Skip to main content

Biochemistry of Multiprotein HDAC Complexes

  • Chapter
Histone Deacetylases

Abstract

Histone deacetylases perform an important role in the regulation of transcription by modifying the histone components of chromatin. This imparts specific restrictions to transcription and contributes to the proper coordination of gene expression. In order to perform these functions and to achieve proper modulation of their activity, HDACs associate with other proteins, and in some cases, even with themselves. The purification and analyses of these complexes during the last few years has changed our view of the functions of these enzymes, as well as how they are regulated and interconnect with other chromatin-related activities. We are starting to understand how a limited number of HDACs can perform such a variety of functions. Here we review all the known HDAC-containing complexes including classes I, II, and III and we summarize the implications of their composition to the function for HDACs in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Abf-1:

Activated B-cell factor-1

ACF1:

ATP-utilizing chromatin assembly and remodeling factor 1

ADA3:

Transcriptional adapter 3

ALL-1 (same as MLL, HRX, HTRX):

Acute lymphoblastic leukemia 1

AP-1:

Activator protein 1

APPL-1,-2:

Adaptor protein containing PH domain, PTB domain, and leucine zipper motif 1,2

ASAP:

Apoptosis- and splicing-associated protein

BAF57,-60a,-170:

BRG1-associated factor 57, 60a, 170

BCH110:

BRAF-HDAC component 110

Bcl6:

B-cell lymphoma 6

BRG1:

Brm/SWI2-related gene 1

BTB/POZ:

BR-C, ttk, and bab/poxvirus and zinc finger

CaMK:

Ca2+/calmodulin-dependent kinase cells

CoREST:

Corepressor of REST

Cpr1p:

Cyclophilin A peptidyl-prolyl isomerase

C-Ski:

Sloan-Kettering virus isolates

CtBP:

Carboxyl-terminal binding protein

CTCF:

CCCTC-binding factor

CTIP2:

Chicken ovalbumin upstream promoter transcription factor-interacting protein 2

DNMT1:

DNA (cytosine-5)-methyltransferases

Ebi:

Epidermal growth factor receptor regulator

Eto:

Eight twenty-one transcription factor

EuHMT:

Euchromatic histone-lysine N-methyltransferase

FAD+ :

Flavin adenine dinucleotide

FLO10:

Flocculation factor 10

FOXO:

Forkhead box

G9a:

Euchromatic histone-lysine N-methyltransferase

GSP2:

G protein pathway suppressor

HES:

Homeobox gene in ES

HML:

Silent mating type loci L

HMR:

Silent mating type loci R

Hos2p:

High osmolarity sensitivity two

HOXA9:

Homeobox protein A9

Hst1:

Homolog of Sir2p, 1

HTLV-1:

Type I human T-cell leukemia virus

Ini1:

Integrase interactor protein 1

IR10:

WD-repeat protein

ISWI:

Imitation-switch

KAP-1:

KRAB-interacting protein 1

KRAB:

Krüppel associated box

Ku70:

Lupus Ku autoantigen protein p70

Mad/Max:

MAX dimerization protein 1/MYC associated factor X

MAPK:

Mitogen activated protein kinases

MARK:

Microtubule affinity regulating kinase

MBD:

Methyl-CpG binding domain

MeCP2:

Methyl-CpG binding protein 2 gene

MEF2:

Myocyte enhancer factor 2

Mi2:

Dermatomyositis-specific autoantigen

MITR:

MEF2-interacting transcription repressor

MLL-1:

Myeloid/lymphoid leukemia 1

Mnt:

MYC antagonist

MTA2:

Metastasis-associated protein 2

Mxi1:

Max interactor 1

Myb:

Avian myeloblatosis virus oncogene

Nan1p:

Net1-associated nuclear protein

NCoR:

Nuclear receptor corepressor

Net1p:

Nucleolar silencing establishing factor and telophase regulator 1

NF-κB:

Nuclear factor κ-B

NLS:

Nuclear localization signal

Nop1:

Nuclear protein one

NoRC:

Nucleolar chromatin remodeling complex

NuRD:

Nucleosome remodeling and histone deacetylase

ORC1:

Origin replication complex 1

PCAF:

p300/CBP associated factor

PHD:

Plant homeodomain

PML:

Promyelocytic leukemia

PPAR-γ:

Peroxisome proliferator activated receptor, gamma

Pyr:

Pyrimidin-rich binding, SW1/SNF related complex

RAD21:

Radiation-sensitive mutant 21

Rap1:

Repressor/activator protein 1

RAR-α:

Retinoic acid receptor α

RAS:

Harvey sarcoma virus transforming gene

RbAp:

Retinoblastoma-associated protein

RBP-1:

Retinoblastoma binding protein 1

RENT:

Regulator of nucleolar silencing and telophase

REST/NRSF:

RE1-silencing transcription factor/Neuronal restricted silencing factor

RORγ:

Retinoid-related orphan receptor γ

Rpd3:

Reduced potassium dependency three

RunX2:

Runt-related transcription factor 2

SA1/SA2:

Stromal antigen 1/2

SANT:

SWI3, ADA2, NCoR, and TFIIIB B

Sap:

Sin3 associated protein

SBE:

Smad-binding element

SET:

SU(VAR)3-9, enhancer of Zeste, Trithorax

SFL1p:

Suppressor gene for flocculation 1

SID:

Sin3 interacting domain

Sif2p:

SIR4 interacting factor 2

Sin3:

Switch-independent three

Sir2p:

Silent information regulator 2

siRNA:

Small interfering RNA

SirT1:

Sir2-like (Sirtuin)1

SMC:

Structural maintenance of chromosomes factors

SMRT:

Silencing mediator for retionoid and thyroid hormone receptors

SNF2h:

Sucrose nonfermenting 2 homolog

Sntp:

