Skip to main content

The Therapeutic Use of Natural-Killer Cells in Hematological Malignancies

  • Chapter
Immunotherapy of Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1125 Accesses

Abstract

The role of natural-killer (NK) cells in the treatment of hematological malignancies has been investigated intensively during the past three decades. Until recently, the majority of research has focused on the use of in vitro or in vivo cytokine-expanded and -activated NK cells against autologous cancer cells, with generally disappointing results. The lack of observed efficacy of past attempts to harness the antitumor effect of NK cells can now be explained largely by inhibitory interactions between major histocompatibility complex class I molecules expressed on tumor cells and inhibitory receptors on NK cells. Better appreciation of how NK cells selectively recognize and kill target cells while sparing normal cells is evolving. Major families of cell surface receptors that inhibit and activate NK cells to lyse target cells have been characterized, including killer cell immunoglobulin-like receptors, C-type lectins, and natural cytotoxicity receptors. In addition, identification of NK cell receptor ligands and their expression on normal and transformed cells is becoming better elucidated. The improved understanding of NK cell receptor biology has paved the way for development of novel and rational clinical approaches to manipulating receptor-ligand interactions for immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Horowitz MM, Gacrle RP, Sondel PM, et al Graft-versus-leukemia reactions after bone marrow transplantation. Blood 1990; 75:555–562.

    PubMed  CAS  Google Scholar 

  2. Allavena P, Damia G, Colombo T, et al. Lymphokine-activated killer (LAK) and monocyte-mediated cytotoxicity on tumor cell lines resistant to antitumor agents. Cell Immunol 1989; 120:250–258.

    Article  PubMed  CAS  Google Scholar 

  3. Landay AL, Zarcone D, Grossi CE, et al. Relationship between target cell cycle and susceptibility to natural killer lysis. Cancer Res 1987; 47:2767–2670.

    PubMed  CAS  Google Scholar 

  4. Oshimi K, Oshimi Y, Akutsu M, et al. Cytotoxicity of interleukin 2-activated lymphocytes for leukemia and lymphoma cells. Blood 1986; 68:938–948.

    PubMed  CAS  Google Scholar 

  5. Robertson MJ, Ritz J. Biology and clinical relevance of human natural killer cells. Blood 1990; 76:2421–2438.

    PubMed  CAS  Google Scholar 

  6. Trinchieri G. Biology of natural killer cells. Adv Immunol 1989; 47:187–376.

    PubMed  CAS  Google Scholar 

  7. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol 2001; 22:633–640.

    Article  PubMed  CAS  Google Scholar 

  8. Cooper MA, Fehniger TA, Turner SC, et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 2001; 97:3146–3151.

    Article  PubMed  CAS  Google Scholar 

  9. Caligiuri MA, Zmuidzinas A, Manley TJ, et al. Functional consequences of interleukin 2 receptor expression on resting human lymphocytes. Identification of a novel natural killer cell subset with high affinity receptors. J Exp Med 1990; 171:1509–1526.

    Article  PubMed  CAS  Google Scholar 

  10. Baume DM, Robertson MJ, Levine H, et al. Differential responses to interleukin 2 define functionally distinct subsets of human natural killer cells. Eur J Immunol 1992; 22:1–6.

    Article  PubMed  CAS  Google Scholar 

  11. Caligiuri MA, Murray C, Robertson MJ, et al. Selective modulation of human natural killer cells in vivo after prolonged infusion of low dose recombinant interleukin 2. J Clin Invest 1993; 91:123–132.

    PubMed  CAS  Google Scholar 

  12. Nagler A, Lanier LL, Phillips JH. Constitutive expression of high affinity interleukin 2 receptors on human CD16-natural killer cells in vivo. J Exp Med 1990; 171:1527–1533.

    Article  PubMed  CAS  Google Scholar 

  13. Robertson MJ, Soiffer RJ, Wolf SF, et al. Response of human natural killer (NK) cells to NK cell stimulatory factor (NKSF): cytolytic activity and proliferation of NK cells are differentially regulated by NKSF. J Exp Med 1992; 175:779–788.

