Skip to main content

The Class IIa Histone Deacetylases

Functions and Regulation

  • Chapter
  • 739 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Posttranslational modifications of histone proteins in chromatin play a critical role in the control of gene expression in eukaryotes. Histone deacetylases (HDACs) catalyze the deacetylation of lysine residues in the histone amino-terminal tails and are found in large multiprotein transcriptional compressor complexes. Human HDACs are grouped into three classes based on their similarity to known yeast factors. Class I HDACs are similar to the yeast transcriptional repressor yRPD3, whereas class II HDACs are related to yHDA1 and class III HDAs to ySIR2. In this review, we focus on the structure and function of class IIa HDACs. These recently discovered enzymes have been implicated as important regulators of gene expression during cell differentiation and development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BCL6:

B-cell lymphoma 6

B-MyB:

B-myeloblastosis virus

BTB/POZ:

Bric-a-brac, tramtrack, and broad complex/ Pox virus and zinc finger

BCOR:

BCL-6 interacting corepressor

Cam:

Calmodulin

CRM1:

Chromosome region maintenance 1

CtBP:

COOH-terminal binding protein

DAG:

Diacylglycerol

Erk:

Extracellular signal-related kinase

ETO:

Eight twenty-one

Eu-HMTase1:

Eukaryotic histone methyltransferase

GPS2:

G protein pathway suppressor 2

HAST:

Hda 1p-affected subtelomeric

Hos 1/3, Hos2:

Hda One Similar 2

Hox:

Homeobox

HP1:

Heterochromatin protein 1

Hst1:

Homolog of SIR2

IP3 :

Inositol triphosphate

Mad:

MAX dimerization protein 1

MADS:

MCM1, agamous, deficiens, and serum response factor

MAX:

MYC associated factor X

MCM1 (in the MADS definition):

Mini-chromosome maintenance

MEF2:

Myocyte enhancer-binding factor 2

MRF:

Muscle regulatory factor 4

MyoD:

Myogenic differentiation

MYST family:

MOZ, YBF2/SAS 3, SAS 2, and Tip60

NCoR:

Nuclear receptor corepressor

NES:

Nuclear export signal

NLS:

Nuclear localization signal

NR:

Nuclear receptor

PKC:

Protein kinase C

PKD:

Protein kinase D

PLCg:

Phospholipase c-γ

PLZF:

Promyelocytic leukemia zinc finger

RanBP2:

RAs-related nuclear protein, binding protein 2

REA:

Repressor of estrogen activity

Rpx2:

Rathkee pouch homeobox 2

Runx2:

Runt-related transcription factor 2

SMRT:

Silencing mediator for retinoid and thyroid receptors

STAT3:

Signal transducer and activator of transcription 3

SUV39H1:

Suppressor of variegation 3-9 homolog 1

Tat:

Transactivator of transcription

TBL-1:

Transducin β-like protein

TIP60:

Tat-interacting protein, 60 kilodaltons

ZEBRA:

BamhI fragment Z Epstein-Barr replication activator

References

  1. Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacety-lase family: functional implications of phylogenetic analysis. J Mol Biol 2004; 338:17–31.

    Article  PubMed  CAS  Google Scholar 

  2. Zeremski M, Stricker JR, Fischer D, Zusman SB, Cohen D. Histone deacetylase dHDAC4 is involved in segmentation of the Drosophila embryo and is regulated by gap and pair-rule genes. Genesis 2003;35:31–38.

    Article  PubMed  CAS  Google Scholar 

  3. Dichoso D, Brodigan T, Chwoe KY, et al. The MADS-Box factor CeMEF2 is not essential for Caenorhabditis elegans myogenesis and development. Dev Biol 2000;223:431–440.

    Article  PubMed  CAS  Google Scholar 

  4. Choi KY, Ji YJ, Jee C, Kim do H, Ahnn J. Characterization of CeHDA-7, a class II histone deacetylase interacting with MEF-2 in Caenorhabditis elegans. Biochem Biophys Res Commun 2002;293:1295–1300.