Two SANT domains

Sp1:

Specificity protein-1

Srg3:

SWI3-related gene product 3

Sum1p:

Suppressor of uncontrolled mitosis

Suv39H1:

Suppressior of position-effect variegation 3-9 homolog 1

Swi/Snf:

Switch/sucrose nonfermenting

SWI3:

Matting-type switching defective mutant 3

TAFI68:

TBP-associated factors Pol I 68

Tax:

HTLV-1 trans-acting transcriptional activator

TBL1:

Transducin β -like protein 1

TBLR1:

Transducin β -like related protein 1

TEL complex:

Telomere complex

TFIIIB:

RNA polymerase III transcription factor B

TGF-β:

Transforming growth factor β

TSA:

Trichostatin A

Tup1:

Deoxythymidine monophosphate uptake factor 1

UbcH5:

E2 ubiquitin conjugating enzyme H5

Ume6p:

UASPHR1 multi copy enhancer six

WCRF180 (same as ACF1):

Williams syndrome transcription factor-related chromatin remodeling factor 180

XFIM:

X-linked mental retardation, zinc finger protein 261

YIL112w:

Ankyrin repeats-containing protein

YY1:

Yin-yang 1

References

  1. Brownell JE, Zhou J, Ranalli T, et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 1996;84:843–851.

    PubMed  CAS  Google Scholar 

  2. Taunton J, Hassig CA, Schreiber SL. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 1996;272:408–441.

    PubMed  CAS  Google Scholar 

  3. de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 2003;370:737–749.

    PubMed  Google Scholar 

  4. Kuzmichev A, Reinberg D. Role of histone deacetylase complexes in the regulation of chromatin metabolism. Curr Top Microbiol Immunol 2001;254:35–58.

    PubMed  CAS  Google Scholar 

  5. Cress WD, Seto E. Histone deacetylases, transcriptional control, and cancer. JCellPhysiol2000;184:1–16.

    CAS  Google Scholar 

  6. Yang WM, Inouye C, Zeng Y, Bearss D, Seto E. Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc Natl Acad Sci U S A 1996;93:12,845–12,850.

    PubMed  CAS  Google Scholar 

  7. Grandori C, Cowley SM, James LP, Eisenman RN. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 2000;16:653–699.

    PubMed  CAS  Google Scholar 

  8. Javed A, Guo B, Hiebert S, et al. Groucho/TLE/R-esp proteins associate with the nuclear matrix and repress RUNX (CBF(alpha)/AML/PEBP2(alpha)) dependent activation of tissue-specific gene transcription. J Cell Sci 2000; 113:2221–2231.

    PubMed  CAS  Google Scholar 

  9. Lai A, Kennedy BK, Barbie DA, et al. RBP1 recruits the mSIN3-histone deacetylase complex to the pocket of retinoblastoma tumor suppressor family proteins found in limited discrete regions of the nucleus at growth arrest. Mol Cell Biol 2001;21:2918–2932.

    PubMed  CAS  Google Scholar 

  10. Sowa Y, Orita T, Minamikawa S, et al. Histone deacetylase inhibitor activates the WAF1/Cip1 gene promoter through the Sp1 sites. Biochem Biophys Res Commun 1997;241:142–150.

    PubMed  CAS  Google Scholar 

  11. Lutz M, Burke LJ, Barreto G, et al. Transcriptional repression by the insulator protein CTCF involves histone deacetylases. Nucleic Acids Res 2000;28: 1707–1713.

    PubMed  CAS  Google Scholar 

  12. Ayer DE, Lawrence QA, Eisenman RN. Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 1995;80:767–776.

    PubMed  CAS  Google Scholar 

  13. Schreiber-Agus N, Chin L, Chen K, et al. An amino-terminal domain of Mxi1 mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell 1995;80:777–786.

    PubMed  CAS  Google Scholar 

  14. Nagy L, Kao HY, Chakravarti D, et al. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 1997;89: 373–380.

    PubMed  CAS  Google Scholar 

  15. Heinzel T, Lavinsky RM, Mullen TM, et al. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 1997;387:43–48.

    PubMed  CAS  Google Scholar 

  16. Fuks F, Burgers WA, Brehm A, et al. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet 2000;24:88–91.

    PubMed  CAS  Google Scholar 

  17. Czermin B, Schotta G, Hulsmann BB, et al. Physical and functional association of SU(VAR)3-9 and HDAC llDrosophila. EMBO Rep 2001;2:915–919.

    PubMed  CAS  Google Scholar 

  18. Luo RX, Postigo AA, Dean DC. Rb interacts with histone deacetylase to repress transcription. Cell 1998;92:463–473.

    PubMed  CAS  Google Scholar 

  19. Khan MM, Nomura T, Kim H, et al. Role of PML and PML-RARalpha in Mad-mediated transcriptional repression. Mol Cell 2001;7:1233–1243.

    PubMed  CAS  Google Scholar 

  20. Ayer DE. Histone deacetylases: transcriptional repression with SINers and NuRDs. Trends Cell Biol 1999;9:193–198.

    PubMed  CAS  Google Scholar 

  21. Nasmyth K, Stillman D, Kipling D. Both positive and negative regulators of HO transcription are required for mother-cell-specific mating-type switching in yeast. Cell 1987;48:579–587.

    PubMed  CAS  Google Scholar 

  22. Sternberg PW, Stern MJ, Clark I, Herskowitz I. Activation of the yeast HO gene by release from multiple negative controls. Cell 1987;48:567–577.

    PubMed  CAS  Google Scholar 

  23. Wang H, Clark I, Nicholson PR, Herskowitz I, Stillman DJ. The Saccharomyces cerevisiae SIN3 gene, a negative regulator of HO, contains four paired amphi-pathic helix motifs. Mol Cell Biol 1990;10:5927–5936.