    Article  PubMed  CAS  Google Scholar 

  14. Mrozek E, Anderson P, Caligiuri MA. Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells. Blood 1996; 87:2632–2640.

    PubMed  CAS  Google Scholar 

  15. Fehniger TA, Caligiuri MA. Ontogeny and expansion of human natural killer cells: clinical implications. Int Rev Immunol 2001; 20:503–534.

    PubMed  CAS  Google Scholar 

  16. Fehniger TA, Caligiuri MA. Interleukin 15: biology and relevance to human disease. Blood 2001; 9:14–32.

    Article  Google Scholar 

  17. Fehniger TA, Cooper MA, Caligiuri MA. Interleukin-2 and interleukin-15: immunotherapy for cancer. Cytokine Growth Factor Rev 2002; 13:169–183.

    Article  PubMed  CAS  Google Scholar 

  18. Lim SH, Newland AC, Kelsey S, et al. Continuous intravenous infusion of high-dose recombinant interleukin-2 for acute myeloid leukaemia-a phase II study. Cancer Immunol Immunother 1992; 34:337–342.

    Article  PubMed  CAS  Google Scholar 

  19. Maraninchi D, Vey N, Viens P, et al. A phase II study of interleukin-2 in 49 patients with relapsed or refractory acute leukemia. Leuk Lymphoma 1998; 31:343–349.

    PubMed  CAS  Google Scholar 

  20. Meloni G, Foa R, Vignetti M, et al. Interleukin-2 may induce prolonged remissions in advanced acute myelogenous leukemia. Blood 1994; 84:2158–2163.

    PubMed  CAS  Google Scholar 

  21. Meloni G, Vignetti M, Andrizzi C, et al. Interleukin-2 for the treatment of advanced acute myelogenous leukemia patients with limited disease: updated experience with 20 cases. Leuk Lymphoma 1996; 21:429–435.

    PubMed  CAS  Google Scholar 

  22. Olive D, Chambost H, Sainty D, et al. Modifications of leukemic blast cells induced by in vivo highdose recombinant interleukin-2. Leukemia 1994; 8:1230–1235.

    PubMed  CAS  Google Scholar 

  23. Foa R, Meloni G, Tosti S, et al. Treatment of residual disease in acute leukemia patients with recombinant interleukin 2 (IL2): clinical and biological findings. Bone Marrow Transplant 1990; 6:98–102.

    PubMed  Google Scholar 

  24. Meloni G, Vignetti M, Pogliani E, et al. Interleukin-2 therapy in relapsed acute myelogenous leukemia. Cancer J Sci Am 1997; 3:S43–S47.

    PubMed  Google Scholar 

  25. Caligiuri MA, Murray C, Soiffer RJ, et al. Extended continuous infusion low-dose recombinant interleukin-2 in advanced cancer: prolonged immunomodulation without significant toxicity. J Clin Oncol 1991; 9:2110–2119

    PubMed  CAS  Google Scholar 

  26. Bernstein ZP, Porter MM, Gould M, et al. Prolonged administration of low-dose interleukin-2 in human immunodeficiency virus-associated malignancy results in selective expansion of innate immune effectors without significant clinical toxicity. Blood 1995; 86:3287–3294.

    PubMed  CAS  Google Scholar 

  27. Bernstein ZP, Khatri V, Poiesz B, et al. Phase I/II study of daily subcutaneous (sc) low dose interleukin-2 (IL-2) in AIDS-associated lymphomas (AIDS-NHL). Blood 1998; 92:625a.

    Google Scholar 

  28. Farag SS, George SL, Lee EJ, et al. Postremission therapy with low-dose interleukin 2 with or without intermediate pulse dose interleukin 2 therapy is well tolerated in elderly patients with acute myeloid leukemia: Cancer and Leukemia Group B study 9420. Clin Cancer Res 2002; 8:2812–2819.

