Skip to main content

Tumor-Reactive T-Cells for Adoptive Immunotherapy

  • Chapter
Immunotherapy of Cancer

Abstract

Adoptive T-cell therapy is based on specificity and efficacy, two essentials known to be necessary for successful cancer therapy. Tumor-reactive T-cells potentially display both characteristics in terms of antigen recognition and antitumor activity. In recent years, novel technologies have been established for the identification, isolation, activation, and expansion of human T-cells, which have greatly facilitated the further development of adoptive T-cell transfer regimens. Lessons learned from the first clinical trials revealed that the complexity of the in vivo environment interferes with the efficacy of transferred T-cells, such as tolerance induction and outgrowth of tumor escape variants. The results from these studies can be concluded by the following critical, but nevertheless encouraging, statement: “Tumor regressions observed after adoptive Tcell transfer are too frequent to be spontaneous.” As these trials are not solely conducted for treating cancer patients, but also for research on human beings, the resulting scientific observations have increased our understanding of T-cell activation, homing, and survival, as well as of the possibility of disrupting regulatory mechanisms. The knowledge drawn from the first generation of transfer studies can be implemented in the next generation of clinical trials. T-cell-based immunotherapy regimens are currently being combined with other immunological strategies in order to coordinate an effective attack against tumors. Further development of combinatorial therapies involving immunological and molecular technologies will offer the means to tailor adoptive transfer of T-cell immunity for each cancer patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gromet MA, Epstein WL, Blois MS. The regressing thin malignant melanoma: a distinctive lesion with metastatic potential. Cancer 1978; 42:2282–2292.

    Article  PubMed  CAS  Google Scholar 

  2. Old LJ. Cancer immunology: the search for specificity. Cancer Res 1981; 41:361–375.

    PubMed  CAS  Google Scholar 

  3. Knuth A, Danowski B, Oettgen HF, Old LJ. T-cell mediated cytotoxicity against autologous malignant melanoma: analysis with interleukin-2-dependent T-cell cultures. Proc Natl Acad Sci USA 1984; 81:3511–3515.

    Article  PubMed  CAS  Google Scholar 

  4. Lee PP, Yee C, Savage PA, et al. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 1999; 5:677–685.

    Article  PubMed  CAS  Google Scholar 

  5. Pittet MJ, Zippelius A, Speiser DE, et al. Ex vivo IFN-γ secretion by circulating CD8 lymphocytes: implications of a novel approach for T cell monitoring in infectious and malignant diseases. J Immunol 2001; 166:7634–7640.

    PubMed  CAS  Google Scholar 

  6. Ridge JP, DiRosa F, Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 1998; 303:474–478.

    Article  CAS  Google Scholar 

  7. Stuhler G, Zobywalski A, Grünebach F, et al. Immune regulatory loops determine productive interactions within human T lymphocyte-dendritic cell clusters. Proc Natl Acad Sci USA 1999; 96:1532–1535.

    Article  PubMed  CAS  Google Scholar 

  8. Gilboa E. The makings of a tumor rejection antigen. Immunity 1999; 11:263–270.

    Article  PubMed  CAS  Google Scholar 

  9. Renkvist N, Castelli C, Robbins PF, Parmiani G. A listing of human tumor antigens recognized by T cells. Cancer Immunol Immunother 2001; 50:3–15.

    Article  PubMed  CAS  Google Scholar 

  10. Bollard CM, Aguilar L, Straathof KC, et al. Cytotoxic T lymphocyte therapy for Epstein-Barr virus Hodgkin’s disease. J Exp Med 2004; 200:1623–1633.

    Article  PubMed  CAS  Google Scholar 

  11. Coulie PG, Brichard V, VanPel A, et al. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 1994; 180:35–42.

    Article  PubMed  CAS  Google Scholar 

  12. Slamon DJ, Clark GM. Amplification of c-erbB-2 and aggressive human breast tumors. Science 1988; 240:1795–1798.

    Article  PubMed  CAS  Google Scholar 

  13. Gotter J, Brors B, Hergenhahn M, Kyewski B. Medullary epithelial cells of the human thymus express a highly diverse selection of tissue-specific genes colocalized in chromosomal clusters. J Exp Med 2004; 199:155–166.