    PubMed  CAS  Google Scholar 

  24. Koskinen PJ, Ayer DE, Eisenman RN. Repression of Myc-Ras cotransformation by Mad is mediated by multiple protein-protein interactions. Cell Growth Differ 1995;6:623–629.

    PubMed  CAS  Google Scholar 

  25. Zhang Y, Iratni R, Erdjument-Bromage H, Tempst P, Reinberg D. Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 1997;89:357–364.

    PubMed  CAS  Google Scholar 

  26. Rundlett SE, Carmen AA, Kobayashi R, Bavykin S, Turner BM, Grunstein M. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc Natl Acad Sci USA 1996;93: 14,503–14,508.

    PubMed  CAS  Google Scholar 

  27. Vidal M, Gaber RF. RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. Mol Cell Biol 1991; 11:6317–6327.

    PubMed  CAS  Google Scholar 

  28. Kasten MM, Dorland S, Stillman DJ. A large protein complex containing the yeast Sin3p and Rpd3p transcriptional regulators. Mol Cell Biol 1997;17: 4852–4858.

    PubMed  CAS  Google Scholar 

  29. Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 1997;89:341–347.

    PubMed  CAS  Google Scholar 

  30. Laherty CD, Yang WM, Sun JM, Davie JR, Seto E, Eisenman RN. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 1997;89:349–356.

    PubMed  CAS  Google Scholar 

  31. Schwerk C, Prasad J, Degenhardt K, et al. ASAP, a novel protein complex involved in RNA processing and apoptosis. Mol Cell Biol 2003;23: 2981–2990.

    PubMed  CAS  Google Scholar 

  32. Zhang Y, Sun ZW, Iratni R, et al. SAP30, a novel protein conserved between human and yeast, is a component of a histone deacetylase complex. Mol Cell 1998;1021–1031.

    Google Scholar 

  33. Kuzmichev A, Zhang Y, Erdjument-Bromage H, Tempst P, Reinberg D. Role of the Sin3-histone deacetylase complex in growth regulation by the candidate tumor suppressor p33(ING1). Mol Cell Biol 2002;22:835–848.

    PubMed  CAS  Google Scholar 

  34. Sif S, Saurin AJ, Imbalzano AN, Kingston RE. Purification and characterization of mSin3A-containing Brg1 andhBrm chromatin remodeling complexes. Genes Dev2001;15:603–618.

    PubMed  CAS  Google Scholar 

  35. Suka N, Suka Y, Carmen AA, Wu J, Grunstein M. Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchro-matin. Mol Cell 2001;8:473–479.

    PubMed  CAS  Google Scholar 

  36. Kadosh D, Struhl K. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 1997;89:365–371.

    PubMed  CAS  Google Scholar 

  37. Koipally J, Renold A, Kim J, Georgopoulos K. Repression by Ikaros and Aiolos is mediated through histone deacetylase complexes. EMBO J1999; 18: 3090–3100.

    PubMed  CAS  Google Scholar 

  38. Hurlin PJ, Queva C, Eisenman RN. Mnt, a novel Max-interacting protein is coexpressed with Myc in proliferating cells and mediates repression at Myc binding sites. Genes Dev 1997;11:44–58.

    PubMed  CAS  Google Scholar 

  39. Ng HH, Bird A. Histone deacetylases: silencers for hire. Trends Biochem Sci 2000;25:121–126.

    PubMed  CAS  Google Scholar 

  40. Zhou Y, Santoro R, Grummt I. The chromatin remodeling complex NoRC targets HDAC1 to the ribosomal gene promoter and represses RNA polymerase I transcription. EMBO J2002;21:4632–4640.

    PubMed  CAS  Google Scholar 

  41. Jones PL, Veenstra GJ, Wade PA, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 1998; 19:187–191.

    PubMed  CAS  Google Scholar 

  42. Laherty CD, Billin AN, Lavinsky RM, et al. SAP30, a component of the mSin3 corepressor complex involved in N-CoR-mediated repression by specific transcription factors. Mol Cell 1998;2:33–42.

    PubMed  CAS  Google Scholar 

  43. Chinnadurai G. CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol Cell 2002;9:213–224.

    PubMed  CAS  Google Scholar 

  44. Zhang Y, LeRoy G, Seelig HP, Lane WS Reinberg D. The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 1998;95:279–289.

    PubMed  CAS  Google Scholar 

  45. Wade PA, Jones PL, Vermaak D, Wolffe AP. A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 super-family ATPase. CurrBiol 1998;8:843–846.

    CAS  Google Scholar 

  46. Xue Y, Wong J, Moreno GT, Young MK, Cote J, Wang W. NURD, a novel with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 1998;2:851–861.

    PubMed  CAS  Google Scholar 

  47. Tong JK, Hassig CA, Schnitzler GR, Kingston RE, Schreiber SL. Chromatin deacetylation by an ATP-dependent nucleosome remodeling complex. Nature 1998;395:917–921.

    PubMed  CAS  Google Scholar 

  48. Ahringer J. NuRD and SIN3 histone deacetylase complexes in development. Trends Genet 2000;16:351–356.

    PubMed  CAS  Google Scholar 

  49. Becker PB, Hörz W. ATP-dependent nucleosome remodeling. Annu Rev Biochem 2002;71:247–273.

    PubMed  CAS  Google Scholar 

  50. Kehle J, Beuchle D, Treuheit S, et al. dMi-2, a hunchback-interacting protein that functions in polycomb repression. Science 1998;282:1897–1900.

    PubMed  CAS  Google Scholar 

  51. Kim J, Sif S, Jones B, et al. Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity 1999;10:345–355.

    PubMed  CAS  Google Scholar 

  52. Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 1999;13:1924–1935.

