Skip to main content

Promising γ-Chain Cytokines for Cancer Immunotherapy

Interleukins-7, -15, and -21 as Vaccine Adjuvants, Growth Factors, and Immunorestoratives

  • Chapter
Immunotherapy of Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The molecular identification of a plethora of T-cell tumor antigens that can serve as targets for many human cancers, and the clinical development of techniques to administer tumor vaccines represent important advances toward the development of T-cell-specific immunotherapy for cancer. Despite this progress, current clinical results demonstrate that tumor vaccines, as single agents, are generally not potent enough to induce regression of existing tumors or long lasting enough to provide durable adjuvant benefit. Similarly, the full effectiveness of adoptive cellular therapies for cancer immunotherapy has not yet been realized because of difficulties in sustaining T-cells in vivo following adoptive transfer. Thus, the present challenge for the field of tumor immunology is to develop clinically applicable approaches for amplifying the T-cell-specific immunity induced by tumor vaccines and for augmenting survival of cells delivered in the context of adoptive therapies. The family of cytokines that signals through the common cytokine γ-chain (γc) demonstrates potent effects on T-cell development, expansion, and viability. Interleukin (IL)-2, a prototypic member of this family, has already demonstrated antitumor effects in some settings. However, recent studies have demonstrated that other members of the γc cytokine family possess characteristics that render them more favorable than IL-2 for amplifying T-cell-specific immunity toward tumors. IL-7, IL-15, and IL-21 have all shown promise in preclinical models of tumor immunotherapy. IL-7 is notable for its capacity to serve as an immunorestorative agent, as well as its ability to augment both CD4 and CD8 immune responses, with a particular capacity to amplify lowaffinity, subdominant immune responses that are characteristically induced by tumor antigens. IL-15 provides potent survival and differentiation signals to both CD8 memory cells and natural-killer cells, features that are likely to be translatable in the context of both tumor vaccines and adoptive immunotherapy. IL-21 is less well studied than IL-7 or IL-15, but appears able to amplify responses to other cytokines, especially IL-15, thus further augmenting effector and memory cell expansion. Thus, a large amount of preclinical data suggest that integration of one or several new γc cytokines into immunotherapy regimens for cancer will play an important role in moving this field closer to clinical efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004; 10:909–915.

    Article  PubMed  CAS  Google Scholar 

  2. Ku CC, Murakami M, Sakamoto A, Kappler J, Marrack P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 2000; 288:675–678.

    Article  PubMed  CAS  Google Scholar 

  3. Oh S, Berzofsky JA, Burke DS, Waldmann TA, Perera LP. Coadministration of HIV vaccine vectors with vaccinia viruses expressing IL-15 but not IL-2 induces long-lasting cellular immunity. Proc Natl Acad Sci USA 2003; 100:3392–3397.

    Article  PubMed  CAS  Google Scholar 

  4. Fry TJ, Mackall CL. The many faces of IL7: from lymphopoietic cytokine to modulator of peripheral T cell homeostasis. J Immunol 2005; 174:6571–6576.

    PubMed  CAS  Google Scholar 

  5. Boise LH, Minn AJ, June CH, Lindsten T, Thompson CB. Growth factors can enhance lymphocyte survival without committing the cell to undergo cell division. Proc Natl Acad Sci USA 1995; 92:5491–5495.

    Article  PubMed  CAS  Google Scholar 

  6. Vella A, Teague TK, Ihle J, Kappler J, Marrack P. Interleukin 4 (IL-4) or IL-7 prevents the death of resting T cells: Stat 6 is probably not required for the effect of IL-4. J Exp Med 1997; 186:325–330.

    Article  PubMed  CAS  Google Scholar 

  7. Rathmell JC, Farkash EA, Gao W, Thompson CB. IL-7 enhances the survival and maintains the size of naive T cells. J Immunol 2001; 167:6869–6876.

