, et al. ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol Cell Biol 1998;18:7176–7184.

    PubMed  CAS  Google Scholar 

  20. Huang S, Brandt SJ. mSin3A regulates murine erythroleukemia cell differentiation through association with the TAL1 (or SCL) transcription factor. Mol Cell Biol 2000;20:2248–2259.

    Article  PubMed  CAS  Google Scholar 

  21. Patra SK, Patra A, Dahiya R. Histone deacetylase and DNA methyltransferase in human prostate cancer. Biochem Biophys Res Commun 2001;287:705–713.

    Article  PubMed  CAS  Google Scholar 

  22. Choi JH, Kwon HJ, Yoon BI, et al. Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn J Cancer Res 2001;92:1300–1304.

    PubMed  CAS  Google Scholar 

  23. Zhu P, Martin E, Mengwasser J, Schlag P, Janssen KP, Gottlicher M. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell 2004;5:455–463.

    Article  PubMed  CAS  Google Scholar 

  24. Riggs MG, Whittaker RG, Neumann JR, Ingram VM. n-Butyrate causes histone modification in HeLa and Friend ery thro leukaemia cells. Nature 1977;268: 462–464.

    Article  PubMed  CAS  Google Scholar 

  25. Boffa LC, Vidali G, Mann RS, Allfrey VG. Suppression of histone deacetylation in vivo and in vitro by sodium butyrate. J Biol Chem 1978;253:3364–3366.

    PubMed  CAS  Google Scholar 

  26. Gore SD, Carducci MA. Modifying histones to tame cancer: clinical development of sodium phenylbutyrate and other histone deacetylase inhibitors. Expert Opin Investig Drugs 2000;9:2923–2934.

    Article  PubMed  CAS  Google Scholar 

  27. Santini V, Gozzini A, Scappini B, Grossi A, Rossi Ferrini P. Searching for the magic bullet against cancer: the butyrate saga. Leuk Lymphoma 2001;42:275–289.

    Article  PubMed  CAS  Google Scholar 

  28. Finnin MS, Donigian JR, Cohen A, et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 1999;401:188–193.

    Article  PubMed  CAS  Google Scholar 

  29. Remiszewski SW, Sambucetti LC, Bair KW, et al. N-hydroxy-3-phenyl-2-prope-namides as novel inhibitors of human histone deacetylase with in vivo antitumor activity: discovery of (2E)-N-hydroxy-3-[4-[[(2-hydroxyethyl)[2-(1H-indol-3-yl) ethyl]amino]methyl]phenyl]-2-propenamide (NVP-LAQ824). J Med Chem 2003; 46:4609–4624.

    Article  PubMed  CAS  Google Scholar 

  30. Nakajima H, Kim YB, Terano H, Yoshida M, Horinouchi S. FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp Cell Res 1998;241:126–133.

    Article  PubMed  CAS  Google Scholar 

  31. Suzuki T, Ando T, Tsuchiya K, et al. Synthesis and histone deacetylase inhibitory activity of new benzamide derivatives. J Med Chem 1999;42:3001–3003.

    Article  PubMed  CAS  Google Scholar 

  32. Saito A, Yamashita T, Mariko Y, et al. A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci U S A 1999;96:4592–4597.

    Article  PubMed  CAS  Google Scholar 

  33. Van Lint C, Emiliani S, Verdin E. The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr 1996;5:245–253.

    PubMed  Google Scholar 

  34. Glaser KB, Staver MJ, Waring JF, Stender J, Ulrich RG, Davidsen SK. Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol Cancer Ther 2003;2:151–163.

    PubMed  CAS  Google Scholar 

  35. Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetyla-tion of the p53 C-terminal domain. Cell 1997;90:595–606.

    Article  PubMed  CAS  Google Scholar 

  36. Boyes J, Byfield P, Nakatani Y, Ogryzko V. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 1998;396:594–598.

    Article  PubMed  CAS  Google Scholar 

  37. Waltzer L, Bienz M. Drosophila CBP represses the transcription factor TCF to antagonize Wingless signaling. Nature 1998;395:521–525.

    Article  PubMed  CAS  Google Scholar 

  38. Martinez-Balbas MA, Bauer UM, Nielsen SJ, Brehm A, Kouzarides T. Regulation of E2F1 activity by acetylation. EMBO J 2000;19:662–671.

