Skip to main content

Retroviral-Mediated Gene Transfer for Engineering Tumor-Reactive T-Cells

  • Chapter
  • 1135 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Immunotherapy for cancer has taken several approaches including vaccinating patients to elicit T-cell responses to tumor antigens and adoptive transfer of tumor-reactive T-cells to patients. Vaccination has historically been ineffective in generating objective clinical responses. Whereas adoptive cell transfer therapy has shown some promise, the difficulties in obtaining the large number of requisite tumor-reactive T-cells warrant investigation into alternate models of immunotherapy. A novel approach is the retroviral-mediated transfer of genes encoding recognition of tumor antigens into peripheral blood T-cells. By cloning genes for T-cell receptors that mediate antitumor reactivity and introducing them into a patient’s own T-cells, we can rapidly generate the large number of T-cells necessary for adoptive transfer therapy for any patient, regardless of the patient’s immune status.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boon T, Old LJ. Cancer tumor antigens. Curr Opin Immunol 1997; 9:681–683.

    PubMed  CAS  Google Scholar 

  2. Rosenberg SA, Yang JC, White DE, Steinberg SM. Durability of complete responses in patients with metastatic cancer treated with high-dose interleukin-2: identification of the antigens mediating response. Ann Surg 1998; 228:307–319.

    PubMed  CAS  Google Scholar 

  3. White CA, Weaver RL, Grillo-Lopez AJ. Antibody-targeted immunotherapy for treatment of malignancy. Annu Rev Med 2001; 52:125–145.

    PubMed  CAS  Google Scholar 

  4. Glennie MJ, Johnson PW. Clinical trials of antibody therapy. Immunol Today 2000; 21:403–410.

    PubMed  CAS  Google Scholar 

  5. Menard S, Tagliabue E, Campiglio M, Pupa SM. Role of HER2 gene overexpression in breast carcinoma. J Cell Physiol 2000; 182:150–162.

    PubMed  CAS  Google Scholar 

  6. Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 1987; 329:512–518.

    PubMed  CAS  Google Scholar 

  7. Rotzschke O, Falk K, Deres K, et al. Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature 1990; 348:252–254.

    PubMed  CAS  Google Scholar 

  8. van der Bruggen BP, Traversari C, Chomez P, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991; 254:1643–1647.

    PubMed  Google Scholar 

  9. Traversari C, van der Bruggen P, Luescher, IF, et al. A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J Exp Med 1992; 176:1453–1457.

    PubMed  CAS  Google Scholar 

  10. Coulie PG, Lehmann F, Lethe B, et al. A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc Natl Acad Sci USA 1995; 92:7976–7980.

    PubMed  CAS  Google Scholar 

  11. Kawakami Y, Eliyahu S, Delgado CH, et al. Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc Natl Acad Sci USA 1994; 91:3515–3519.

    PubMed  CAS  Google Scholar 

  12. Kawakami Y, Eliyahu S, Delgado CH, et al. Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci USA 1994; 91:6458–6462.

    PubMed  CAS  Google Scholar 

  13. Cox AL, Skipper J, Chen Y, et al. Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science 1994; 264:716–719.

    PubMed  CAS  Google Scholar 

  14. Wolfel T, Van Pel A, Brichard V, et al. Two tyrosinase nonapeptides recognized on HLA-A2 melanomas by autologous cytolytic T lymphocytes. Eur J Immunol 1994; 24:759–764.

    PubMed  CAS  Google Scholar 

  15. Correale P, Walmsley K, Nieroda C, et al. In vitro generation of human cytotoxic T lymphocytes specific for peptides derived from prostate-specific antigen. J Natl Cancer Inst 1997; 89:293–300.

    PubMed  CAS  Google Scholar 

  16. Renkvist N, Castelli C, Robbins PF, Parmiani G. A listing of human tumor antigens recognized by T cells. Cancer Immunol Immunother 2001; 50:3–15.

    PubMed  CAS  Google Scholar 

  17. Agus DB, Bunn PA Jr, Franklin W, Garcia M, Ozols RF. HER-2/neu as a therapeutic target in nonsmall cell lung cancer, prostate cancer, and ovarian cancer. Semin Oncol 2000; 27(Suppl 11):53–63.

    PubMed  CAS  Google Scholar 

  18. Ras E, van der Burg SH, Zegveld ST, et al. Identification of potential HLA-A *0201-restricted CTL epitopes derived from the epithelial cell adhesion molecule (Ep-CAM) and the carcinoembryonic antigen (CEA). Hum Immunol 1997; 53:81–89.