    PubMed  CAS  Google Scholar 

  8. Seddon B, Tomlinson P, Zamoyska R. Interleukin 7 and T cell receptor signals regulate homeostasis of CD4 memory cells. Nat Immunol 2003; 4:680–686.

    Article  PubMed  CAS  Google Scholar 

  9. Stutman O. Postthymic T cell development. Immunol Rev 1986; 91:159–194.

    Article  PubMed  CAS  Google Scholar 

  10. Mackall CL, Bare CV, Titus JA, Sharrow SO, Granger LA, Gress RE. Thymic-independent T cell regeneration occurs via antigen driven expansion of peripheral T cells resulting in a repertoire that is limited in diversity and prone to skewing. J Immunol 1996; 156:4609–4616.

    PubMed  CAS  Google Scholar 

  11. Goldrath AW, Bevan MJ. Low-affinity ligands for the TCR drive proliferation of mature CD8+ T cells in lymphopenic hosts. Immunity 1999; 11:183–190.

    Article  PubMed  CAS  Google Scholar 

  12. Ernst B, Lee DS, Chang JM, Sprent J, Surh CD. The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 1999; 11:173–181.

    Article  PubMed  CAS  Google Scholar 

  13. Viret C, Wong FS, Janeway CA Jr. Designing and maintaining the mature TCR repertoire: the continuum of self-peptide:self-MHC complex recognition. Immunity 1999; 10:559–568.

    Article  PubMed  CAS  Google Scholar 

  14. Fry TJ, Connick E, Falloon J, et al. A potential role for interleukin-7 in T-cell homeostasis. Blood 2001; 97:2983–2990.

    Article  PubMed  CAS  Google Scholar 

  15. Bolotin E, Annett G, Parkman R, Weinberg K. Serum levels of IL-7 in bone marrow transplant recipients: relationship to clinical characteristics and lymphocyte count. Bone Marrow Transplant 1999; 23:783–788.

    Article  PubMed  CAS  Google Scholar 

  16. Napolitano LA, Grant RM, Deeks SG, et al. Increased production of IL-7 accompanies HIV-1-mediated T-cell depletion: implications for T-cell homeostasis. Nat Med 2001; 7:73–79.

    Article  PubMed  CAS  Google Scholar 

  17. Kieper WC, Tan JT, Bondi-Boyd B, et al. Overexpression of interleukin (IL)-7 leads to IL-15-independent generation of memory phenotype CD8+ T cells. J Exp Med 2002; 195:1533–1539.

    Article  PubMed  CAS  Google Scholar 

  18. Tan JT, Ernst B, Kieper WC, LeRoy E, Sprent J, Surh CD. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J Exp Med 2002; 195:1523–1532.

    Article  PubMed  CAS  Google Scholar 

  19. Schluns KS, Kieper WC, Jameson SC, Lefrancois L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol 2000; 1:426–432.

    Article  PubMed  CAS  Google Scholar 

  20. Tan JT, Dudl E, LeRoy E, et al. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci USA 2001; 98:8732–8737.

    Article  PubMed  CAS  Google Scholar 

  21. Melchionda F, Fry TJ, Milliron MJ, McKirdy MA, Tagaya Y, Mackall CL. Adjuvant IL7 or IL15 overcomes immunodominance and improves survival of the CD8+ memory cell pool. J Clin Invest 2005; 115:1177–1187.

    Article  PubMed  CAS  Google Scholar 

  22. Bamford RN, Grant AJ, Burton JD, et al. The interleukin (IL) 2 receptor beta chain is shared by IL-2 and a cytokine, provisionally designated IL-T, that stimulates T-cell proliferation and the induction of lymphokine-activated killer cells. Proc Natl Acad Sci USA 1994; 91:4940–4944.

    Article  PubMed  CAS  Google Scholar 

  23. Burton JD, Bamford RN, Peters C, et al. A lymphokine, provisionally designated interleukin T and produced by a human adult T-cell leukemia line, stimulates T-cell proliferation and the induction of lymphokine-activated killer cells. Proc Natl Acad Sci USA 1994; 91:4935–4939.