    Article  PubMed  CAS  Google Scholar 

  39. Marzio G, Wagener C, Gutierrez MI, Cartwright P, Helin K, Giacca M. E2F family members are differentially regulated by reversible acetylation. J Biol Chem 2000;275:10,887–10,892.

    Article  PubMed  CAS  Google Scholar 

  40. Chen LF, Fischle W, Verdin E, Greene WC. Duration of nuclear NF-KB action regulated by reversible acetylation. Science 2001;293:1653–1657.

    Article  CAS  Google Scholar 

  41. Yu X, Guo ZS, Marcu MG, et al. Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J Natl Cancer Inst 2002;94:504–513.

    PubMed  CAS  Google Scholar 

  42. Jeong JW, Bae MK, Ahn MY, et al. Regulaton and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 2002;1 11:709–720.

    Article  Google Scholar 

  43. Chen G, Fernandez J, Mische S, Courey AJ. A functional interaction between the histone deacetylase Rpd3 and the corepressor groucho in Drosophila development. Genes Dev 1999;13:2218–2230.

    Article  PubMed  CAS  Google Scholar 

  44. Nimmanapalli R, Fuino L, Bali P, et al. Histone deacetylase inhibitor LAQ824 both lowers expression and promotes proteasomal degradation of Bcr-Abl and induces apoptosis of imatinib mesylate-sensitive or-refractory chronic myeloge-nous leukemia-blast crisis cells. Cancer Res 2003;63:5126–5135.

    PubMed  CAS  Google Scholar 

  45. Fuino L, Bali P, Wittmann S, et al. Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B. Mol Cancer Ther 2003;2:971–984.

    CAS  Google Scholar 

  46. Corn PG, Kuerbitz SJ, van Noesel MM, et al. Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt’s lymphoma is associated with 5’ CpG island methylation. Cancer Res 1999;59:3352–3356.

    PubMed  CAS  Google Scholar 

  47. Domann FE, Rice JC, Hendrix MJ, Futscher BW. Epigenetic silencing of maspin gene expression in human breast cancers. Int J Cancer 2000;85:805–810.

    Article  PubMed  CAS  Google Scholar 

  48. Sharpless NE, Bardeesy N, Lee KH, et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 2001;413:86–91.

    Article  PubMed  CAS  Google Scholar 

  49. Schagdarsurengin U, Gimm O, Hoang-Vu C, Dralle H, Pfeifer GP, Dammann R. Frequent epigenetic silencing of the CpG island promoter of RASSF1A in thyroid carcinoma. Cancer Res 2002;62:3698–3701.

    PubMed  CAS  Google Scholar 

  50. van Engeland M, Roemen GM, Brink M, et al. K-ras mutations and RASSF1A promoter methylation in colorectal cancer. Oncogene 2002;21:3792–3795.

    Article  PubMed  Google Scholar 

  51. Gasco M, Sullivan A, Repellin C, et al. Coincident inactivation of 14-3-3sigma and p16INK4a is an early event in vulval squamous neoplasia. Oncogene 2002; 21:1876–1881.

    Article  PubMed  CAS  Google Scholar 

  52. Yanagawa N, Tamura G, Oizumi H, Takahashi N, Shimazaki Y, Motoyama T. Frequent epigenetic silencing of the p16 gene in non-small cell lung cancers of tobacco smokers. Jpn J Cancer Res 2002;93:1107–1113.

    PubMed  CAS  Google Scholar 

  53. Shinagawa T, Nomura T, Colmenares C, Ohira M, Nakagawara A, Ishii S. Increased susceptibility to tumorigenesis of ski-deficient heterozygous mice. Oncogene 2001;20:8100–8108.

    Article  PubMed  CAS  Google Scholar 

  54. Boivin AJ, Momparler LF, Hurtubise A, Momparler RL. Antineoplastic action of 5-aza-2′-deoxycytidine and phenylbutyrate on human lung carcinoma cells. Anticancer Drugs 2002;13:869–874.

    Article  PubMed  CAS  Google Scholar 

  55. Won J, Yim J, Kim TK. Sp1 and Sp3 recruit histone deacetylase to repress transcription of human telomerase reverse transcriptase (hTERT) promoter in normal human somatic cells. J Biol Chem 2002;277:38,230–38,238.

    Article  PubMed  CAS  Google Scholar 

  56. Han JW, Ahn SH, Park SH, et al. Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21WAF1/Cip1 and gelsolin. Cancer Res 2000;60:6068–6074.