    PubMed  CAS  Google Scholar 

  19. Johnson PW. The therapeutic use of antibodies for malignancy. Transfus Clin Biol 2001; 8:255–259.

    PubMed  CAS  Google Scholar 

  20. Baselga J, Tripathy D, Mendelsohn J, et al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 1996; 14:737–744.

    PubMed  CAS  Google Scholar 

  21. Cobleigh MA, Vogel CL, Tripathy D, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 1999; 17:2639–2648.

    PubMed  CAS  Google Scholar 

  22. Stebbing J, Copson E, O’Reilly S. Herceptin (trastuzamab) in advanced breast cancer. Cancer Treat Rev 2 2000; 26:287–290.

    CAS  Google Scholar 

  23. Riethmuller G, Holz E, Schlimok G, et al. Monoclonal antibody therapy for resected Dukes’ C colorectal cancer: seven-year outcome of a multicenter randomized trial. J Clin Oncol 1998; 16:1788–1794.

    PubMed  CAS  Google Scholar 

  24. Coiffier B, Haioun C, Ketterer N, et al. Rituximab (anti-CD20 monoclonal antibody) for the treatment of patients with relapsing or refractory aggressive lymphoma: a multicenter phase II study. Blood 1998; 92:1927–1932.

    PubMed  CAS  Google Scholar 

  25. Nitschke L, Floyd H, Crocker PR. New functions for the sialic acid-binding adhesion molecule CD22, a member of the growing family of Siglecs. Scand J Immunol 2001; 53:227–234.

    PubMed  CAS  Google Scholar 

  26. Kaminski MS, Estes J, Zasadny KR, et al. Radioimmunotherapy with iodine (131)I tositumomab for relapsed or refractory B-cell non-Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience. Blood 2000; 96:1259–1266.

    PubMed  CAS  Google Scholar 

  27. Acres B, Paul S, Haegel-Kronenberger H, Calmels B, Squiban P. Therapeutic cancer vaccines. Curr Opin Mol Ther 2004; 6:40–47.

    PubMed  CAS  Google Scholar 

  28. Campoli M, Ferrone S. T-cell-based immunotherapy of melanoma: what have we learned and how can we improve? Expert Rev Vaccines 2004; 3:171–187.

    PubMed  CAS  Google Scholar 

  29. Brichard VG, Rard G. Melanoma vaccines: achievements and perspectives. Forum (Genova) 2003; 13:144–157.

    Google Scholar 

  30. Ridgway D. The first 1000 dendritic cell vaccinees. Cancer Invest 2003; 21:873–886.

    PubMed  Google Scholar 

  31. Arienti F, Sule-Suso J, Belli F, et al. Limited antitumor T cell response in melanoma patients vaccinated with interleukin-2 gene-transduced allogeneic melanoma cells. Hum Gene Ther 1996; 7:1955–1963.

    PubMed  CAS  Google Scholar 

  32. Chakraborty NG, Sporn JR, Tortora AF, et al. Immunization with a tumor-cell-lysate-loaded autologous-antigen-presenting-cell-based vaccine in melanoma. Cancer Immunol Immunother 1998; 47:58–64.

    PubMed  CAS  Google Scholar 

  33. Marchand M, van Baren N, Weynants P, et al. Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int J Cancer 1999; 80:219–230.

    PubMed  CAS  Google Scholar 

  34. Moller P, Sun Y, Dorbic T, et al. Vaccination with IL-7 gene-modified autologous melanoma cells can enhance the anti-melanoma lytic activity in peripheral blood of patients with a good clinical performance status: a clinical phase I study. Br J Cancer 1998; 77:1907–1916.

    PubMed  CAS  Google Scholar 

  35. Morton DL, Foshag LJ, Hoon DS, et al. Prolongation of survival in metastatic melanoma after active specific immunotherapy with a new polyvalent melanoma vaccine. Ann Surg 1992; 216:463–482.

    PubMed  CAS  Google Scholar 

  36. Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide-or tumor lysatepulsed dendritic cells. Nat Med 1998; 4:328–332.

    PubMed  CAS  Google Scholar 

  37. Rosenberg SA, Yang JC, Schwartzentruber DJ, et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 1998; 4:321–327.

    PubMed  CAS  Google Scholar 

  38. Soiffer R, Lynch T, Mihm M, et al. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc Natl Acad Sci USA 1998; 95:13,141–13,146.

    PubMed  CAS  Google Scholar 

  39. Rooney CM, Smith CA, Ng CY, et al. Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet 1995; 345:9–13.

    PubMed  CAS  Google Scholar 

  40. Comoli P, Labirio M, Basso S, et al. Infusion of autologous Epstein-Barr virus (EBV)-specific cytotoxic T cells for prevention of EBV-related lymphoproliferative disorder in solid organ transplant recipients with evidence of active virus replication. Blood 2002; 99:2592–2598.