    Article  PubMed  CAS  Google Scholar 

  24. Grabstein KH, Eisenman J, Shanebeck K, et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science 1994; 264:965–868.

    Article  PubMed  CAS  Google Scholar 

  25. Marks-Konczalik J, Dubois S, Losi JM, et al. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc Natl Acad Sci USA 2000; 97:11,445–11,4450.

    Article  PubMed  CAS  Google Scholar 

  26. Waldmann TA, Dubois S, Tagaya Y. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 2001; 14:105–110.

    PubMed  CAS  Google Scholar 

  27. Blauvelt A, Asada H, Klaus-Kovtun V, Altman DJ, Lucey DR, Katz SI. Interleukin-15 mRNA is expressed by human keratinocytes Langerhans cells, and blood-derived dendritic cells and is downregulated by ultraviolet B radiation. J Invest Dermatol 1996; 106:1047–1052.

    Article  PubMed  CAS  Google Scholar 

  28. Waldmann TA, Tagaya Y. The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu Rev Immunol 1999; 17:19–49.

    Article  PubMed  CAS  Google Scholar 

  29. Dubois S, Mariner J, Waldmann TA, Tagaya Y. IL-15Ralpha recycles and presents IL-15 In trans to neighboring cells. Immunity 2002; 17:537–547.

    Article  PubMed  CAS  Google Scholar 

  30. Lodolce JP, Burkett PR, Boone DL, Chien M, Ma A. T cell-independent interleukin 15Ralpha signals are required for bystander proliferation. J Exp Med 2001; 194:1187–1194.

    Article  PubMed  CAS  Google Scholar 

  31. Koka R, Burkett PR, Chien M, et al. Interleukin (IL)-15R[alpha]-deficient natural killer cells survive in normal but not IL-15R[alpha]-deficient mice. J Exp Med 2003; 197:977–984.

    Article  PubMed  CAS  Google Scholar 

  32. Burkett PR, Koka R, Chien M, Chai S, Boone DL, Ma A. Coordinate expression and trans presentation of interleukin (IL)-15Ralpha and IL-15 supports natural killer cell and memory CD8+ T cell homeostasis. J Exp Med 2004; 200:825–834.

    Article  PubMed  CAS  Google Scholar 

  33. Koka R, Burkett P, Chien M, Chai S, Boone DL, Ma A. Cutting edge: murine dendritic cells require IL-15R alpha to prime NK cells. J Immunol 2004; 173:3594–3598.

    PubMed  CAS  Google Scholar 

  34. Sandau MM, Schluns KS, Lefrancois L, Jameson SC. Cutting edge: transpresentation of IL-15 by bone marrow-derived cells necessitates expression of IL-15 and IL-15R alpha by the same cells. J Immunol 2004; 173:6537–6541.

    PubMed  CAS  Google Scholar 

  35. Oh S, Perera LP, Burke DS, Waldmann TA, Berzofsky JA. IL-15/IL-15Ralpha-mediated avidity maturation of memory CD8+ T cells. Proc Natl Acad Sci USA 2004; 101:15,154–15,159.

    Article  PubMed  CAS  Google Scholar 

  36. Kobayashi H, Dubois S, Sato N, et al. Role of trans-cellular IL-15 presentation in the activation of NK cell-mediated killing, which leads to enhanced tumor immunosurveillance. Blood 2005; 105:721–727.

    Article  PubMed  CAS  Google Scholar 

  37. Becker TC, Wherry EJ, Boone D, et al. Interleukin 15 is required for proliferative renewal of virusspecific memory CD8 T cells. J Exp Med 2002; 195:1541–1548.

    Article  PubMed  CAS  Google Scholar 

  38. Judge AD, Zhang X, Fujii H, Surh CD, Sprent J. Interleukin 15 controls both proliferation and survival of a subset of memory-phenotype CD8(+) T cells. J Exp Med 2002; 196:935–946.