    PubMed  CAS  Google Scholar 

  53. Li J, Lin Q, Wang W, Wade P, Wong J. Specific targeting and constitutive association of histone deacetylase complexes during transcriptional repression. Genes Dev 2002;16:687–692.

    PubMed  CAS  Google Scholar 

  54. Nishioka K, Chuikov S, Sarma K, et al. Set9, a novel histone H3 methyltrans-ferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev 2002;16:479–489.

    PubMed  CAS  Google Scholar 

  55. Zegerman P, Canas B, Pappin D, Kouzarides T. Histone H3 lysine 4 methylation disrupts binding of nucleosome remodeling and deacetylase (NuRD) repressor complex. J Biol Chem 2002;277:11,621–11,624.

    PubMed  CAS  Google Scholar 

  56. Bowen NJ, Fujita N, Kajita M, Wade PA. Mi-2/NurD: multiple complexes for many purposes. Biochim Biophys Acta 2004;1677:52–57.

    PubMed  CAS  Google Scholar 

  57. Woodage T, Basrai MA, Baxevanis AD, Hieter P, Collins FS. Characterization of the CHD family of proteins. Proc Natl Acad Sci U S A 1997;94:11,472–11,477.

    PubMed  CAS  Google Scholar 

  58. Schultz DC, Friedman JR, Rauscher FJ 3rd. Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2alpha subunit of NuRD. Genes Dev 2001;15:428–443.

    PubMed  CAS  Google Scholar 

  59. Johnson DR, Lovett JM, Hirsch M, Xia F, Chen JD. NuRD complex component Mi-2b binds to and represses RORg-mediated transcriptional activation. Biochem Biophys Res 2004;714–718.

    Google Scholar 

  60. Murawsky CM, Brehm A, Badenhorst P, Lowe P, Becker PB, Travers AA. Tramtrack69 interacts with the dMi-2 subunit of the Drosophila NuRD chro-matin remodeling complex. EMBO Rep 2001;21:1089–1094.

    Google Scholar 

  61. Yao YL, Yang WM. The metastasis-associated proteins 1 and 2 form distinct protein complexes with histone deacetylase activity. J Biol Chem 2003;278: 42,560–42,568.

    PubMed  CAS  Google Scholar 

  62. Kumar R, Wang RA, Bagheri-Yarmand R. Emerging roles of MTA family members in human cancers. Semin Oncol 2003;30:30–37.

    PubMed  CAS  Google Scholar 

  63. Fujita N, Jaye DL, Geigerman C, et al. MTA3 and the Mi-2/NuRD complex regulate cell fate during B lymphocyte differentiation. Cell 2004;119:75–86.

    PubMed  CAS  Google Scholar 

  64. Toh Y, Pencil SD, Nicolson GL. A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines.cDNA cloning, expression, and protein analyses. J Biol Chem 1994;269:22,958–22,963.

    PubMed  CAS  Google Scholar 

  65. Fujita N, Jaye DL, Kajita M, Geigerman C, Moreno CS, Wade PA.MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell 2003;113:207–219.

    PubMed  CAS  Google Scholar 

  66. Aasland R, Stewart AF, Gibson T. The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. Trends Biochem Sci 1996;21:87, 88.

    PubMed  Google Scholar 

  67. Hendrich B, Bird A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 1998;18:6538–6547.

    PubMed  CAS  Google Scholar 

  68. Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F, Wolffe AP. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet 1999;23:62–66.

    PubMed  CAS  Google Scholar 

  69. Feng Q, Zhang Y. The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes Dev 2001;15:827–832.

    PubMed  CAS  Google Scholar 

  70. Roder K, Hung MS, Lee TL, et al. Transcriptional repression by Drosophila methyl-CpG-binding proteins. Mol Cell Biol 2000;20:7401–7409.

    PubMed  CAS  Google Scholar 

  71. Meehan RR, Lewis JD, McKay S, Kleiner EL, Bird AP. Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell 1989;58:499–507.

    PubMed  CAS  Google Scholar 

  72. Feng Q, Cao R, Xia L, Erdjument-Bromage H, Tempst P, Zhang Y. Identification and functional characterization of the p66/p68 components of the MeCP1 complex. Mol Cell Biol 2002;22:536–546.

    PubMed  CAS  Google Scholar 

  73. Miaczynska M, Christoforidis S, Giner A, et al. APPL proteins linkRab5 to nuclear signal transduction via an endosomal compartment. Cell 2004;116:445–456.

    PubMed  CAS  Google Scholar 

  74. Hakimi MA, Bochar DA, Schmiesing JA, et al. A chromatin remodelling complex that loads cohesin onto human chromosomes. Nature 2002;418: 994–998.

    PubMed  CAS  Google Scholar 

  75. Michaelis C, Ciosk R, Nasmyth K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 1997;91:35–45.

    PubMed  CAS  Google Scholar 

  76. Tomonaga T, Nagao K, Kawasaki Y, et al. Characterization of fission yeast cohesin: essential anaphase proteolysis of Rad21 phosphorylated in the S phase. Genes Dev 2000;14:2757–2770.

    PubMed  CAS  Google Scholar 

  77. Dmitry V, Kadonaga J. The many faces of chromatin remodeling: SWItching beyond transcription. Cell 2001;106:523–525.

    Google Scholar 

  78. Nakamura T, Mori T, Tada S, et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. MolCell 2002;10:1119–1128.

    CAS  Google Scholar 

  79. Milne TA, Briggs SD, Brock HW, et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 2000;10:1107–1117.

    Google Scholar 

  80. Ernst P, Wang J, Korsmeyer SJ. The role of MLL in hematopoiesis and leukemia. Curr Opin Hematol 2002;9:282–287.

    PubMed  Google Scholar 

  81. O’Neill D, Yang J, Erdjument-Bromage H, Bornschlegel K, Tempst P, Bank A. Tissue-specific and developmental stage-specific DNA binding by a mammalian SWI/SNF complex associated with human fetal-to-adult globin gene switching. ProcNatlAcadSciUSA1999;96:349–354.