    PubMed  CAS  Google Scholar 

  29. Cortes JE, Kantarjian HM, O’Brien S, et al. A pilot study of interleukin-2 for adult patients with acute myelogenous leukemia in first complete remission. Cancer 1999; 85:1506–1513.

    Article  PubMed  CAS  Google Scholar 

  30. Gisselbrecht C, Maraninchi D, Pico JL, et al. Interleukin-2 treatment in lymphoma: a phase II multicenter study. Blood 1994; 83:2081–2085.

    PubMed  CAS  Google Scholar 

  31. Duggan DB, Santarelli MT, Zamkoff K, et al. A phase II study of recombinant interleukin-2 with or without recombinant interferon-beta in non-Hodgkin’s lymphoma. A study of the Cancer and Leukemia Group B. J Immunother 1992; 12:115–122.

    Article  PubMed  CAS  Google Scholar 

  32. Blaise D, Attal M, Reiffers J, et al. Randomized study of recombinant interleukin-2 after autologous bone marrow transplantation for acute leukemia in first complete remission. Eur Cytokine Netw 2000; 11:91–98.

    PubMed  CAS  Google Scholar 

  33. Gonzalez-Barca E, Granena A, Fernandez-Sevilla A, et al. Low-dose subcutaneous interleukin-2 in patients with minimal residual lymphoid neoplasm disease. Eur J Haematol 1999; 62:231–238.

    Article  PubMed  CAS  Google Scholar 

  34. Raspadori D, Lauria F, Ventura MA, et al. Low doses of rIL2 after autologous bone marrow transplantation induce a “prolonged” immunostimulation of NK compartment in high-grade non-Hodgkin’s lymphomas. Ann Hematol 1995; 71:175–191.

    PubMed  CAS  Google Scholar 

  35. Vey N, Blaise D, Tiberghien P, et al. A pilot study of autologous bone marrow transplantation followed by recombinant interleukin-2 in malignant lymphomas. Leuk Lymphoma 1996; 21:107–114.

    PubMed  CAS  Google Scholar 

  36. Lauria F, Raspadori D, Ventura MA, et al. Immunologic and clinical modifications following low-dose subcutaneous administration of rIL-2 in non-Hodgkin’s lymphoma patients after autologous bone marrow transplantation. Bone Marrow Transplant 1996; 18:79–85.

    PubMed  CAS  Google Scholar 

  37. van Besien K, Margolin K, Champlin R, et al. Activity of interleukin-2 in non-Hodgkin’s lymphoma following transplantation of interleukin-2-activated autologous bone marrow or stem cells. Cancer J Sci Am 1997; 3:S54–S58.

    PubMed  Google Scholar 

  38. Storkus WJ, Alexander J, Payne JA, et al. Reversal of natural killing susceptibility in target cells expressing transfected class I HLA genes. Proc Natl Acad Sci USA 1989; 86:2361–2364.

    Article  PubMed  CAS  Google Scholar 

  39. Shimizu Y, DeMars R. Demonstration by class I gene transfer that reduced susceptibility of human cells to natural killer cell-mediated lysis is inversely correlated with HLA class I antigen expression. Eur J Immunol 1989; 19:447–451.

    Article  PubMed  CAS  Google Scholar 

  40. Zijlstra M, Auchincloss H Jr, Loring JM, et al. Skin graft rejection by beta 2-microglobulin-deficient mice. J Exp Med 1992; 175:885–893.

    Article  PubMed  CAS  Google Scholar 

  41. Malnati MS, Lusso P, Ciccone E, et al. Recognition of virus-infected cells by natural killer cell clones is controlled by polymorphic target cell elements. J Exp Med 1993; 178:961–969.

    Article  PubMed  CAS  Google Scholar 

  42. Moretta A, Bottino C, Pende D, et al. Identification of four subsets of human CD3-CD16+ natural killer (NK) cells by the expression of clonally distributed functional surface molecules: correlation between subset assignment of NK clones and ability to mediate specific alloantigen recognition. J Exp Med 1990; 172:1589–1598.