    Article  PubMed  CAS  Google Scholar 

  5. McKinsey TA, Zhang CL, Olson EN. Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol Cell Biol 2001;21: 6312–6321.

    Article  PubMed  CAS  Google Scholar 

  6. Sparrow DB, Miska EA, Langley E, et al.MEF-2 function is modified by a novel co-repressor, MITR. EMBO J 1999;18:5085–5098.

    Article  PubMed  CAS  Google Scholar 

  7. Zhou X, Richon VM, Rifkind RA, Marks PA. Identification of a transcriptional repressor related to the noncatalytic domain of histone deacetylases 4 and 5. Proc Natl Acad Sci U S A 2000;97:1056–1061.

    Article  PubMed  CAS  Google Scholar 

  8. Dequiedt F, Kasler H, Fischle W, et al. HDAC7, a thymus-specific class II histone deacetylase, regulates Nur77 transcription and TCR-mediated apoptosis. Immunity 2003;18:687–698.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang CL, McKinsey TA, Olson EN. The transcriptional corepressor MITR is a signal-responsive inhibitor of myogenesis. Proc Natl Acad Sci U S A 2001;98: 7354–7359.

    Article  PubMed  CAS  Google Scholar 

  10. Black BL, Olson EN. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 1998; 14: 167–196.

    Article  PubMed  CAS  Google Scholar 

  11. Gossett LA, Kelvin DJ, Sternberg EA, Olson EN. A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol Cell Biol 1989;9:5022–5033.

    PubMed  CAS  Google Scholar 

  12. McKinsey TA, Zhang CL, Olson EN. MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 2002;27:40–47.

    Article  PubMed  CAS  Google Scholar 

  13. Wang AH, Bertos NR, Vezmar M, et al. HDAC4, a human histone deacetylase related to yeast HDA1, is a transcriptional corepressor. Mol Cell Biol 1999; 19:7816–7827.

    PubMed  CAS  Google Scholar 

  14. Lemercier C, Verdel A, Galloo B, Curtet S, Brocard MP, Khochbin S. mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity. J Biol Chem 2000;275:15,594–15,599.

    Article  PubMed  CAS  Google Scholar 

  15. Dressel U, Bailey PJ, Wang SC, Downes M, Evans RM, Muscat GE. A dynamic role for HDAC7 in MEF2-mediated muscle differentiation. J Biol Chem 2001;276:17,007–17,013.

    Article  PubMed  CAS  Google Scholar 

  16. Kao HY, Verdel A, Tsai CC, Simon C, Juguilon H, Khochbin S. Mechanism for nucleocytoplasmic shuttling of histone deacetylase 7. J Biol Chem 2001;276: 47,496–47,507.

    Article  PubMed  CAS  Google Scholar 

  17. Otto F, Lubbert M, Stock M. Upstream and downstream targets of RUNX proteins. J Cell Biochem 2003;89:9–18.

    Article  PubMed  CAS  Google Scholar 

  18. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 1996;84:321–330.

    Article  PubMed  CAS  Google Scholar 

  19. Li QL, Ito K, Sakakura C, et al. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 2002;109:113–124.

    Article  PubMed  CAS  Google Scholar 

  20. Levanon D, Bettoun D, Harris-Cerruti C, et al. The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J 2002;21:3454–3463.

    Article  PubMed  CAS  Google Scholar 

  21. Taniuchi I, Osato M, Egawa T, et al. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 2002;1 11:621–633.

    Article  Google Scholar 

  22. Ehlers M, Laule-Kilian K, Petter M, et al. Morpholino antisense oligonucleotide-mediated gene knockdown during thymocyte development reveals role for Runx3 transcription factor in CD4 silencing during development of CD4-/CD8+ thymocytes. J Immunol 2003;171:3594–3604.

    PubMed  CAS  Google Scholar 

  23. Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 1997;89:755–764.