    PubMed  CAS  Google Scholar 

  57. Marks PA, Richon VM, Rifkind RA. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 2000; 92: 1210–1216.

    Article  PubMed  CAS  Google Scholar 

  58. Furumai R, Komatsu Y, Nishino N, Khochbin S, Yoshida M, Horinouchi S. Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc Natl Acad Sci U S A 2001;98:87–92.

    Article  PubMed  CAS  Google Scholar 

  59. Greenberg VL, Williams JM, Cogswell JP, Mendenhall M, Zimmer SG. Histone deacetylase inhibitors promote apoptosis and differential cell cycle arrest in anaplastic thyroid cancer cells. Thyroid 2001;11:315–325.

    Article  PubMed  CAS  Google Scholar 

  60. Fournel M, Trachy-Bourget MC, Yan PT, et al. Sulfonamide anilides, a novel class of histone deacetylase inhibitors, are antiproliferative against human tumors. Cancer Res 2002;62:4325–330.

    PubMed  CAS  Google Scholar 

  61. Jaboin J, Wild J, Hamidi H, et al. MS-27-275, an inhibitor of histone deacetylase, has marked in vitro and in vivo antitumor activity against pediatric solid tumors. Cancer Res 2002;62:6108–6115.

    PubMed  CAS  Google Scholar 

  62. Sambucetti LC, Fischer DD, Zabludoff S, et al. Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specific chromatin acetylation and antiproliferative effects. J Biol Chem 1999; 274:34,940–34,947.

    Article  PubMed  CAS  Google Scholar 

  63. Kim YB, Ki SW, Yoshida M, Horinouchi S. Mechanism of cell cycle arrest caused by histone deacetylase inhibitors in human carcinoma cells. J Antibiot (Tokyo) 2000;53:1191–1200.

    CAS  Google Scholar 

  64. Suzuki T, Yokozaki H, Kuniyasu H, et al. Effect of trichostatin A on cell growth and expression of cell cycle-and apoptosis-related molecules in human gastric and oral carcinoma cell lines. Int J Cancer 2000;88:992–997.

    Article  PubMed  CAS  Google Scholar 

  65. Richon VM, Zhou X, Rifkind RA, Marks PA. Histone deacetylase inhibitors: development of suberoylanilide hydroxamic acid (saha) for the treatment of cancers. Blood Cells Mol Dis 2001;27:260–264.

    Article  PubMed  CAS  Google Scholar 

  66. Strait KA, Dabbas B, Hammond EH, Warnick CT, Iistrup SJ, Ford CD. Cell cycle blockade and differentiation of ovarian cancer cells by the histone deacetylase inhibitor trichostatin A are associated with changes in p21, Rb, and Id proteins. Mol Cancer Ther 2002;1:1181–1190.

    PubMed  CAS  Google Scholar 

  67. Atadja P, Gao L, Kwon P, et al. Selective growth inhibition of tumor cells by a novel histone deacetylase inhibitor, NVP-LAQ824. Cancer Res 2004;64:689–695.

    Article  PubMed  CAS  Google Scholar 

  68. Munster PN, Troso-Sandoval T, Rosen N, Rifkind R, Marks PA, Richon VM. The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res 2001;61:8492–8497.

    PubMed  CAS  Google Scholar 

  69. Glick RD, Swendeman SL, Coffey DC, et al. Hybrid polar histone deacetylase inhibitor induces apoptosis and CD95/CD95 ligand expression in human neuro-blastoma. Cancer Res 1999;59:4392–4399.

    PubMed  CAS  Google Scholar 

  70. Remiszewski SW. The discovery of NVP-LAQ824: from concept to clinic. Curr Med Chem 2003; 10:2393–2402.

    Article  PubMed  CAS  Google Scholar 

  71. Piekarz R, Bates S. A review of depsipeptide and other histone deacetylase inhibitors in clinical trials. Curr Pharm Des 2004;10:2289–2298.

    Article  PubMed  CAS  Google Scholar 

  72. Piekarz RL, Robey R, Sandor V, et al. Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report. Blood 2001;98:2865–2868.

    Article  PubMed  CAS  Google Scholar 

  73. Kelly WK, Richon VM, O’Connor O, et al. Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin CancerRes 2003;9:3578–3588.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Kwon, P., Hsu, M., Cohen, D., Atadja, P. (2006). HDAC Inhibitors. In: Verdin, E. (eds) Histone Deacetylases. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59745-024-3:315

Download citation

Publish with us

Policies and ethics