    Article  PubMed  CAS  Google Scholar 

  43. Mandelboim O, Reyburn HT, Vales-Gomez M, et al. Protection from lysis by natural killer cells of group 1 and 2 specificity is mediated by residue 80 in human histocompatibility leukocyte antigen C alleles and also occurs with empty major histocompatibility complex molecules. J Exp Med 1996; 184:913–922.

    Article  PubMed  CAS  Google Scholar 

  44. Biassoni R, Falco M, Cambiaggi A, et al. Amino acid substitutions can influence the natural killer (NK)-mediated recognition of HLA-C molecules. Role of serine-77 and lysine-80 in the target cell protection from lysis mediated by “group 2” or “group 1” NK clones. J Exp Med 1995; 182:605–609.

    Article  PubMed  CAS  Google Scholar 

  45. Winter CC, Gumperz JE, Parham P, et al. Direct binding and functional transfer of NK cell inhibitory receptors reveal novel patterns of HLA-C allotype recognition. J Immunol 1998; 161:571–577.

    PubMed  CAS  Google Scholar 

  46. Rojo S, Wagtmann N, Long EO. Binding of a soluble p70 killer cell inhibitory receptor to HLA-B*5101: requirement for all three p70 immunoglobulin domains. Eur J Immunol 1997; 27:568–571.

    Article  PubMed  CAS  Google Scholar 

  47. Gumperz JE, Barber LD, Valiante NM, et al. Conserved and variable residues within the Bw4 motif of HLA-B make separable contributions to recognition by the NKB1 killer cell-inhibitory receptor. J Immunol 1997; 158:5237–5241.

    PubMed  CAS  Google Scholar 

  48. Dohring C, Scheidegger D, Samaridis J, et al. A human killer inhibitory receptor specific for HLA-A1,2. J Immunol 1996; 156:3098–3101.

    PubMed  CAS  Google Scholar 

  49. Lanier LL. Activating and inhibitory NK cell receptors. Adv Exp Med Biol 1998; 452:13–18.

    PubMed  CAS  Google Scholar 

  50. Wilson MJ, Torkar M, Trowsdale J. Genomic organization of a human killer cell inhibitory receptor gene. Tissue Antigens 1997; 49:574–579.

    Article  PubMed  CAS  Google Scholar 

  51. Vilches C, Parham P. KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol 2002; 20:217–251.

    Article  PubMed  CAS  Google Scholar 

  52. Shilling HG, Guethlein LA, Cheng NW, et al. Allelic polymorphism synergizes with variable gene content to individualize human KIR genotype. J Immunol 2002; 168:2307–2315.

    PubMed  CAS  Google Scholar 

  53. Chang C, Rodriguez A, Carretero M, et al. Molecular characterization of human CD94: a type II membrane glycoprotein related to the C-type lectin superfamily. Eur J Immunol 1995; 25:2433–2437.

    Article  PubMed  CAS  Google Scholar 

  54. Braud VM, Allan DS, O’Callaghan CA, et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 1998; 391:795–799.

    Article  PubMed  CAS  Google Scholar 

  55. Borrego F, Ulbrecht M, Weiss EH, et al. Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis. J Exp Med 1998; 187:813–818.

    Article  PubMed  CAS  Google Scholar 

  56. Glienke J, Sobanov Y, Brostjan C, et al. The genomic organization of NKG2C, E, F, and D receptor genes in the human natural killer gene complex. Immunogenetics 1998; 48:163–173.

    Article  PubMed  CAS  Google Scholar 

  57. Sobanov Y, Glienke J, Brostjan C, et al. Linkage of the NKG2 and CD94 receptor genes to D12S77 in the human natural killer gene complex. Immunogenetics 1999; 49:99–105.

    Article  PubMed  CAS  Google Scholar 

  58. Shilling HG, McQueen KL, Cheng NW, et al. Reconstitution of NK cell receptor repertoire following HLA-matched hematopoietic cell transplantation. Blood 2003; 101:3730–3740.