    Article  PubMed  CAS  Google Scholar 

  24. Otto F, Thornell AP, Crompton T, et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 1997;89:765–771.

    Article  PubMed  CAS  Google Scholar 

  25. Vega RB, Matsuda K, Oh J, et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 2004;119:555–566.

    Article  PubMed  CAS  Google Scholar 

  26. Schroeder TM, Kahler RA, Li X, Westendorf JJ. Histone deacetylase 3 interacts with runx2 to repress the osteocalcin promoter and regulate osteoblast differentiation. J Biol Chem 2004;279:41,998–42,007. Epub 2004 Aug 2.

    Article  PubMed  CAS  Google Scholar 

  27. Kerckaert JP, Deweindt C, Tilly H, Quief S, Lecocq G, Bastard C. LAZ3, a novel zinc-finger encoding gene, is disrupted by recurring chromosome 3q27 translocations in human lymphomas. Nat Genet 1993;5:66–70.

    Article  PubMed  CAS  Google Scholar 

  28. Ye BH, Lista F, Lo Coco F, et al. Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science 1993;262:747–750.

    Article  PubMed  CAS  Google Scholar 

  29. Deweindt C, Albagli O, Bernardin F, et al. The LAZ3/BCL6 oncogene encodes a sequence-specific transcriptional inhibitor: a novel function for the BTB/POZ domain as an autonomous repressing domain. Cell Growth Differ 1995;6: 1495–1503.

    PubMed  CAS  Google Scholar 

  30. Shaffer AL, Yu X, He Y, Boldrick J, Chan EP, Staudt LM. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 2000;13:199–212.

    Article  PubMed  CAS  Google Scholar 

  31. Lemercier C, Brocard MP, Puvion-Dutilleul F, Kao HY, Albagli O, Khochbin S. Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor. J Biol Chem 2002;277:22,045–22,052.

    Article  PubMed  CAS  Google Scholar 

  32. Dhordain P, Albagli O, Lin RJ, et al. Corepressor SMRT binds the BTB/POZ repressing domain of the LAZ3/BCL6 oncoprotein. Proc Natl Acad Sci U S A 1997;94:10,762–10,767.

    Article  PubMed  CAS  Google Scholar 

  33. Wong CW, Privalsky ML. Components of the SMRT corepressor complex exhibit distinctive interactions with the POZ domain oncoproteins PLZF, PLZF-RARalpha, and BCL-6. J Biol Chem 1998;273:27,695–27,702.

    Article  PubMed  CAS  Google Scholar 

  34. Huynh KD, Bardwell VJ. The BCL-6 POZ domain and other POZ domains interact with the co-repressors N-CoR and SMRT. Oncogene 1998; 17: 2473–2484.

    Article  PubMed  CAS  Google Scholar 

  35. Huynh KD, Fischle W, Verdin E, Bardwell VJ. BCoR, a novel corepressor involved in BCL-6 repression. Genes Dev 2000;14:1810–1823.

    PubMed  CAS  Google Scholar 

  36. Huang EY, Zhang J, Miska EA, Guenther MG, Kouzarides T, Lazar MA. Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway. Genes Dev 2000;14:45–54.

    PubMed  CAS  Google Scholar 

  37. Kao HY, Downes M, Ordentlich P, Evans RM. Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev 2000; 14:55–66.

    PubMed  CAS  Google Scholar 

  38. Downes M, Ordentlich P, Kao HY, Alvarez JG, Evans RM. Identification of a nuclear domain with deacetylase activity. Proc Natl Acad Sci U S A 2000;97: 10,330–10,335.

    Article  PubMed  CAS  Google Scholar 

  39. Chen JD, Evans RM. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 1995;377:454–457.

    Article  PubMed  CAS  Google Scholar 

  40. Horlein AJ, Naar AM, Heinzel T, et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 1995;377:397–404.

    Article  PubMed  CAS  Google Scholar 

  41. Aranda A, Pascual A. Nuclear hormone receptors and gene expression. Physiol Rev 2001;81:1269–1304.

    PubMed  CAS  Google Scholar 

  42. Li J, Wang J, Wang J, et al. Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. EMBO J 2000;19:4342–4350.

    Article  PubMed  CAS  Google Scholar 

  43. Wen YD, Perissi V, Staszewski LM, et al. The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc Natl Acad Sci U S A 2000;97: 7202–7207.