    CAS  Google Scholar 

  82. O’Neill DW, Schoetz SS, Lopez RA, et al. An ikaros-containing chromatin-remod-eling complex in adult-type erythroid cells. Mol Cell Biol 2000;20:7572–7582.

    PubMed  CAS  Google Scholar 

  83. You A, Tong JK, Grozinger CM, Schreiber SL. CoREST is an integral component of the CoREST-human histone deacetylase complex. Proc Natl Acad Sci USA2001:98:1454–1458.

    PubMed  CAS  Google Scholar 

  84. Humphrey GW, Wang Y, Russanova VR, et al. Stable histone deacetylase complexes distinguished by the presence of SANT domain proteins CoREST/kiaa0071 and Mta-L1. J Biol Chem 2001;276:6817–6824.

    PubMed  CAS  Google Scholar 

  85. Hakimi MA, Bochar DA, Chenoweth J, Lane WS, Mandel G, Shiekhattar R. A core-BRAF35 complex containing histone deacetylase mediates repression of neuronalspecific genes. Proc Natl Acad Sci U S A 2002;99:7420–7425.

    PubMed  CAS  Google Scholar 

  86. Hakimi MA, Dong Y, Lane WS, Speicher DW, Shiekhattar R. A candidate X-linked mental retardation gene is a component of a new family of histone deacetylase containing complexes. J Biol Chem 2003;278:7234–7239.

    PubMed  CAS  Google Scholar 

  87. Andres ME, Burger C, Peral-Rubio MJ, et al. CoREST: a functional corepressor required for regulation of neural-specific gene expression. Proc Natl Acad Sci USA1999;96:9873–9878.

    PubMed  CAS  Google Scholar 

  88. Kim DW, Cheriyath V, Roy AL, Cochran BH. TFII-I enhances activation of the c-fos promoter through interactions with upstream elements. Mol Cell Biol 1998;18:3310–3320.

    PubMed  CAS  Google Scholar 

  89. Jones FS, Meech R. Knockout of REST/NRSF shows that the protein is a potent repressor of neuronally expressed genes in non-neural tissues. Bioessays 1999;21:372–376.

    PubMed  CAS  Google Scholar 

  90. Grimes JA, Nielsen SJ, Battaglioli E, et al. The co-repressor mSin3A is a functional component of the REST-CoREST repressor complex. J Biol Chem 2000;275:9461–9467.

    PubMed  CAS  Google Scholar 

  91. Ballas N, Battaglioli E, Atouf F, et al. Regulation of neuronal traits by a novel transcriptional complex. Neuron 2001;31:353–365.

    PubMed  CAS  Google Scholar 

  92. Marmorstein LY, Kinev AV, Chan GK, et al. A human BRCA2 complex containing a structural DNA binding component influences cell cycle progression. Cell 2001;104:247–257.

    PubMed  CAS  Google Scholar 

  93. Iwase S, Januma A, Miyamoto K, et al. Characterization of BHC80 in BRAF-HDAC complex, involved in neuron-specific gene repression. Biochem Biophys Res Commun 2004;322:601–608.

    PubMed  CAS  Google Scholar 

  94. Shi Y, Sawada J, Sui G, et al. Coordinated histone modifications mediated by a CtBP corepressor complex. Nature 2003;422:735–738.

    PubMed  CAS  Google Scholar 

  95. Chinnadurai G. CtBP family proteins: more than transcriptional corepressors. Bioessays 2003;25:9–12.

    PubMed  CAS  Google Scholar 

  96. Tachibana M, Sugimoto K, Nozaki M, et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 2002;16:1779–1791.

    PubMed  CAS  Google Scholar 

  97. Ogawa H, Ishiguro K, Gaubatz S, Livingston DM, Nakatani Y. A complex with chromatin modifiers that occupies E2F-and Myc-responsive genes in G0 cells. Science 2002;296:1132–1136.

    PubMed  CAS  Google Scholar 

  98. Roy AL. Biochemistry and biology of the inducible multifunctional transcription factor TFII-I. Gene 2001;274:1–13.

    PubMed  CAS  Google Scholar 

  99. Grueneberg DA, Henry RW, Brauer A, et al. A multifunctional DNA-binding protein that promotes the formation of serum response factor/homeodomain complexes: identity to TFII-I. Genes Dev 1997; 11:2482–2493.

    PubMed  CAS  Google Scholar 

  100. Bertos NR, Wang AH, Yang XJ. Class II histone deacetylases: structure, function, and regulation. Biochem Cell Biol 2001;79:243–252.

    PubMed  CAS  Google Scholar 

  101. Ishizuka T, Lazar MA. The N-CoR/histone deacetylase 3 complex is required for repression by thyroid hormone receptor. Mol Cell Biol 2003;23:5122–5131.

    PubMed  CAS  Google Scholar 

  102. Wen YD, Perissi V, Staszewski LM, et al. The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc Natl Acad Sci U S A 2000;97: 7202–7207.

    PubMed  CAS  Google Scholar 

  103. Jepsen K, Hermanson O, Onami TM, et al. Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 2000;102:753–763.

    PubMed  CAS  Google Scholar 

  104. Wang A, Kurdistani SK, Grunstein M. Requirement of Hos2 histone deacetylase for gene activity in yeast. Science 2002;298:1412–1414.

    PubMed  CAS  Google Scholar 

  105. Guenther MG, Lane WS, Fischle W, Verdin E, Lazar MA, Shiekhattar R. A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes Dev 2000;14:1048–1057.