    Article  PubMed  CAS  Google Scholar 

  59. Vales-Gomez M, Reyburn HT, Mandelboim M, et al. Kinetics of interaction of HLA-C ligands with natural killer cell inhibitory receptors. Immunity 1998; 9:337–344.

    Article  PubMed  CAS  Google Scholar 

  60. Vales-Gomez M, Reyburn HT, Erskine RA, et al. Kinetics and peptide dependency of the binding of the inhibitory NK receptor CD94/NKG2-A and the activating receptor CD94/NKG2-C to HLA-E. EMBO J 1999; 18:4250–4260.

    Article  PubMed  CAS  Google Scholar 

  61. Valiante NM, Uhrberg M, Shilling HG, et al Functionally and structurally distinct NK cell receptor repertoires in the peripheral blood of two human donors. Immunity 1997; 7:739–751.

    Article  PubMed  CAS  Google Scholar 

  62. Uhrberg M, Valiante NM, Shum BP, et al. Human diversity in killer cell inhibitory receptor genes. Immunity 1997; 7:753–763.

    Article  PubMed  CAS  Google Scholar 

  63. Moretta A, Bottino C, Vitale M, et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 2001; 19:197–223.

    Article  PubMed  CAS  Google Scholar 

  64. Bauer S, Groh V, Wu J, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA [see comment]. Science 1999; 285:727–729.

    Article  PubMed  CAS  Google Scholar 

  65. Pende D, Parolini S, Pessino A, et al. Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J Exp Med 1999; 190:1505–1516.

    Article  PubMed  CAS  Google Scholar 

  66. Sivori S, Vitale M, Morelli L, et al. p46, a novel natural killer cell-specific surface molecule that mediates cell activation. J Exp Med 1997; 186:1129–1136.

    Article  PubMed  CAS  Google Scholar 

  67. Vitale M, Bottino C, Sivori S, et al. NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J Exp Med 1998; 187:2065–2072.

    Article  PubMed  CAS  Google Scholar 

  68. Arnon TI, Lev M, Katz G, et al. Recognition of viral hemagglutinins by NKp44 but not by NKp30. Eur J Immunol 2001; 31:2680–2689.

    Article  PubMed  CAS  Google Scholar 

  69. Mandelboim O, Lieberman N, Lev M, et al. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 2001; 409:1055–1060.

    Article  PubMed  CAS  Google Scholar 

  70. Cantoni C, Bottino C, Vitale M, et al. NKp44, a triggering receptor involved in tumor cell lysis by activated human natural killer cells, is a novel member of the immunoglobulin superfamily. J Exp Med 1999; 189:787–796.

    Article  PubMed  CAS  Google Scholar 

  71. Pessino A, Sivori S, Bottino C, et al. Molecular cloning of NKp46: a novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. J Exp Med 1998; 188:953–960.

    Article  PubMed  CAS  Google Scholar 

  72. Pende D, Cantoni C, Rivera P, et al. Role of NKG2D in tumor cell lysis mediated by human NK cells: cooperation with natural cytotoxicity receptors and capability of recognizing tumors of nonepithelial origin. Eur J Immunol 2001; 31:1076–1086.

    Article  PubMed  CAS  Google Scholar 

  73. Bahram S. MIC genes: from genetics to biology. Adv Immunol 2000; 76:1–60.

    Article  PubMed  CAS  Google Scholar 

  74. Sutherland CL, Chalupny NJ, Schooley K, et al. UL16-binding proteins, novel MHC class I-related proteins, bind to NKG2D and activate multiple signaling pathways in primary NK cells. J Immunol 2002; 168:671–679.

    PubMed  CAS  Google Scholar 

  75. Groh V, Rhinehart R, Randolph-Habecker J, et al. Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol 2001; 2:255–260.

    Article  PubMed  CAS  Google Scholar 

  76. Wetzler M, Baer MR, Stewart SJ, et al. HLA class I antigen cell surface expression is preserved on acute myeloid leukemia blasts at diagnosis and at relapse. Leukemia 2001; 15:128–133.