    Article  PubMed  CAS  Google Scholar 

  39. Wu TS, Lee JM, Lai YG, et al. Reduced expression of Bcl-2 in CD8+ T cells deficient in the IL-15 receptor alpha-chain. J Immunol 2002; 168:705–712.

    PubMed  CAS  Google Scholar 

  40. Goldrath AW, Sivakumar PV, Glaccum M, et al. Cytokine requirements for acute and Basal homeostatic proliferation of naive and memory CD8+ T cells. J Exp Med 2002; 195:1515–1522.

    Article  PubMed  CAS  Google Scholar 

  41. Cooper MA, Bush JE, Fehniger TA, et al. In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood 2002; 100:3633–3638.

    Article  PubMed  CAS  Google Scholar 

  42. Ranson T, Vosshenrich CA, Corcuff E, Richard O, Muller W, Di Santo JP. IL-15 is an essential mediator of peripheral NK-cell homeostasis. Blood 2003; 101:4887–4893.

    Article  PubMed  CAS  Google Scholar 

  43. Ranson T, Vosshenrich CA, Corcuff E, et al. IL-15 availability conditions homeostasis of peripheral natural killer T cells. Proc Natl Acad Sci USA 2003; 100:2663–2668.

    Article  PubMed  CAS  Google Scholar 

  44. Dumoutier L, Van Roost E, Colau D, Renauld JC. Human interleukin-10-related T cell-derived inducible factor: molecular cloning and functional characterization as an hepatocyte-stimulating factor. Proc Natl Acad Sci USA 2000; 97:10,144–10,149.

    Article  PubMed  CAS  Google Scholar 

  45. Ozaki K, Kikly K, Michalovich D, Young PR, Leonard WJ. Cloning of a type I cytokine receptor most related to the IL-2 receptor beta chain. Proc Natl Acad Sci USA 2000; 97:11,439–11,444.

    Article  PubMed  CAS  Google Scholar 

  46. Parrish-Novak J, Dillon SR, Nelson A, et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 2000; 408:57–63.

    Article  PubMed  CAS  Google Scholar 

  47. Habib T, Senadheera S, Weinberg K, Kaushansky K. The common gamma chain (gamma c) is a required signaling component of the IL-21 receptor and supports IL-21-induced cell proliferation via JAK3. Biochemistry 2002; 41:8725–8731.

    Article  PubMed  CAS  Google Scholar 

  48. Asao H, Okuyama C, Kumaki S, et al. Cutting edge: the common gamma-chain is an indispensable subunit of the IL-21 receptor complex. J Immunol 2001; 167:1–5.

    PubMed  CAS  Google Scholar 

  49. Wurster AL, Rodgers VL, Satoskar AR, et al. Interleukin 21 is a T helper (Th) cell 2 cytokine that specifically inhibits the differentiation of naive Th cells into interferon gamma-producing Th1 cells. J Exp Med 2002; 196:969–977.

    Article  PubMed  CAS  Google Scholar 

  50. Mehta DS, Wurster AL, Weinmann AS, Grusby MJ. NFATc2 and T-bet contribute to T-helper-cellsubset-specific regulation of IL-21 expression. Proc Natl Acad Sci USA 2005; 102:2016–2021.

    Article  PubMed  CAS  Google Scholar 

  51. DiSanto JP, Muller W, Guy-Grand D, Fischer A, Rajewsky K. Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc Natl Acad Sci USA 1995; 92:377–381.

    Article  PubMed  CAS  Google Scholar 

  52. Lodolce JP, Burkett PR, Koka RM, Boone DL, Ma A. Regulation of lymphoid homeostasis by interleukin-15. Cytokine Growth Factor Rev 2002; 13:429–439.

    Article  PubMed  CAS  Google Scholar 

  53. Kasaian MT, Whitters MJ, Carter LL, et al. IL-21 limits NK cell responses and promotes antigen-specific T cell activation: a mediator of the transition from innate to adaptive immunity. Immunity 2002; 16:559–569.