    PubMed  CAS  Google Scholar 

  41. Rosenberg SA, Yannelli JR, Yang JC, et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst 1994; 86:1159–1166.

    PubMed  CAS  Google Scholar 

  42. Dudley ME, Wunderlich JR, Robbins PF, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002; 298:850–854.

    PubMed  CAS  Google Scholar 

  43. Figlin RA, Pierce WC, Kaboo R, et al. Treatment of metastatic renal cell carcinoma with nephrectomy, interleukin-2 and cytokine-primed or CD8(+) selected tumor infiltrating lymphocytes from primary tumor. J Urol 1997; 158(3 Pt 1):740–745.

    PubMed  CAS  Google Scholar 

  44. Dudley ME, Rosenberg SA. Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat Rev Cancer 2003; 3:666–675.

    PubMed  CAS  Google Scholar 

  45. Mule JJ, Shu S, Schwarz SL, Rosenberg SA. Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2. Science 1984; 225:1487–1489.

    PubMed  CAS  Google Scholar 

  46. Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med 1982; 155:1823–1841.

    PubMed  CAS  Google Scholar 

  47. Lum LG, LeFever AV, Treisman JS, Garlie NK, Hanson JP Jr. Immune modulation in cancer patients after adoptive transfer of anti-CD3/anti-CD28-costimulated T cells-phase I clinical trial. J Immunother 2001; 24:408–419.

    CAS  Google Scholar 

  48. Curti BD, Ochoa AC, Powers GC, et al. Phase I trial of anti-CD3-stimulated CD4+ T cells, infusional interleukin-2, and cyclophosphamide in patients with advanced cancer. J Clin Oncol 1998; 16:2752–2760.

    PubMed  CAS  Google Scholar 

  49. Chang AE, Li Q, Jiang G, Sayre DM, Braun TM, Redman BG. Phase II trial of autologous tumor vaccination, anti-CD3-activated vaccine-primed lymphocytes, and interleukin-2 in stage IV renal cell cancer. J Clin Oncol 2003; 21:884–890.

    PubMed  CAS  Google Scholar 

  50. Plautz GE, Bukowski RM, Novick AC, et al. T-cell adoptive immunotherapy of metastatic renal cell carcinoma. Urology 1999; 54:617–623.

    PubMed  CAS  Google Scholar 

  51. Meidenbauer N, Marienhagen J, Laumer M, et al. Survival and tumor localization of adoptively transferred Melan-A-specific T cells in melanoma patients. J Immunol 2003; 170:2161–2169.

    PubMed  CAS  Google Scholar 

  52. Rosenberg SA, Packard BS, Aebersold PM, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 1988; 319:1676–1680.

    PubMed  CAS  Google Scholar 

  53. Quattrocchi KB, Miller CH, Cush S, et al. Pilot study of local autologous tumor infiltrating lymphocytes for the treatment of recurrent malignant gliomas. J Neurooncol 1999; 45:141–157.

    PubMed  CAS  Google Scholar 

  54. Bakker AB, Schreurs MW, de Boer AJ, et al. Melanocyte lineage-specific antigen gp100 is recognized by melanoma-derived tumor-infiltrating lymphocytes. J Exp Med 1994; 179:1005–1009.

    PubMed  CAS  Google Scholar 

  55. Rosenberg SA, Aebersold P, Cornetta K, et al. Gene transfer into humans—immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 1990; 323:570–578.

    PubMed  CAS  Google Scholar 

  56. Eshhar Z. Tumor-specific T-bodies: towards clinical application. Cancer Immunol Immunother 1997; 45:131–136.

    PubMed  CAS  Google Scholar 

  57. Brocker T. Chimeric Fv-zeta or Fv-epsilon receptors are not sufficient to induce activation or cytokine production in peripheral T cells. Blood 2000; 96:1999–2001.

    PubMed  CAS  Google Scholar 

  58. Weijtens ME, Willemsen RA, Valerio D, Stam K, Bolhuis RL. Single chain Ig/gamma gene-redirected human T lymphocytes produce cytokines, specifically lyse tumor cells, and recycle lytic capacity. J Immunol 1996; 157:836–843.

    PubMed  CAS  Google Scholar 

  59. Stancovski I, Schindler DG, Waks T, Yarden Y, Sela M, Eshhar Z. Targeting of T lymphocytes to Neu/HER2-expressing cells using chimeric single chain Fv receptors. J Immunol 1993; 151:6577–6582.

    PubMed  CAS  Google Scholar 

  60. Moritz D, Wels W, Mattern J, Groner B. Cytotoxic T lymphocytes with a grafted recognition specificity for ERBB2-expressing tumor cells. Proc Natl Acad Sci USA 1994; 91:4318–4322.

    PubMed  CAS  Google Scholar 

  61. Hwu P, Shafer GE, Treisman J, et al. Lysis of ovarian cancer cells by human lymphocytes redirected with a chimeric gene composed of an antibody variable region and the Fc receptor gamma chain. J Exp Med 1993; 178:361–366.