    PubMed  CAS  Google Scholar 

  106. Li J, Wang J, Nawaz Z, Liu JM, Qin J, Wong J. Both corepressors proteins SMRT and NCor exist in large protein complexes containing HDAC3. EMBO J 2000;19:4342–4350.

    PubMed  CAS  Google Scholar 

  107. Zhang J, Kalkum M, Chait BT, Roeder RG. The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol Cell 2002;9:611–623.

    PubMed  CAS  Google Scholar 

  108. Yoon HG, Chan DW, Huang ZQ, et al. Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1. EMBO J2003;22:1336–1346.

    PubMed  CAS  Google Scholar 

  109. Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 2000;14:121–141.

    PubMed  CAS  Google Scholar 

  110. Perissi V, Aggarwal A, Glass CK, Rose DW, Rosenfeld MG. A corepressor/coac-tivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 2004;116:511–526.

    PubMed  CAS  Google Scholar 

  111. Lutterbach B, Westendorf JJ, Linggi B, et al. ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol Cell Biol 1998;18:7176–7184.

    PubMed  CAS  Google Scholar 

  112. Ogawa S, Lozach J, Jepsen K, et al. A nuclear receptor corepressor transcriptional checkpoint controlling activator protein 1-dependent gene networks required for macrophage activation. Proc NatlAcad Sci U S A 2004;101:14,461–14,466.

    CAS  Google Scholar 

  113. Asahara H, Dutta S, Kao HY, Evans RM, Montminy M. Pbx-Hox heterodimers recruit coactivator-corepressor complexes in an isoform-specific manner. Mol Cell Biol 1999;19:8219–8225.

    PubMed  CAS  Google Scholar 

  114. Ordentlich P, Downes M, Evans RM. Corepressors and nuclear hormone receptor function. Curr Top Microbiol Immunol 2001;254:101–116.

    PubMed  CAS  Google Scholar 

  115. Rosenfeld MG, Glass CK. Coregulator codes of transcriptional regulation by nuclear receptors. J Biol Chem 2001;276:36,865–36,868.

    PubMed  CAS  Google Scholar 

  116. Guenther MG, Barak O, Lazar MA. The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol Cell Biol 2001;21:6091–6101.

    PubMed  CAS  Google Scholar 

  117. Yu J, Li Y, Ishizuka T, Guenther MG, Lazar MA. A SANT motif in the SMRT corepressor interprets the histone code and promotes histone deacetylation. EMBO J 2003;22:3403–3410.

    PubMed  CAS  Google Scholar 

  118. Dong X, Tsuda L, Zavitz KH, et al. ebi regulates epidermal growth factor receptor signaling pathways inDrosophila. Genes Dev 1999;13:954–965.

    PubMed  CAS  Google Scholar 

  119. Edmondson DG, Smith MM, Roth SY. Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4. Genes Dev 1996;10:1247–1259.

    PubMed  CAS  Google Scholar 

  120. Chen G, Nguyen PH, Courey AJ. A role for Groucho tetramerization in transcription repression. Mol Cell Biol 1998;18:7259–7268.

    PubMed  CAS  Google Scholar 

  121. Chen G, Fernandez J, Mische S, Courey AJ. A functional interaction between the histone deacetylase Rpd3 and the corepressor groucho in Drosophila development. Genes Dev 1999;13:2218–2230.

    PubMed  CAS  Google Scholar 

  122. Carlson M. Genetics of transcriptional regulation in yeast: connections to the RNA polymerase II CTD. Annu Rev Cell Dev Biol 1997;13:1–23.

    PubMed  CAS  Google Scholar 

  123. Redd MJ, Arnaud MB, Johnson AD. A complex composed of tup1 and ssn6 represses transcription in vitro. J Biol Chem 1997;11,193–11,197.

    Google Scholar 

  124. Jin DY, Teramoto H, Giam CZ, Chun RF, Gutkind JS, Jeang KT. A human suppressor of c-Jun N-terminal kinase 1 activation by tumor necrosis factor alpha. JBiol Chem 1997;272:25,816–25,823.

    CAS  Google Scholar 

  125. Zaphiropoulos PG, Toftgard R. cDNA cloning of a novel WD repeat protein mapping to the 9q22.3 chromosomal region. DNA Cell Biol 1996;15:1049–1056.

    PubMed  CAS  Google Scholar 

  126. Pijnappel WWMP, Schaft D, Roguev A, et al. The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program. Genes Dev 2001;15: 2991–3004.

    PubMed  CAS  Google Scholar 

  127. Underhill C, Qutob MS, Yee SP, Torchia J. A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressors KAP-1. J Biol Chem 2000;51:40,463–40,470.

    Google Scholar 

  128. Wang W, Xue Y, Zhou S, Kuo A, Cairns BR, Crabtree GR. Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev 1996;10:2117–2130.

    PubMed  CAS  Google Scholar 

  129. Fischle W, Kiermer V, Dequiedt F, Verdin E. The emerging role of class II his-tone deacetylases. Biochem Cell Biol 2001;79:337–348.

    PubMed  CAS  Google Scholar 

  130. Verdin E, Dequiedt F, Kasler HG. Class II histone deacetylases: versatile regulators. Trends Genet 2003;19:286–293.

    PubMed  CAS  Google Scholar 

  131. Mackintosh C. Dynamic interactions between 14-3-3 proteins and phosphopro-teins regulate diverse cellular processes. Biochem J 2004;381:329–342.

    PubMed  CAS  Google Scholar 

  132. McKinsey TA, Zhang CL, Olson EN. Activation of the myocyte enhancer fac-tor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stim-ulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci U S A 2000;97:14,400–14,405.

    PubMed  CAS  Google Scholar 

  133. Huang EY, Zhang J, Miska EA, Guenther MG, Kouzarides T, Lazar MA. Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway. Genes Dev 2000;14:45–54.