    Article  PubMed  CAS  Google Scholar 

  54. Sivori S, Cantoni C, Parolini S, et al. IL-21 induces both rapid maturation of human CD34+ cell precursors towards NK cells and acquisition of surface killer Ig-like receptors. Eur J Immunol 2003; 33:3439–3447.

    Article  PubMed  CAS  Google Scholar 

  55. Brady J, Hayakawa Y, Smyth MJ, Nutt SL. IL-21 induces the functional maturation of murine NK cells. J Immunol 2004; 172:2048–2058.

    PubMed  CAS  Google Scholar 

  56. Wang G, Tschoi M, Spolski R, et al. In vivo antitumor activity of interleukin 21 mediated by natural killer cells. Cancer Res 2003; 63:9016–9022.

    PubMed  CAS  Google Scholar 

  57. Zeng R, Spolski R, Finkelstein SE, et al. Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J Exp Med 2005; 201:139–148.

    Article  PubMed  CAS  Google Scholar 

  58. van Leeuwen EM, Gamadia LE, Baars PA, Remmerswaal EB, ten Berge IJ, van Lier RA. Proliferation requirements of cytomegalovirus-specific, effector-type human CD8+ T cells. J Immunol 2002; 169:5838–5843.

    PubMed  Google Scholar 

  59. Strengell M, Matikainen S, Siren J, et al. IL-21 in synergy with IL-15 or IL-18 enhances IFN-gamma production in human NK and T cells. J Immunol 2003; 170:5464–5469.

    PubMed  CAS  Google Scholar 

  60. Strengell M, Sareneva T, Foster D, Julkunen I, Matikainen S. IL-21 up-regulates the expression of genes associated with innate immunity and Th1 response. J Immunol 2002; 169:3600–3605.

    PubMed  Google Scholar 

  61. Mehta DS, Wurster AL, Whitters MJ, Young DA, Collins M, Grusby MJ. IL-21 induces the apoptosis of resting and activated primary B-cells. J Immunol 2003; 170:4111–4118.

    PubMed  CAS  Google Scholar 

  62. Ozaki K, Spolski R, Ettinger R, et al. Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol 2004; 173:5361–5371.

    PubMed  CAS  Google Scholar 

  63. Ozaki K, Spolski R, Feng CG, et al. A critical role for IL-21 in regulating immunoglobulin production. Science 2002; 298:1630–1634.

    Article  PubMed  CAS  Google Scholar 

  64. Jin H, Carrio R, Yu A, Malek TR. Distinct activation signals determine whether IL-21 induces B cell costimulation, growth arrest, or Bim-dependent apoptosis. J Immunol 2004; 173:657–665.

    PubMed  CAS  Google Scholar 

  65. Gett AV, Sallusto F, Lanzavecchia A, Geginat J. T cell fitness determined by signal strength. Nat Immunol 2003; 4:355–360.

    Article  PubMed  CAS  Google Scholar 

  66. Iezzi G, Karjalainen K, Lanzavecchia A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 1998; 8:89–95.

    Article  PubMed  CAS  Google Scholar 

  67. Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol 2003; 4:1191–1198.

    Article  PubMed  CAS  Google Scholar 

  68. Ku CC, Murakami M, Sakamoto A, Kappler J, Marrack P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 2000; 288:675–758.

    Article  PubMed  CAS  Google Scholar 

  69. Kaech SM, Wherry EJ, Ahmed R. Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2002; 2:251–262.

    Article  PubMed  CAS  Google Scholar 

  70. Tan JT, Dudl E, LeRoy E, et al. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci USA 2001; 10:10.

    Google Scholar 

  71. Berard M, Brandt K, Bulfone-Paus S, Tough DF. IL-15 promotes the survival of naive and memory phenotype CD8+ T cells. J Immunol 2003; 170:5018–5026.

    PubMed  CAS  Google Scholar 

  72. Yajima T, Nishimura H, Ishimitsu R, et al. Overexpression of IL-15 in vivo increases antigen-driven memory CD8+ T cells following a microbe exposure. J Immunol 2002; 168:1198–1203.