    Article  PubMed  CAS  Google Scholar 

  77. Frohn C, Hoppner M, Schlenke P, et al. Anti-myeloma activity of natural killer lymphocytes. Br J Haematol 2002; 119:660–664.

    Article  PubMed  CAS  Google Scholar 

  78. Igarashi T, Srinivasan R, Wynberg J, et al. Generation of alloreactive NK cells with selective cytotoxicity to melanoma and renal cell carcinoma based on KIR-ligand incompatibility. Blood 2002; 100:73a.

    Google Scholar 

  79. Handgretinger R, Lang P, Schumm M, et al. Immuological aspects of haploidentical stem cell transplantation. Ann NY Acad Sci 2001; 938:340–357.

    Article  PubMed  CAS  Google Scholar 

  80. Koh CY, Blazar BR, George T, et al. Augmentation of antitumor effects by NK cell inhibitory receptor blockade in vitro and in vivo. Blood 2001; 97:3132–3137.

    Article  PubMed  CAS  Google Scholar 

  81. Clynes RA, Towers TL, Presta LG, et al. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 2000; 6:443–446.

    Article  PubMed  CAS  Google Scholar 

  82. Cartron G, Dacheux L, Salles G, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 2002; 99:754–758.

    Article  PubMed  CAS  Google Scholar 

  83. Kono K, Takahashi A, Ichihara F, et al. Impaired antibody-dependent cellular cytotoxicity mediated by herceptin in patients with gastric cancer. Cancer Res 2002; 62:5813–5817.

    PubMed  CAS  Google Scholar 

  84. Costello RT, Sivori S, Marcenaro E, et al. Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood 2002; 99:3661–3667.

    Article  PubMed  CAS  Google Scholar 

  85. Dabholkar M, Tatake R, Amin K, et al. Modulation of natural killer and antibody-dependent cellular cytotoxicity by interferon and interleukin-2 in chronic myeloid leukemia patients in remission. Oncology 1989; 46:123–137.

    PubMed  CAS  Google Scholar 

  86. Hank JA, Robinson RR, Surfus J, et al. Augmentation of antibody dependent cell-mediated cytotoxicity following in vivo therapy with recombinant interleukin 2. Cancer Res 1990; 50:5234–5239.

    PubMed  CAS  Google Scholar 

  87. Masucci G, Ragnhammar P, Wersall P, et al. Granulocyte-monocyte colony-stimulating-factor augments the interleukin-2-induced cytotoxic activity of human lymphocytes in the absence and presence of mouse or chimeric monoclonal antibodies (mAb 17-1A). Cancer Immunol Immunother 1990; 31:231–235.

    Article  PubMed  CAS  Google Scholar 

  88. Carson WE, Giri JG, Lindemann MJ, et al. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J Exp Med 1994; 180:1395–1403.

    Article  PubMed  CAS  Google Scholar 

  89. Carson WE, Parihar R, Lindemann MJ, et al. Interleukin-2 enhances the natural killer cell response to Herceptin-coated Her2/neu-positive breast cancer cells. Eur J Immunol 2001; 31:3016–3025.

    Article  PubMed  CAS  Google Scholar 

  90. Nguyen QH, Roberts RL, Ank BJ, et al. Interleukin (IL)-15 enhances antibody-dependent cellular cytotoxicity and natural killer activity in neonatal cells. Cell Immunol 1998; 185:83–92.

    Article  PubMed  CAS  Google Scholar 

  91. Friedberg JW, Neuberg D, Gribben JG, et al. Combination immunotherapy with rituximab and interleukin 2 in patients with relapsed or refractory follicular non-Hodgkin’s lymphoma. Br J Haematol 2002; 117:828–834.

    Article  PubMed  CAS  Google Scholar 

  92. Morgensztern D, Wolin M, Rosenblatt J. Interleukin-2 and rituximab in lymphoma: rationale and current trials. Biol Ther Lymphoma 2002; 5:12–14.