    Article  PubMed  CAS  Google Scholar 

  14. Wölfel T, Hauer M, Schneider J, et al. A p16INK-4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 1995; 269:1281–1284.

    Article  PubMed  Google Scholar 

  15. Bendle GM, Holler A, Pang L-K, et al. Induction of unresponsiveness limits tumor protection by adoptively transferred MDM2-specific cytotoxic T lymphocytes. Cancer Res 2004; 64:8052–8056.

    Article  PubMed  CAS  Google Scholar 

  16. Nanda NK, Sercarz EE. Induction of anti-self-immunity to cure cancer. Cell 1995; 82:13–17.

    Article  PubMed  CAS  Google Scholar 

  17. Dudley ME, Wunderlich JR, Robbins PF, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002; 298:850–854.

    Article  PubMed  CAS  Google Scholar 

  18. Huang J, El-Gamil M, Dudley ME, Li YF, Rosenberg SA, Robbins PF. T cells associated with tumor regression recognize frameshift products of the CDKN2A tumor suppressor gene locus and a mutated HLA class I gene product. J Immunol 2004; 172:6057–6064.

    PubMed  CAS  Google Scholar 

  19. Yee C, Thompson JA, Byrd D, et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: In vivo persistence, migration, and antitumor effect of transferred T cells. PNAS 2002; 99:16,168–16,173.

    Article  PubMed  CAS  Google Scholar 

  20. Yee C, Thompson JA, Roche P, et al. Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of T cell-mediated vitiligo. J Exp Med 2000; 192:1637–1643.

    Article  PubMed  CAS  Google Scholar 

  21. Kolb HJ, Mittermüller J, Clemm C, et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 1990; 76:2462–2465.

    PubMed  CAS  Google Scholar 

  22. Goulmy E. Human histocompatibility antigens: new concepts for marrow transplantation and adoptive immunotherapy. Immunol Rev 1997; 157:125–140.

    Article  PubMed  CAS  Google Scholar 

  23. Marijt WA, Heemskerk MHM, Kloosterboer FM, et al. Hematopoiesis-restricted minor histocompatibility antigens HA-1-or HA-2-specific T cells can induce complete remissions of relapsed leukemia. PNAS 2003; 100:2742–2747.

    Article  PubMed  CAS  Google Scholar 

  24. Disis ML, Grabstein KH, Sleath PR, Cheever MA. Generation of immunity to the HER-2/neu oncogenic protein in patients with breast and ovarian cancer using a peptide-based vaccine. Clin Cancer Res 1999; 5:1289–1297.

    PubMed  CAS  Google Scholar 

  25. Germeau C, Ma W, Schiavetti F, et al. High frequency of antitumor T cells in the blood of melanoma patients before and after vaccination with tumor antigens. J Exp Med 2005; 201:241–248.

    Article  PubMed  CAS  Google Scholar 

  26. Khong HT, Restifo NP. Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol 2002; 3:999–1005.

    Article  PubMed  CAS  Google Scholar 

  27. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immuno-surveillance to tumor escape. Nat Immunol 2002; 3:991–998.

    Article  PubMed  CAS  Google Scholar 

  28. Altman JD, Moss PA, Goulder PJ, et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 1996; 274:94–96.

    Article  PubMed  CAS  Google Scholar 

  29. Busch DH, Philip IM, Vijh S, Pamer EG. Coordinate regulation of complex T cell populations responding to bacterial infection. Immunity 1998; 8:353–362.

    Article  PubMed  CAS  Google Scholar 

  30. Whelan JA, Dunbar PR, Price DA, et al. Specificity of CTL interactions with peptide-MHC class I tetrameric complexes is temperature dependent. J Immunol 1999; 163:4342–4348.

    PubMed  CAS  Google Scholar 

  31. Daniels MA, Jameson SC. Critical role for CD8 in T cell receptor binding and activation by peptide/major histocompatibility complex multimers. J Exp Med 2000; 191:335–345.

    Article  PubMed  CAS  Google Scholar 

  32. Knabel M, Franz TJ, Schiemann M, et al. Reversible MHC multimer staining for functional isolation of T-cell populations and effective adoptive transfer. Nat Med 2002; 8:631–637.