    PubMed  CAS  Google Scholar 

  62. Fitzer-Attas CJ, Schindler DG, Waks T, Eshhar Z. Harnessing Syk family tyrosine kinases as signaling domains for chimeric single chain of the variable domain receptors: optimal design for T cell activation. J Immunol 1998; 160:145–154.

    PubMed  CAS  Google Scholar 

  63. Tran AC, Zhang D, Byrn R, Roberts MR. Chimeric zeta-receptors direct human natural killer (NK) effector function to permit killing of NK-resistant tumor cells and HIV-infected T lymphocytes. J Immunol 1995; 155:1000–1009.

    PubMed  CAS  Google Scholar 

  64. Roberts MR, Qin L, Zhang D, et al. Targeting of human immunodeficiency virus-infected cells by CD8+ T lymphocytes armed with universal T-cell receptors. Blood 1994; 84:2878–2889.

    PubMed  CAS  Google Scholar 

  65. Yun CO, Nolan KF, Beecham EJ, Reisfeld RA, Junghans RP. Targeting of T lymphocytes to melanoma cells through chimeric anti-GD3 immunoglobulin T-cell receptors. Neoplasia 2000; 2:449–459.

    PubMed  CAS  Google Scholar 

  66. Reinhold U, Liu L, Ludtke-Handjery HC, et al. Specific lysis of melanoma cells by receptor grafted T cells is enhanced by anti-idiotypic monoclonal antibodies directed to the scFv domain of the receptor. J Invest Dermatol 1999; 112:744–750.

    PubMed  CAS  Google Scholar 

  67. Abken H, Hombach A, Heuser C, Reinhold U. A novel strategy in the elimination of disseminated melanoma cells: chimeric receptors endow T cells with tumor specificity. Recent Results Cancer Res 2001; 158:249–264.

    PubMed  CAS  Google Scholar 

  68. Turatti F, Figini M, Alberti P, Willemsen RA, Canevari S, Mezzanzanica D. Highly efficient redirected anti-tumor activity of human lymphocytes transduced with a completely human chimeric immune receptor. J Gene Med 2004; 7:158–170.

    Google Scholar 

  69. Weijtens ME, Willemsen RA, van Krimpen BA, Bolhuis RL. Chimeric scFv/gamma receptor-mediated T-cell lysis of tumor cells is coregulated by adhesion and accessory molecules. Int J Cancer 1998; 77:181–187.

    PubMed  CAS  Google Scholar 

  70. Willemsen RA, Debets R, Hart E, Hoogenboom HR, Bolhuis RL, Chames P. A phage display selected fab fragment with MHC class I-restricted specificity for MAGE-A1 allows for retargeting of primary human T lymphocytes. Gene Ther 8:1601–1608.

    Google Scholar 

  71. Chames P, Willemsen RA, Rojas G, et al. TCR-like human antibodies expressed on human CTLs mediate antibody affinity-dependent cytolytic activity. J Immunol 2002; 169:1110–1118.

    PubMed  CAS  Google Scholar 

  72. Altenschmidt U, Kahl R, Moritz D, et al. Cytolysis of tumor cells expressing the Neu/erbB-2, erbB-3, and erbB-4 receptors by genetically targeted naive T lymphocytes. Clin Cancer Res 1996; 2:1001–1008.

    PubMed  CAS  Google Scholar 

  73. Darcy PK, Haynes NM, Snook MB, et al. Redirected perforin-dependent lysis of colon carcinoma by ex vivo genetically engineered CTL. J Immunol 2000; 164:3705–3712.

    PubMed  CAS  Google Scholar 

  74. Hwu P, Yang JC, Cowherd R, et al. In vivo antitumor activity of T cells redirected with chimeric antibody/ T-cell receptor genes. Cancer Res 1995; 55:3369–3373.

    PubMed  CAS  Google Scholar 

  75. Wang G, Chopra RK, Royal RE, Yang JC, Rosenberg SA, Hwu P. A T cell-independent antitumor response in mice with bone marrow cells retrovirally transduced with an antibody/Fc-gamma chain chimeric receptor gene recognizing a human ovarian cancer antigen. Nat Med 1998; 4:168–172.

    PubMed  CAS  Google Scholar 

  76. Geiger TL, Leitenberg D, Flavell RA. The TCR zeta-chain immunoreceptor tyrosine-based activation motifs are sufficient for the activation and differentiation of primary T lymphocytes. J Immunol 1999; 162:5931–5939.

    PubMed  CAS  Google Scholar 

  77. Shinkai Y, Ma A, Cheng HL, Alt FW. CD3 epsilon and CD3 zeta cytoplasmic domains can independently generate signals for T cell development and function. Immunity 1995; 2:401–411.