    Google Scholar 

  93. Ansell SM, Witzig TE, Kurtin PJ, et al. Phase 1 study of interleukin-12 in combination with rituximab in patients with B-cell non-Hodgkin lymphoma. Blood 2002; 99:67–74.

    Article  PubMed  CAS  Google Scholar 

  94. Farag SS, Flinn I, Lehman T, et al. FcgammaRIIIa an FcgammaIIa polymorphisms do not predict response to rituximab in B-cell chronic lymphocytic leukemia. Blood 2004; 103:1472–1474.

    Article  PubMed  CAS  Google Scholar 

  95. Kossman SE, Scheinberg DA, Jurcic JG, et al. A phase I trial of humanized monoclonal antibody HuM195 (anti-CD33) with low-dose interleukin 2 in acute myelogenous leukemia. Clin Cancer Res 1999; 5:2748–2755.

    PubMed  CAS  Google Scholar 

  96. Caron PC, Co MS, Bull MK, et al. Biological and immunological features of humanized M195 (anti-CD33) monoclonal antibodies. Cancer Res 1992; 52:6761–6767.

    PubMed  CAS  Google Scholar 

  97. Weng W, Levy R. Rituximab-induced antibody-dependent cellular cytotoxicity (ADCC) in follicular non-Hodgkin’s lymphoma. Blood 2002; 100:157a.

    Google Scholar 

  98. Ruggeri L, Capanni M, Casucci M, et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood 1999; 94:333–339.

    PubMed  CAS  Google Scholar 

  99. Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer call alloreactivity in mismatched hematopoietic transplants. Science 2002; 295:2097–3100.

    Article  PubMed  CAS  Google Scholar 

  100. Shlomchik WD, Couzens MS, Tang CB, et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 1999; 285:412–415.

    Article  PubMed  CAS  Google Scholar 

  101. Geibel S, Locatelli F, Maccario R, et al. Survival advantage with KIR ligand incompatibility in unrelated donor transplantation. Blood 2003; 102:814–819.

    Article  CAS  Google Scholar 

  102. Davies SM, Ruggeri L, DeFor T, et al. Evaluation of KIR ligand incompatibility in mismatched unrelated donor hematopoietic transplants. Killer immunoglobulin-like receptor. Blood 2002; 100:3825–3827.

    Article  PubMed  CAS  Google Scholar 

  103. Morishima Y, Yabe T, Inoko H, et al. Clinical significance of killer Ig-like receptor (KIR) on acute GVHD, rejection, and leukemia relapse in patients transplanted non-T cell depleted marrow from unrelated donors; roles of inhibitory KIR epitope matching and activating KIR genotype. Blood 2003; 102:153a.

    Google Scholar 

  104. Farag SS, Bacigalupo A, Dupont B, et al. The effect of killer immunoglobulin-like receptor (KIR) ligand incompatibility on outcome of unrelated donor bone marrow transplantation. Blood 2004; 104:127a.

    Article  Google Scholar 

  105. Miller JS, Xiao F, McCullar V, et al. NK cell killer immunoglobulin receptor reconstitution is diminished in recipients of unrelated donor transplants who receive unmanipulated (T-cell replete) marrow grafts. Blood 2003; 102:726a.

    Article  Google Scholar 

  106. Gagne K, Brizard G, Gueglio B, et al. Relevance of KIR gene polymorphisms in Bone Marrow Transplantation outcome. Hum Immunol 2002; 63:27–280.

    Article  Google Scholar 

  107. Farag SS, Fehniger TA, Ruggeri L, Velardi A, Caligiuri MA. Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood 2002; 100:1935–1947.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Farag, S.S., Caligiuri, M.A. (2006). The Therapeutic Use of Natural-Killer Cells in Hematological Malignancies. In: Disis, M.L. (eds) Immunotherapy of Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59745-011-1:415

Download citation

Publish with us

Policies and ethics