    PubMed  CAS  Google Scholar 

  73. Maeurer MJ, Trinder P, Hommel G, et al. Interleukin-7 or interleukin-15 enhances survival of Mycobacterium tuberculosis-infected mice. Infect Immun 2000; 68:2962–2970.

    Article  PubMed  CAS  Google Scholar 

  74. Khan IA, Casciotti L. IL-15 prolongs the duration of CD8+ T cell-mediated immunity in mice infected with a vaccine strain of Toxoplasma gondii. J Immunol 1999; 163:4503–4509.

    PubMed  CAS  Google Scholar 

  75. Xin KQ, Hamajima K, Sasaki S, et al. IL-15 expression plasmid enhances cell-mediated immunity induced by an HIV-1 DNA vaccine. Vaccine 1999; 17:858–866.

    Article  PubMed  CAS  Google Scholar 

  76. Rubinstein MP, Kadima AN, Salem ML, Nguyen CL, Gillanders WE, Cole DJ. Systemic administration of IL-15 augments the antigen-specific primary CD8+ T cell response following vaccination with peptide-pulsed dendritic cells. J Immunol 2002; 169:4928–4935.

    PubMed  Google Scholar 

  77. Villinger F, Miller R, Mori K, et al. IL-15 is superior to IL-2 in the generation of long-lived antigen specific memory CD4 and CD8 T cells in rhesus macaques. Vaccine 2004; 22:3510–3521.

    Article  PubMed  CAS  Google Scholar 

  78. Kimura K, Nishimura H, Matsuzaki T, Yokokura T, Nimura Y, Yoshikai Y. Synergistic effect of interleukin-leukin-15 and interleukin-12 on antitumor activity in a murine malignant pleurisy model. Cancer Immunol Immunother 2000; 49:71–77.

    Article  PubMed  CAS  Google Scholar 

  79. Lasek W, Basak G, Switaj T, et al. Complete tumour regressions induced by vaccination with IL-12 gene-transduced tumour cells in combination with IL-15 in a melanoma model in mice. Cancer Immunol Immunother 2004; 53:363–372.

    Article  PubMed  CAS  Google Scholar 

  80. Di Carlo E, Comes A, Orengo AM, et al. IL-21 induces tumor rejection by specific CTL and IFN-gammadependent CXC chemokines in syngeneic mice. J Immunol 2004; 172:1540–1547.

    PubMed  Google Scholar 

  81. Ma HL, Whitters MJ, Konz RF, et al. IL-21 activates both innate and adaptive immunity to generate potent antitumor responses that require perforin but are independent of IFN-gamma. J Immunol 2003; 171:608–615.

    PubMed  CAS  Google Scholar 

  82. Kishida T, Asada H, Itokawa Y, et al. Interleukin (IL)-21 and IL-15 genetic transfer synergistically augments therapeutic antitumor immunity and promotes regression of metastatic lymphoma. Mol Ther 2003; 8:552–558.

    Article  PubMed  CAS  Google Scholar 

  83. Lynch DH, Namen AE, Miller RE. In vivo evaluation of the effects of interleukins 2, 4 and 7 on enhancing the immunotherapeutic efficacy of anti-tumor cytotoxic T lymphocytes. Eur J Immunol 1991; 21:2977–2985.

    Article  PubMed  CAS  Google Scholar 

  84. Wiryana P, Bui T, Faltynek CR, Ho RJ. Augmentation of cell-mediated immunotherapy against herpes simplex virus by interleukins: comparison of in vivo effects of IL-2 and IL-7 on adoptively transferred T cells. Vaccine 1997; 15:561–563.

    Article  PubMed  CAS  Google Scholar 

  85. Murphy WJ, Back TC, Conlon KC, et al. Antitumor effects of interleukin-7 and adoptive immunotherapy on human colon carcinoma xenografts. J Clin Invest 1993; 92:1918–1924.