    PubMed  CAS  Google Scholar 

  78. Viola A, Lanzavecchia A. T cell activation determined by T cell receptor number and tunable thresholds. Science 1996; 273:104–106.

    PubMed  CAS  Google Scholar 

  79. Kalergis AM, Boucheron N, Doucey MA, et al. Efficient T cell activation requires an optimal dwelltime of interaction between the TCR and the pMHC complex. Nat Immunol 2001; 2:229–234.

    PubMed  CAS  Google Scholar 

  80. Davis MM, Boniface JJ, Reich Z, et al. Ligand recognition by alpha beta T cell receptors. Annu Rev Immunol 1998; 16:523–544.

    PubMed  CAS  Google Scholar 

  81. Jenkins MK. The ups and downs of T cell costimulation. Immunity 1994; 1:443–446.

    PubMed  CAS  Google Scholar 

  82. Beecham EJ, Ma Q, Ripley R, Junghans RP. Coupling CD28 co-stimulation to immunoglobulin T-cell receptor molecules: the dynamics of T-cell proliferation and death. J Immunother 2000; 23:631–642.

    PubMed  CAS  Google Scholar 

  83. Finney HM, Lawson AD, Bebbington CR, Weir AN. Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J Immunol 1998; 161:2791–2797.

    PubMed  CAS  Google Scholar 

  84. Krause A, Guo HF, Latouche JB, Tan C, Cheung NK, Sadelain M. Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. J Exp Med 1998; 188:619–626.

    PubMed  CAS  Google Scholar 

  85. Aruga A, Yamauchi K, Takasaki K, Furukawa T, Hanyu F. Induction of autologous tumor-specific cytotoxic T cells in patients with liver cancer. Characterizations and clinical utilization. Int J Cancer 1991; 49:19–24.

    PubMed  CAS  Google Scholar 

  86. Cole DJ, Weil DP, Shilyansky J, et al. Characterization of the functional specificity of a cloned T-cell receptor heterodimer recognizing the MART-1 melanoma antigen. Cancer Res 1995; 55:748–752.

    PubMed  CAS  Google Scholar 

  87. Hom SS, Rosenberg SA, Topalian SL. Specific immune recognition of autologous tumor by lymphocytes infiltrating colon carcinomas: analysis by cytokine secretion. Cancer Immunol Immunother 1993; 36:1–8.

    PubMed  CAS  Google Scholar 

  88. Ioannides CG, Fisk B, Tomasovic B, Pandita R, Aggarwal BB, Freedman RS. Induction of interleukin-2 receptor by tumor necrosis factor alpha on cultured ovarian tumor-associated lymphocytes. Cancer Immunol Immunother 1992; 35:83–91.

    PubMed  CAS  Google Scholar 

  89. Schwartzentruber DJ, Solomon D, Rosenberg SA, Topalian SL. Characterization of lymphocytes infiltrating human breast cancer: specific immune reactivity detected by measuring cytokine secretion. J Immunother 1992; 12:1–12.

    PubMed  CAS  Google Scholar 

  90. Schwartzentruber DJ, Stetler-Stevenson M, Rosenberg SA, Topalian SL. Tumor-infiltrating lymphocytes derived from select B-cell lymphomas secrete granulocyte-macrophage colony-stimulating factor and tumor necrosis factor-alpha in response to autologous tumor stimulation. Blood 1993; 82:1204–1211.

    PubMed  CAS  Google Scholar 

  91. Wahab ZA, Metzgar RS. Human cytotoxic lymphocytes reactive with pancreatic adenocarcinoma cells. Pancreas 1991; 6:307–317.

    PubMed  CAS  Google Scholar 

  92. Shilyansky J, Nishimura MI, Yannelli JR, et al. T-cell receptor usage by melanoma-specific clonal and highly oligoclonal tumor-infiltrating lymphocyte lines. Proc Natl Acad Sci USA 1994; 91:2829–2833.

    PubMed  CAS  Google Scholar 

  93. Kawakami Y, Eliyahu S, Sakaguchi K, et al. Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med 1994; 180:347–352.

    PubMed  CAS  Google Scholar 

  94. Calogero A, Hospers GA, Kruse KM, et al. Retargeting of a T cell line by anti MAGE-3/HLA-A2 alpha beta TCR gene transfer. Anticancer Res 2000; 20:1793–1799.

    PubMed  CAS  Google Scholar 

  95. Aarnoudse CA, Kruse M, Konopitzky R, Brouwenstijn N, Schrier PI. TCR reconstitution in Jurkat reporter cells facilitates the identification of novel tumor antigens by cDNA expression cloning. Int J Cancer 2002; 99:7–13.

    PubMed  CAS  Google Scholar 

  96. Clay TM, Custer MC, Sachs J, Hwu P, Rosenberg SA, Nishimura MI. Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity. J Immunol 1999; 163:507–513.