    Article  PubMed  CAS  Google Scholar 

  33. Bernhard H, Schmidt B, Busch DH, Peschel C. Isolation and expansion of tumor-reactive cytotoxic T cell clones for adoptive immunotherapy. In: Ludewig B, Hoffmann MW, eds. Adoptive Immunotherapies: Methods and Protocols, Methods Molecular Medicine, Volume 109. Totowa, NJ: Humana Press. 2005: pp. 175–184.

    Google Scholar 

  34. Inaba K, Metlay JP, Crowley MT, Steinman RM. Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ. J Exp Med 1990; 172:631–640.

    Article  PubMed  CAS  Google Scholar 

  35. Belz GT, Carbone FR, Heath WR. Cross-presentation of antigens by dendritic cells. Crit Rev Immunol 2002; 22:439–448.

    PubMed  CAS  Google Scholar 

  36. Meyer zum Büschenfelde C, Nicklisch N, Rose-John S, Peschel C, Bernhard H. Generation of tumorreactive cytotoxic T lymphocytes against the tumor-associated antigen HER2 using retrovirally transduced dendritic cells derived from CD34+ hemopoietic progenitor cells. J Immunol 2000; 165:4133–4140.

    PubMed  Google Scholar 

  37. Ossendorp F, Mengedé E, Camps M, Filius R, Melief CJM. Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J Exp Med 1998; 187:693–702.

    Article  PubMed  CAS  Google Scholar 

  38. Meyer zum Büschenfelde C, Metzger J, Hermann C, Nicklisch N, Peschel C, Bernhard H. The generation of both T killer and T helper cell clones specific for the tumor-associated antigen HER2 using retrovirally transduced dendritic cells. J Immunol 2001; 167:1712–1719.

    Google Scholar 

  39. Schuler-Thurner B, Dieckmann D, Keikavoussi P, et al. Mage-3 and influenza-matrix peptide-specific cytotoxic T cells are inducible in terminal stage HLA-A2.1+ melanoma patients by mature monocytederived dendritic cells. J Immunol 2000; 165:3492–3496.

    PubMed  CAS  Google Scholar 

  40. Bernhard H, Knutson KL, Salazarm L, Schiffman K, Disis ML. Vaccination against the HER-2/neu oncogenic protein. Endocr Relat Cancer 2002; 9:33–44.

    Article  PubMed  CAS  Google Scholar 

  41. Palmer DC, Balasubramaniam S, Hanada K, et al. Vaccine-stimulated, adoptively transferred CD8+ T cells traffic indiscriminately and ubiquitously while mediating specific tumor destruction. J Immunol 2004; 173:7209–7216.

    PubMed  CAS  Google Scholar 

  42. Lurquin C, Lethé B, De Plaen E, et al. Contrasting frequencies of antitumor and anti-vaccine T cells in metastases of a melanoma patient vaccinated with MAGE tumor antigen. J Exp Med 2005; 201:249–257

    Article  PubMed  CAS  Google Scholar 

  43. Rosenberg SA, Lotze MT, Muul LM, et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin 2 or high-dose interleukin 2 alone. N Engl J Med 1987; 316:889–897.

    Article  PubMed  CAS  Google Scholar 

  44. Radoja S, Saio M, Schaer D, Koneru M, Vukmanovic S, Frey AB. CD8+ tumor-infiltrating T cells are deficient in perforin-mediated cytolytic activity due to defective microtubule-organizing center mobilization and lytic granule exocytosis. J Immunol 2001; 167:5042–5051.

    PubMed  CAS  Google Scholar 

  45. Kolenko V, Wang Q, Riedy MC, et al. Tumor-induced suppression of T lymphocyte proliferation coincides with inhibition of Jak3 expression and IL-2 receptor signaling: role of soluble products from human renal cell carcinomas. J Immunol 1997; 159:3057–3067.

    PubMed  CAS  Google Scholar 

  46. Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 1992; 257:238–241.

    Article  PubMed  CAS  Google Scholar 

  47. Berger C, Huang M-L, Gough M, Greenberg PD, Riddell SR, Kiem H-P. Nonmyeloablative immunosuppressive regimen prolongs in vivo persistence of gene-modified autologous T cells in a nonhuman primate model. J Virol 2000; 75:799–808.