    Article  PubMed  CAS  Google Scholar 

  44. Guenther MG, Lane WS, Fischle W, Verdin E, Lazar MA, Shiekhattar R. A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes Dev 2000;14:1048–1057.

    PubMed  CAS  Google Scholar 

  45. Guenther MG, Barak O, Lazar MA. The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol Cell Biol 2001;21: 6091–6101.

    Article  PubMed  CAS  Google Scholar 

  46. Fischle W, Dequiedt F, Fillion M, Hendzel MJ, Voelter W, Verdin E. Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo. J Biol Chem 2001;276:35,826–35,835.

    Article  PubMed  CAS  Google Scholar 

  47. Grozinger CM, Hassig CA, Schreiber SL. Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc Natl Acad Sci USA 1999; 96:4868–4873.

    Article  PubMed  CAS  Google Scholar 

  48. Fischle W, Dequiedt F, Hendzel MJ, et al. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell 2002;9:45–57.

    Article  PubMed  CAS  Google Scholar 

  49. Zhang J, Kalkum M, Chait BT, Roeder RG. The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol Cell 2002;9:611–623.

    Article  PubMed  CAS  Google Scholar 

  50. Pijnappel Schaft D, Roguev A, et al. The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program. Genes Dev 2001;15:2991–3004.

    Article  Google Scholar 

  51. Kurtev V, Margueron R, Kroboth K, Ogris E, Cavailles V, Seiser C. Transcriptional regulation by the repressor of estrogen receptor activity via recruitment of histone deacetylases. J Biol Chem 2004;279:24,834–24,843.

    Article  PubMed  CAS  Google Scholar 

  52. Montano MM, Ekena K, Delage-Mourroux R, Chang W, Martini P, Katzenellenbogen BS. An estrogen receptor-selective coregulator that potentiates the effectiveness of antiestrogens and represses the activity of estrogens. Proc Natl Acad SciUS A 1999;96:6947–6952.

    Article  CAS  Google Scholar 

  53. Fu H, Subramanian RR, Masters SC. 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 2000;40:617–647.

    Article  PubMed  CAS  Google Scholar 

  54. Wang AH, Kruhlak MJ, Wu J, et al. Regulation of histone deacetylase 4 by binding of 14-3-3 proteins. Mol Cell Biol 2000;20:6904–6912.

    Article  PubMed  CAS  Google Scholar 

  55. Grozinger CM, Schreiber SL. Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc Natl Acad Sci U S A 2000;97:7835–7840.

    Article  PubMed  CAS  Google Scholar 

  56. McKinsey TA, Zhang CL, Olson EN. Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci U S A 2000; 97:14,400–14,405.

    Article  PubMed  CAS  Google Scholar 

  57. Youn H-D, Grozinger CM, Liu JO. Calcium regulates transcriptional repression of myocyte enhancer factor 2 by histone deacetylase 4. J Biol Chem 2000;275: 22,563–22,567.

    Article  PubMed  CAS  Google Scholar 

  58. McKinsey TA, Zhang CL, Lu J, Olson EN. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 2000;408: 106–111.

    Article  PubMed  CAS  Google Scholar 

  59. Zhang CL, McKinsey TA, Olson EN. Association of class II histone deacety-lases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol Cell Biol 2002;22:7302–7312.

    Article  PubMed  CAS  Google Scholar 

  60. Boyd JM, Subramanian T, Schaeper U, La Regina M, Bayley S, Chinnadurai G. A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J 1993; 12:469–478.

    PubMed  CAS  Google Scholar 

  61. Schaeper U, Boyd JM, Verma S, Uhlmann E, Subramanian T, Chinnadurai G. Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci U S A 1995;92: 10,467–10,471.