    PubMed  CAS  Google Scholar 

  97. Miller DG, Adam MA, Miller AD. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 1990; 10:4239–4242.

    PubMed  CAS  Google Scholar 

  98. Veillette A, Bookman MA, Horak EM, Bolen JB. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell 1988; 55:301–308.

    PubMed  CAS  Google Scholar 

  99. Blichfeldt E, Munthe LA, Rotnes JS, Bogen B. Dual T cell receptor T cells have a decreased sensitivity to physiological ligands due to reduced density of each T cell receptor. Eur J Immunol 1996; 26:2876–2884.

    PubMed  CAS  Google Scholar 

  100. Munthe LA, Blichfeldt E, Sollien A, Dembic Z, Bogen B. T cells with two Tcrbeta chains and reactivity to both MHC/idiotypic peptide and superantigen. Cell Immunol 1996; 170:283–290.

    PubMed  Google Scholar 

  101. Willemsen RA, Weijtens ME, Ronteltap C, et al. Grafting primary human T lymphocytes with cancer-specific chimeric single chain and two chain TCR. Gene Ther 2000; 7:1369–1377.

    PubMed  CAS  Google Scholar 

  102. Schaft N, Willemsen RA, de Vries J, et al. Peptide fine specificity of anti-glycoprotein 100 CTL is preserved following transfer of engineered TCR alpha beta genes into primary human T lymphocytes. J Immunol 2003; 170:2186–2194.

    PubMed  CAS  Google Scholar 

  103. Morgan RA, Dudley ME, Yu YY, et al. High efficiency TCR gene transfer into primary human lymphocytes affords avid recognition of melanoma tumor antigen glycoprotein 100 and does not alter the recognition of autologous melanoma antigens. J Immunol 2003; 171:3287–3295.

    PubMed  CAS  Google Scholar 

  104. Roszkowski JJ, Yu DC, Rubinstein MP, McKee MD, Cole DJ, Nishimura MI. CD8-independent tumor cell recognition is a property of the T cell receptor and not the T cell. J Immunol 2003; 170:2582–2589.

    PubMed  CAS  Google Scholar 

  105. Roszkowski JJ, Eiben GE, Kast WM, Yee C, Van Besien K, Nishimura MI. Simultaneous generation of CD8+ and CD4+ melanoma-reactive T cells by retroviral mediated transfer of a single T cell receptor. Cancer Res 2005; 15:1570–1576.

    Google Scholar 

  106. Stanislawski T, Voss RH, Lotz C, et al. Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nat Immunol 2001; 2:962–970.

    PubMed  CAS  Google Scholar 

  107. Orentas RJ, Roskopf SJ, Nolan GP, Nishimura MI. Retroviral transduction of a T cell receptor specific for an Epstein-Barr virus-encoded peptide. Clin Immunol 2001; 98:220–228.

    PubMed  CAS  Google Scholar 

  108. Gilboa E. How tumors escape immune destruction and what we can do about it. Cancer Immunol Immunother 1999; 48:382–385.

    PubMed  CAS  Google Scholar 

  109. Medema JP, de Jong J, Peltenburg LT, et al. Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc Natl Acad Sci USA 2001; 98:11,515–11,520.

    PubMed  CAS  Google Scholar 

  110. Medema JP, de Jong J, van Hall T, Melief CJ, Offringa R. Immune escape of tumors in vivo by expression of cellular FLICE-inhibitory protein. J Exp Med 1999; 190:1033–1038.

    PubMed  CAS  Google Scholar 

  111. Khong HT, Wang QJ, Rosenberg SA. Identification of multiple antigens recognized by tumor-infiltrating lymphocytes from a single patient: tumor escape by antigen loss and loss of MHC expression. J Immunother 2004; 27:184–190.

    PubMed  Google Scholar 

  112. Heemskerk MH, Hoogeboom M, Hagedoorn R, Kester MG, Willemze R, Falkenburg JH. Reprogramming of virus-specific T cells into leukemia-reactive T cells using T cell receptor gene transfer. J Exp Med 2004; 199:885–894.

    PubMed  CAS  Google Scholar 

  113. Langerman A, Callender GG, Nishimura MI. Retroviral transduction of peptide stimulated T cells can generate dual T cell receptor-expressing (bifunctional) T cells reactive with two defined antigens. J Transl Med 2:42.

    Google Scholar 

  114. Zeh HJ III, Perry-Lalley D, Dudley ME, Rosenberg SA, Yang JC. High-avidity CTLs for two self-antigens demonstrate superior in vitro and in vivo antitumor efficacy. J Immunol 1999; 162:989–994.