    PubMed  CAS  Google Scholar 

  134. Dhordain P, Albagli O, Lin RJ, et al. Corepressor SMRT binds the BTB/POZ repressing domain of the LAZ3/BCL6 oncoprotein. Proc Natl Acad Sci U S A 1997;94:10,762–10,767.

    PubMed  CAS  Google Scholar 

  135. Phan RT, Dalla-Favera R. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature 2004;432:635–639.

    PubMed  CAS  Google Scholar 

  136. Huynh KD, Fischle W, Verdin E, Bardwell VJ. BCoR, a novel corepressor involved in BCL-6 repression. Genes Dev 2000;14:1810–1823.

    PubMed  CAS  Google Scholar 

  137. Fischle W, Dequiedt F, Hendzel MJ, et al. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell 2002;9:45–57.

    PubMed  CAS  Google Scholar 

  138. Naya FJ, Olson E. MEF2: a transcriptional target for signaling pathways controlling skeletal muscle growth and differentiation. Curr Opin Cell Biol 1999;11:683–688.

    PubMed  CAS  Google Scholar 

  139. McKinsey TA, Zhang CL, Olson EN. Control of muscle development by dueling HATs and HDACs. Curr Opin Genet Dev 2001; 11:497–504.

    PubMed  CAS  Google Scholar 

  140. Lu J, McKinsey TA, Zhang CL, Olson EN. Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell 2000;6:233–244.

    PubMed  CAS  Google Scholar 

  141. Dressel U, Bailey PJ, Wang SC, Downes M, Evans RM, Muscat GE. A dynamic role for HDAC7 in MEF2-mediated muscle differentiation. J Biol Chem 2001;276:17,007–17,013.

    PubMed  CAS  Google Scholar 

  142. Li X, Song S, Liu Y, Ko SH, Kao HY. Phosphorylation of the histone deacetylase 7 modulates its stability and association with 14-3-3 proteins. J Biol Chem 2004;279:34,201–34,208.

    PubMed  CAS  Google Scholar 

  143. Zhang CL, McKinsey TA, Lu JR, Olson EN. Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor. J Biol Chem2001;276:35–39.

    PubMed  CAS  Google Scholar 

  144. Zhang CL, McKinsey TA, Olson EN. Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol Cell Biol 2002;22:7302–7312.

    PubMed  CAS  Google Scholar 

  145. Bannister A J, Zegerman P, Partridge JF, et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 2001;410:120–124.

    PubMed  CAS  Google Scholar 

  146. Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T. Methylation of histone H3 lysine 9 creates a binding site forHP1 proteins. Nature 2001;410:116.

    PubMed  CAS  Google Scholar 

  147. Vega RB, Matsuda K, Oh J, et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 2004;119:555–566.

    PubMed  CAS  Google Scholar 

  148. Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to mis-folded protein stress. Cell 2003;115:727–738.

    PubMed  CAS  Google Scholar 

  149. Zhang Y, Li N, Caron C, et al. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J 2003;22:1168–1179.

    PubMed  CAS  Google Scholar 

  150. Matsuyama A, Shimazu T, Sumida Y, et al. In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J2002;21:6820–6831.

    PubMed  CAS  Google Scholar 

  151. Hook SS, Orian A, Cowley SM, Eisenman RN. Histone deacetylase 6 binds polyubiquitin through its zinc finger (PAZ domain) and copurifies with deubiq-uitinating enzymes. Proc Natl Acad Sci U S A 2002;99:13,425–13,430.

    PubMed  CAS  Google Scholar 

  152. Hubbert C, Guardiola A, Shao R, et al. HDAC6 is a microtubule-associated deacetylase. Nature 2002;417:455–458.

    PubMed  CAS  Google Scholar 

  153. Tran PB, Miller RJ. Aggregates in neurodegenerative disease: crowds and power? Trends Neurosci 1999;22:194–197.

    PubMed  CAS  Google Scholar 

  154. Gartenberg MR. The Sir proteins of Saccharomyces cerevisiae: mediators of transcriptional silencing and much more. Curr Opin Microbiol 2000;3:132–137.

    PubMed  CAS  Google Scholar 

  155. Guarente L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev 2000;14:1021–1026.

    PubMed  CAS  Google Scholar 

  156. Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000;403:795–800.

    PubMed  CAS  Google Scholar 

  157. Frye RA. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 1999;260: 273–279.

    PubMed  CAS  Google Scholar 

  158. Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 2000;273:793–798.

    PubMed  CAS  Google Scholar 

  159. Guarente L. Diverse and dynamic functions of the Sir silencing complex. Nat Genet 1999;23:281–285.

    PubMed  CAS  Google Scholar 

  160. Cockell MM, Gasser SM. The nucleolus: nucleolar space for RENT. Curr Biol 1999;9:R575,R576.

    Google Scholar 

  161. Gottschling DE. Gene silencing: two faces of SIR2. CurrBiol2000;10:R708–R711.

    CAS  Google Scholar 

  162. Moazed D. Enzymatic activities of Sir2 and chromatin silencing. Curr Opin Cell Biol2001;13:232–238.

    PubMed  CAS  Google Scholar 

  163. Ghidelli S, Donze D, Dhillon N, Kamakaka RT. Sir2p exists in two nucleosome-binding complexes with distinct deacetylase activities. EMBO J 2001;20: 4522–4535.

    PubMed  CAS  Google Scholar 

  164. Straight AF, Shou W, Dowd GJ, et al. Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell 1999;97:245–256.

    PubMed  CAS  Google Scholar 

  165. Shou W, Seol JH, Shevchenko A, et al. Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 1999;97:233–244.

    PubMed  CAS  Google Scholar 

  166. Hecht A, Strahl-Bolsinger S, Grunstein M. Spreading of transcriptional repres-sor SIR3 from telomeric heterochromatin. Nature 1996;383:92–96.