    Article  PubMed  CAS  Google Scholar 

  62. Poortinga G, Watanabe M, Parkhurst SM. Drosophila CtBP: a Hairy-interacting protein required for embryonic segmentation and hairy-mediated transcriptional repression. EMBO J 1998; 17:2067–2078.

    Article  PubMed  CAS  Google Scholar 

  63. Nibu Y, Zhang H, Levine M. Interaction of short-range repressors with Drosophila CtBP in the embryo. Science 1998;280:101–104.

    Article  PubMed  CAS  Google Scholar 

  64. Turner J, Crossley M. Cloning and characterization of mCtBP2, a co-repressor that associates with basic Kruppel-like factor and other mammalian transcriptional regulators. EMBO J 1998;17:5129–5140.

    Article  PubMed  CAS  Google Scholar 

  65. Koipally J, Georgopoulos K. Ikaros interactions with CtBP reveal a repression mechanism that is independent of histone deacetylase activity. J Biol Chem 2000;275:19,594–19,602.

    Article  PubMed  CAS  Google Scholar 

  66. van Vliet J, Turner J, Crossley M. Human Kruppel-like factor 8: a CACCC-box binding protein that associates with CtBP and represses transcription. Nucleic Acids Res 2000;28:1955–1962.

    Article  PubMed  Google Scholar 

  67. Zhang CL, McKinsey TA, Lu J-R, Olson EN. Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor. J Biol Chem 2001;276:35–39.

    Article  PubMed  CAS  Google Scholar 

  68. Turner J, Crossley M. The CtBP family: enigmatic and enzymatic transcriptional co-repressors. Bioessays 2001;23:683–690.

    Article  PubMed  CAS  Google Scholar 

  69. Chinnadurai G. CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol Cell 2002;9:213–224.

    Article  PubMed  CAS  Google Scholar 

  70. Shi Y, Sawada J, Sui G, et al. Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 2003;422:735–738.

    Article  PubMed  CAS  Google Scholar 

  71. Kirsh O, Seeler J-S, Pichler A, et al. The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO J 2002;21:2682–2691.

    Article  PubMed  CAS  Google Scholar 

  72. Zhou X, Richon VM, Wang AH, Yang XJ, Rifkind RA, Marks PA. Histone deacetylase 4 associates with extracellular signal-regulated kinases 1 and 2, and its cellular localization is regulated by oncogenic Ras. Proc Natl Acad Sci USA 2000;97:14,329–14,333.

    Article  PubMed  CAS  Google Scholar 

  73. Lee HJ, Chun M, Kandror KV. Tip60 and HDAC7 interact with the endothelin receptor a and may be involved in downstream signaling. J Biol Chem 2001; 276:16,597–16,600.

    Article  PubMed  CAS  Google Scholar 

  74. Lomonte P, Thomas J, Texier P, Caron C, Khochbin S, Epstein AL. Functional interaction between class II histone deacetylases and ICP0 of herpes simplex virus type 1. J Virol 2004;78:6744–6757.

    Article  PubMed  CAS  Google Scholar 

  75. Kao GD, McKenna WG, Guenther MG, Muschel RJ, Lazar MA, Yen TJ. Histone deacetylase 4 interacts with 53BP1 to mediate the DNA damage response. J Cell Biol 2003;160:1017–1027.

    Article  PubMed  CAS  Google Scholar 

  76. Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J, Kouzarides T. HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J 1999;18:5099–5107.

    Article  PubMed  CAS  Google Scholar 

  77. Zhao X, Ito A, Kane CD, et al. The modular nature of histone deacetylase HDAC4 confers phosphorylation-dependent intracellular trafficking. J Biol Chem 2001;276:35,042–35,048.

    Article  PubMed  CAS  Google Scholar 

  78. Miska EA, Langley E, Wolf D, Karlsson C, Pines J, Kouzarides T. Differential localization of HDAC4 orchestrates muscle differentiation. Nucleic Acids Res 2001;29:3439–3447.

    Article  PubMed  CAS  Google Scholar 

  79. Wang AH, Yang XJ. Histone deacetylase 4 possesses intrinsic nuclear import and export signals. Mol Cell Biol 2001;21:5992–6005.