    PubMed  CAS  Google Scholar 

  115. Dudley ME, Nishimura MI, Holt AK, Rosenberg SA. Antitumor immunization with a minimal peptide epitope (G9-209-2M) leads to a functionally heterogeneous CTL response. J Immunother 1999; 22:288–298.

    PubMed  CAS  Google Scholar 

  116. Kerry SE, Buslepp J, Cramer LA, et al. Interplay between TCR affinity and necessity of coreceptor ligation: high-affinity peptide-MHC/TCR interaction overcomes lack of CD8 engagement. J Immunol 2003; 171:4493–4503.

    PubMed  CAS  Google Scholar 

  117. Nishimura MI, Avichezer D, Custer MC, et al. MHC class I-restricted recognition of a melanoma antigen by a human CD4+ tumor infiltrating lymphocyte. Cancer Res 1999; 59:6230–6238.

    PubMed  CAS  Google Scholar 

  118. Marzo AL, Kinnear BF, Lake RA, et al. Tumor-specific CD4+ T cells have a major “post-licensing” role in CTL mediated anti-tumor immunity. J Immunol 2000; 165:6047–6055

    PubMed  CAS  Google Scholar 

  119. Mattes J, Hulett M, Xie W, et al. Immunotherapy of cytotoxic T cell-resistant tumors by T helper 2 cells: an eotaxin and STAT6-dependent process. J Exp Med 2003; 197:387–393.

    PubMed  CAS  Google Scholar 

  120. Ossendorp F, Mengede E, Camps M, Filius R, Melief CJ. Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II-negative tumors. J Exp Med 1998; 187:693–702.

    PubMed  CAS  Google Scholar 

  121. Lu Z, Yuan L, Zhou X, Sotomayor E, Levitsky HI, Pardoll DM. CD40-independent pathways of T cell help for priming of CD8(+) cytotoxic T lymphocytes. J Exp Med 2000; 191:541–550.

    PubMed  CAS  Google Scholar 

  122. Yu P, Spiotto MT, Lee Y, Schreiber H, Fu YX. Complementary role of CD4+ T cells and secondary lymphoid tissues for cross-presentation of tumor antigen to CD8+ T cells. J Exp Med 2003; 197:985–995.

    PubMed  CAS  Google Scholar 

  123. Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H. The central role of CD4(+) T cells in the antitumor immune response. J Exp Med 1998; 188:2357–2368.

    PubMed  CAS  Google Scholar 

  124. Walter EA, Greenberg PD, Gilbert MJ, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 1995; 333:1038–1044.

    PubMed  CAS  Google Scholar 

  125. Gould DJ, Favorov P. Vectors for the treatment of autoimmune disease. Gene Ther 2003; 10:912–927.

    PubMed  CAS  Google Scholar 

  126. Yang Y, Li Q, Ertl HC, Wilson JM. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol 1995; 69:2004–2015.

    PubMed  CAS  Google Scholar 

  127. Miller AD, Rosman GJ. Improved retroviral vectors for gene transfer and expression. Biotechniques 1989; 7:980–986, 989.

    PubMed  CAS  Google Scholar 

  128. Treisman J, Hwu P, Minamoto S, et al. Interleukin-2-transduced lymphocytes grow in an autocrine fashion and remain responsive to antigen. Blood 1995; 85:139–145.

    PubMed  CAS  Google Scholar 

  129. Markowitz D, Goff S, Bank A. A safe packaging line for gene transfer: separating viral genes on two different plasmids. J Virol 1988; 62:1120–1124.

    PubMed  CAS  Google Scholar 

  130. Miller AD, Buttimore C. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol 1986; 6:2895–2902.

    PubMed  CAS  Google Scholar 

  131. Miller AD, Garcia JV, von Suhr N, Lynch CM, Wilson C, Eiden MV. Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J Virol 1991; 65:2220–2224.

    PubMed  CAS  Google Scholar 

  132. Jahner D, Stuhlmann H, Stewart CL, et al. De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature 1982; 298:623–628.

    PubMed  CAS  Google Scholar 

  133. Challita PM, Kohn DB. Lack of expression from a retroviral vector after transduction of murine hematopoietic stem cells is associated with methylation in vivo. Proc Natl Acad Sci USA 1994; 91:2567–2571.

    PubMed  CAS  Google Scholar 

  134. Svoboda J, Hejnar J, Geryk J, Elleder D, Vernerova Z. Retroviruses in foreign species and the problem of provirus silencing. Gene 261:181–188.

    Google Scholar 

  135. Ketteler R, Glaser S, Sandra O, Martens UM, Klingmuller U. Enhanced transgene expression in primitive hematopoietic progenitor cells and embryonic stem cells efficiently transduced by optimized retroviral hybrid vectors. Gene Ther 2002; 9:477–487.