    Article  PubMed  CAS  Google Scholar 

  86. Dummer W, Niethammer AG, Baccala R, et al. T cell homeostatic proliferation elicits effective antitumor autoimmunity. J Clin Invest 2002; 110:185–192.

    Article  PubMed  CAS  Google Scholar 

  87. Dudley ME, Wunderlich JR, Robbins PF, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002; 298:850–854.

    Article  PubMed  CAS  Google Scholar 

  88. Klebanoff CA, Finkelstein SE, Surman DR, et al. IL-15 enhances the in vivo antitumor activity of tumorreactive CD8+ T cells. Proc Natl Acad Sci USA 2004; 101:1969–1974.

    Article  PubMed  CAS  Google Scholar 

  89. Anichini A, Scarito A, Molla A, Parmiani G, Mortarini R. Differentiation of CD8+ T cells from tumorinvaded and tumor-free lymph nodes of melanoma patients: role of common gamma-chain cytokines. J Immunol 2003; 171:2134–2141.

    PubMed  CAS  Google Scholar 

  90. Brentjens RJ, Latouche JB, Santos E, et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med 2003; 9:279–286.

    Article  PubMed  CAS  Google Scholar 

  91. Zhang X, Sun S, Hwang I, Tough DF, Sprent J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 1998; 8:591–599.

    Article  PubMed  CAS  Google Scholar 

  92. Moroz A, Eppolito C, Li Q, Tao J, Clegg CH, Shrikant PA. IL-21 enhances and sustains CD8+ T cell responses to achieve durable tumor immunity: comparative evaluation of IL-2, IL-15, and IL-21. J Immunol 2004; 173:900–909.

    PubMed  CAS  Google Scholar 

  93. Roychowdhury S, May KF Jr, Tzou KS, et al. Failed adoptive immunotherapy with tumor-specific T cells: reversal with low-dose interleukin 15 but not low-dose interleukin 2. Cancer Res 2004; 64:8062–8067.

    Article  PubMed  CAS  Google Scholar 

  94. Ozdemir O, Ravindranath Y, Savasan S. Mechanisms of superior anti-tumor cytotoxic response of interleukin 15-induced lymphokine-activated killer cells. J Immunother 2005; 28:44–52.

    Article  PubMed  Google Scholar 

  95. Fry TJ, Moniuszko M, Creekmore S, et al. IL-7 therapy dramatically alters peripheral T-cell homeostasis in normal and SIV-infected nonhuman primates. Blood 2003; 101:2294–2299.

    Article  PubMed  CAS  Google Scholar 

  96. Moniuszko M, Fry T, Tsai WP, et al. Recombinant interleukin-7 induces proliferation of naive macaque CD4+ and CD8+ T cells in vivo. J Virol 2004; 78:9740–9749.

    Article  PubMed  CAS  Google Scholar 

  97. Alpdogan O, Eng JM, Muriglan SJ, et al. Interleukin-15 enhances immune reconstitution after allogeneic bone marrow transplantation. Blood 2005; 105:865–873.

    Article  PubMed  CAS  Google Scholar 

  98. Evans R, Fuller JA, Christianson G, Krupke DM, Troutt AB. IL-15 mediates anti-tumor effects after cyclophosphamide injection of tumor-bearing mice and enhances adoptive immunotherapy: the potential role of NK cell subpopulations. Cell Immunol 1997; 179:66–73.

    Article  PubMed  CAS  Google Scholar 

  99. Katsanis E, Xu Z, Panoskaltsis-Mortari A, Weisdorf DJ, Widmer MB, Blazar BR. IL-15 administration following syngeneic bone marrow transplantation prolongs survival of lymphoma bearing mice. Transplantation 1996; 62:872–875.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Fry, T.J., Mackall, C.L. (2006). Promising γ-Chain Cytokines for Cancer Immunotherapy. In: Disis, M.L. (eds) Immunotherapy of Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59745-011-1:397

Download citation

Publish with us

Policies and ethics