    PubMed  CAS  Google Scholar 

  167. Moazed D, Johnson D. A deubiquitinating enzyme interacts with SIR4 and regulates silencing inS. cerevisiae. Cell 1996;86:667–677.

    PubMed  CAS  Google Scholar 

  168. Tollervey D, Hurt EC. The role of small nucleolar ribonucleoproteins in ribo-some synthesis.

    Google Scholar 

  169. Taylor GS, Liu Y, Baskerville C, Charbonneau H. The activity of Cdc14p, an oligomeric dual specificity protein phosphatase from Saccharomyces cerevisiae, is required for cell cycle progression. J Biol Chem 1997;272:24,054–24,063.

    PubMed  CAS  Google Scholar 

  170. Shou W, Sakamoto KM, Keener J, et al. Net1 stimulates RNA polymerase I transcription and regulates nucleolar structure independently of controlling mitotic exit. Mol Cell 2001;8:45–55.

    PubMed  CAS  Google Scholar 

  171. Xie J, Pierce M, Gailus-Durner V, Wagner M, Winter E, Vershon AK. Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae. EMBO J 1999; 18:6448–6454.

    PubMed  CAS  Google Scholar 

  172. Sutton A, Heller RC, Landry J, Choy JS, Sirko A, Sternglanz R. A novel form of transcriptional silencing by Sum1-1 requires Hst1 and the origin recognition complex. Mol Cell Biol 2001;21:3514–3522.

    PubMed  CAS  Google Scholar 

  173. Robert F, Pokholok DK, Hannett NM, et al. Global position and recruitment of HATs and HDACs in the yeast genome. Mol Cell 2004; 16:199–209.

    PubMed  CAS  Google Scholar 

  174. Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem 2004;73:417–435.

    PubMed  CAS  Google Scholar 

  175. Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 2004;16:93–105.

    PubMed  CAS  Google Scholar 

  176. Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependentp53 deacetylase. Cell 2001; 107:149–159.

    PubMed  CAS  Google Scholar 

  177. Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 2001;107:137–148.

    PubMed  CAS  Google Scholar 

  178. Muth V, Nadaud S, Grummt I, Voit R. Acetylation of TAF(I)68, a subunit of TIF-IB/SL1, activates RNA polymerase I transcription. EMBO J 2001;20:1353–1362.

    PubMed  CAS  Google Scholar 

  179. Bereshchenko OR, Gu W, Dalla-Favera R. Acetylation inactivates the transcriptional repressor BCL6. Nat Genet 2002;32:606–613.

    PubMed  CAS  Google Scholar 

  180. Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004;303:2011–2015.

    PubMed  CAS  Google Scholar 

  181. Motta MC, Divecha N, Lemieux M, et al. Mammalian SIRT1 represses fork-head transcription factors. Cell 2004;116:551–563.

    PubMed  CAS  Google Scholar 

  182. Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 2004;305:390–392.

    PubMed  CAS  Google Scholar 

  183. Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 2004;23:2369–2380.

    PubMed  CAS  Google Scholar 

  184. Fulco M, Schiltz RL, Iezzi S, et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell 2003;12:51–62.

    PubMed  CAS  Google Scholar 

  185. Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 2004;305:1010–1013.

    PubMed  CAS  Google Scholar 

  186. Senawong T, Peterson VJ, Avram D, et al. Involvement of the histone deacetylase SIRT1 in chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2-mediated transcriptional repression. J Biol Chem 2003;278:43,041–43,050.

    PubMed  CAS  Google Scholar 

  187. Takata T, Ishikawa F. Human Sir2-related protein SIRT1 associates with the bHLH repressors HES1 and HEY2 and is involved in HES1-and HEY2-mediated transcriptional repression. Biochem Biophys Res Commun 2003;301:250–257.

    PubMed  CAS  Google Scholar 

  188. Picard F, Kurtev M, Chung N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004;429:771–776.

    PubMed  CAS  Google Scholar 

  189. Zhao K, Chai X, Clements A, Marmorstein R. Structure and autoregulation of the yeast Hst2 homolog of Sir2. Nat Struct Biol 2003; 10:864–871.

    PubMed  CAS  Google Scholar 

  190. Landry J, Sutton A, Tafrov ST, et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci USA 2000;97: 5807–5811.

    PubMed  CAS  Google Scholar 

  191. Perrod S, Cockell MM, Laroche T, et al. A cytosolic NAD-dependent deacety-lase, Hst2p, can modulate nucleolar and telomeric silencing in yeast. EMBO J 2001;20:197–209.

    PubMed  CAS  Google Scholar 

  192. Halme A, Bumgarner S, Styles C, Fink GR. Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 2004; 116: 405–415.

    PubMed  CAS  Google Scholar 

  193. North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 2003;11:437–444.

    PubMed  CAS  Google Scholar 

  194. Dry den SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol 2003;23:3173–3185.

    PubMed  CAS  Google Scholar 

  195. Borra MT, O’Neill FJ, Jackson MD, et al. Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+-dependent deacetylases. J Biol Chem 2002;277:12,632–12,641.

    PubMed  CAS  Google Scholar 

  196. Onyango P, Celic I, McCaffery JM, Boeke JD, Feinberg AP. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci US A 2002;99:13,653–13,658.

    CAS  Google Scholar 

  197. Schwer B, North BJ, Frye RA, Ott M, Verdin E. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol 2002;158:647–657.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Vaquero, A., Scher, M., Reinberg, D. (2006). Biochemistry of Multiprotein HDAC Complexes. In: Verdin, E. (eds) Histone Deacetylases. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59745-024-3:23

Download citation

Publish with us

Policies and ethics