    PubMed  CAS  Google Scholar 

  136. Agarwal M, Austin TW, Morel F, Chen J, Bohnlein E, Plavec I. Scaffold attachment region-mediated enhancement of retroviral vector expression in primary T cells. J Virol 1998; 72:3720–3728.

    PubMed  CAS  Google Scholar 

  137. Hawley RG, Lieu FH, Fong AZ, Hawley TS. Versatile retroviral vectors for potential use in gene therapy. Gene Ther 1994; 1:136–138.

    PubMed  CAS  Google Scholar 

  138. Dang Q, Auten J, Plavec I. Human beta interferon scaffold attachment region inhibits de novo methylation and confers long-term, copy number-dependent expression to a retroviral vector. J Virol 2000; 74:2671–2678.

    PubMed  CAS  Google Scholar 

  139. Emery DW, Yannaki E, Tubb J, Stamatoyannopoulos G. A chromatin insulator protects retrovirus vectors from chromosomal position effects. Proc Natl Acad Sci USA 2000; 97:9150–9155.

    PubMed  CAS  Google Scholar 

  140. Zufferey R, Donello JE, Trono D, Hope TJ. Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 1999; 73:2886–2892.

    PubMed  CAS  Google Scholar 

  141. Schambach A, Wodrich H, Hildinger M, Bohne J, Krausslich HG, Baum C. Context dependence of different modules for posttranscriptional enhancement of gene expression from retroviral vectors. Mol Ther 2000; 2:435–445.

    PubMed  CAS  Google Scholar 

  142. Koehne G, Gallardo HF, Sadelain M, O’Reilly RJ. Rapid selection of antigen-specific T lymphocytes by retroviral transduction. Blood 2000; 96:109–117.

    PubMed  CAS  Google Scholar 

  143. Abad JL, Serrano F, San Roman AL, Delgado R, Bernad A, Gonzalez MA. Single-step, multiple retroviral transduction of human T cells. J Gene Med 2002; 4:27–37.

    PubMed  Google Scholar 

  144. Vagner S, Galy B, Pyronnet S. Irresistible IRES. Attracting the translation machinery to internal ribosome entry sites. EMBO Rep 2001; 2:893–898.

    PubMed  CAS  Google Scholar 

  145. Sirven A, Pflumio F, Zennou V, et al. The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells. Blood 2000; 96:4103–4110.

    PubMed  CAS  Google Scholar 

  146. Woods NB, Fahlman C, Mikkola H, et al. Lentiviral gene transfer into primary and secondary NOD/SCID repopulating cells. Blood 2000; 96(12):3725–3733.

    PubMed  CAS  Google Scholar 

  147. Scherr M, Battmer K, Blomer U, et al. Lentiviral gene transfer into peripheral blood-derived CD34+ NOD/SCID-repopulating cells. Blood 2002; 99:709–712.

    PubMed  CAS  Google Scholar 

  148. Cavalieri S, Cazzaniga S, Geuna M, et al. Human T lymphocytes transduced by lentiviral vectors in the absence of TCR activation maintain an intact immune competence. Blood 2003; 102:497–505.

    PubMed  CAS  Google Scholar 

  149. Maurice M, Verhoeyen E, Salmon P, Trono D, Russell SJ, Cosset FL. Efficient gene transfer into human primary blood lymphocytes by surface-engineered lentiviral vectors that display a T cell-activating polypeptide. Blood 2002; 99:2342–2350.

    PubMed  CAS  Google Scholar 

  150. Zhou X, Cui Y, Huang X, et al. Lentivirus-mediated gene transfer and expression in established human tumor antigen-specific cytotoxic T cells and primary unstimulated T cells. Hum Gene Ther 2003; 14:1089–1105.

    PubMed  CAS  Google Scholar 

  151. Gyobu H, Tsuji T, Suzuki Y, et al. Generation and targeting of human tumor-specific Tc1 and Th1 cells transduced with a lentivirus containing a chimeric immunoglobulin T-cell receptor. Cancer Res 2004; 64:1490–1495.

    PubMed  CAS  Google Scholar 

  152. Korin YD, Zack JA. Progression to the G1b phase of the cell cycle is required for completion of human immunodeficiency virus type 1 reverse transcription in T cells. J Virol 1998; 72:3161–3168.

    PubMed  CAS  Google Scholar 

  153. Chao NJ, Rosenberg SA, Horning SJ. CEPP(B): an effective and well-tolerated regimen in poor-risk, aggressive non-Hodgkin’s lymphoma. Blood 1990; 76:1293–1298.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Roszkowski, J.J., Nishimura, M.I. (2006). Retroviral-Mediated Gene Transfer for Engineering Tumor-Reactive T-Cells. In: Disis, M.L. (eds) Immunotherapy of Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59745-011-1:213

Download citation

Publish with us

Policies and ethics