    Article  PubMed  CAS  Google Scholar 

  80. McKinsey TA, Zhang C-L, Lu J, Olson EN. Signal-dependent nuclear export of a histone deacetylase regulates muscle diferentiation. Nature 2000;408: 106–111.

    Article  PubMed  CAS  Google Scholar 

  81. Woronicz JD, Lina A, Calnan BJ, Szychowski S, Cheng L, Winoto A. Regulation of the Nur77 orphan steroid receptor in activation-induced apoptosis. Mol Cell Biol 1995;15:6364–6376.

    PubMed  CAS  Google Scholar 

  82. Lu J, McKinsey TA, Zhang CL, Olson EN. Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell 2000;6:233–244.

    Article  PubMed  CAS  Google Scholar 

  83. Lu J, McKinsey TA, Nicol RL, Olson EN. Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci U S A 2000;97:4070–4075.

    Article  PubMed  CAS  Google Scholar 

  84. Passier R, Zeng H, Frey N, et al. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest 2000;105:1395–1406.

    Article  PubMed  CAS  Google Scholar 

  85. Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 2002;1 10:479–488.

    Article  Google Scholar 

  86. Vega RB, Harrison BC, Meadows E, et al. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol 2004;24:8374–8385.

    Article  PubMed  CAS  Google Scholar 

  87. Parra M, Kasler H, McKinsey TA, Olson EN, Verdin E. Protein kinase D1 phos-phorylates HDAC7 and induces its nuclear export after TCR activation. J Biol Chem 2005;280:13,762–13,770; epub Dec., 2004.

    Article  PubMed  CAS  Google Scholar 

  88. Marklund U, Lightfoot K, Cantrell D. Intracellular location and cell context-dependent function of protein kinase D. Immunity 2003;19:491–501.

    Article  PubMed  CAS  Google Scholar 

  89. Paroni G, Mizzau M, Henderson C, Del Sal G, Schneider C, Brancolini C. Caspase-dependent regulation of histone deacetylase 4 nuclear-cytoplasmic shuttling promotes apoptosis. Mol Biol Cell 2004;15:2804–2818.

    Article  PubMed  CAS  Google Scholar 

  90. Liu F, Dowling M, Yang XJ, Kao GD. Caspase-mediated specific cleavage of human histone deacetylase 4. J Biol Chem 2004;279:34,537–34,546.

    Google Scholar 

  91. Czubryt MP, McAnally J, Fishman GI, Olson EN. Regulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha ) and mitochondrial function by MEF2 and HDAC5. Proc Natl Acad Sci U S A 2003; 100:1711–1716.

    Article  PubMed  CAS  Google Scholar 

  92. Robyr D, Suka Y, Xenarios I, et al. Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 2002;109:437–446.

    Article  PubMed  CAS  Google Scholar 

  93. Wu J, Suka N, Carlson M, Grunstein M. TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast. Mol Cell 2001;7:117–126.

    Article  PubMed  CAS  Google Scholar 

  94. Fischle W, Emiliani S, Hendzel MJ, et al. A new family of human histone deacetylases related to Saccharomyces cerevisiae HDA1p. J Biol Chem 1999; 274:11,713–11,720.

    Article  PubMed  CAS  Google Scholar 

  95. Verdel A, Khochbin S. Identification of a new family of higher eukaryotic histone deacetylases. Coordinate expression of differentiation-dependent chromatin modifiers. J Biol Chem 1999;274:2440–2445.

    Article  PubMed  CAS  Google Scholar 

  96. Zhou X, Marks PA, Rifkind RA, Richon VM. Cloning and characterization of a histone deacetylase, HDAC9. Proc Natl Acad Sci U S A 2001;98: 10,572–10,577.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Kasler, H.G., Verdin, E. (2006). The Class IIa Histone Deacetylases. In: Verdin, E. (eds) Histone Deacetylases. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59745-024-3:129

Download citation

Publish with us

Policies and ethics