    Article  Google Scholar 

  48. Riddell SR. Finding a place for tumor-specific T cells in targeted cancer therapy. J Exp Med 2004; 200:1533–1537.

    Article  PubMed  CAS  Google Scholar 

  49. Schumacher TNM. T-cell-receptor gene therapy. Nat Rev Immunol 2002; 2:512–519.

    Article  PubMed  CAS  Google Scholar 

  50. Engels B, Cam H, Schuler T, et al. Retroviral vectors for high-level transgene expression in T lymphocytes. Hum Gene Ther 2003; 14:1155–1168.

    Article  PubMed  CAS  Google Scholar 

  51. Morgan RA, Dudley ME, Yu YYL, et al. High efficiency TCR gene transfer into primary human lymphocytes affords avid recognition of melanoma tumor antigen glycoprotein 100 and does not alter the recognition of autologous melanoma antigens. J Immunol 2003; 171:3287–3295.

    PubMed  CAS  Google Scholar 

  52. Clay TM, Custer MC, Sachs J, Hwu P, Rosenberg SA, Nishimura MI. Efficient transfer of a tumor antigenreactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity. J Immunol 1999; 163:507.

    PubMed  CAS  Google Scholar 

  53. Sadovnikova E, Jopling LA, Soo KS, Stauss HJ. Generation of human tumor-reactive cytotoxic T cells against peptides presented by non-self HLA class I molecules. Eur J Immunol 1998; 28:193–200.

    Article  PubMed  CAS  Google Scholar 

  54. Stanislawski T, Voss R-H, Lotz C, et al. Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nat Immunol 2001; 2:962–970.

    Article  PubMed  CAS  Google Scholar 

  55. Whitelegg A, Barber LD. The structural basis of T-cell allorecognition. Tissue Antigens 2004; 63:101–108.

    Article  PubMed  CAS  Google Scholar 

  56. Rossig C, Brenner MK. Chimeric T-cell receptors for the targeting of cancer cells. Acta Haematol 2003; 110:154–159.

    Article  PubMed  Google Scholar 

  57. Teng MW, Kershaw MH, Moeller M, Smyth MJ, Darcy PK. Immunotherapy of cancer using systemically delivered gene-modified human T lymphocytes. Hum Gene Ther 2004; 15:699–708.

    Article  PubMed  CAS  Google Scholar 

  58. Madakamutil LT, Christen U, Lena CJ, et al. CD8α-mediated survival and differentiation of CD8 memory T cell precursors. Science 2004; 304:590–593.

    Article  PubMed  CAS  Google Scholar 

  59. Powell DJ, Dudley ME, Robbins PF, Rosenberg SA. Transition of late-stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy. Blood 2005; 105:241–250.

    Article  PubMed  CAS  Google Scholar 

  60. Huster KM, Busch V, Schiemann M, et al. Selective expression of IL-7 receptor on memory T cells identifies early CD40L-dependent generation of distinct CD8+ memory T cell subsets. PNAS 2004; 101:5610–5615.

    Article  PubMed  CAS  Google Scholar 

  61. Blattman JN, Greenberg PD. Cancer immunotherapy: a treatment for the masses. Science 2004; 305:200–205.

    Article  PubMed  CAS  Google Scholar 

  62. Ganss R, Arnold B, Hämmerling GJ. Overcoming tumor-intrinsic resistance to immune effector function. Eur J Immunol 2004; 34:2635–2641.

    Article  PubMed  CAS  Google Scholar 

  63. Walter EA, Greenberg PD, Gilbert MJ, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 1995; 333:1038–1044.

    Article  PubMed  CAS  Google Scholar 

  64. Zeng R, Spolski R, Finkelstein SE, et al. Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J Exp Med 2005; 201:139–148.

    Article  PubMed  CAS  Google Scholar 

  65. Roychowdhury S, May KF, Tzou KS, et al. Failed adoptive immunotherapy with tumor-specific T cells: reversal with low-dose interleukin 15 but not low-dose interleukin 2. Cancer Res 2004; 64:8062–8067.

    Article  PubMed  CAS  Google Scholar 

  66. DeVeerman M, Heirman C, VanMeirvenne S, et al. Retrovirally transduced bone marrow-derived dendritic cells require CD4+ T cell help to elicit protective and therapeutic antitumor immunity. J Immunol 1999; 162:144–151.

    CAS  Google Scholar 

  67. Greenberg PD, Kern DE, Cheever MA. Therapy of disseminated murine leukemia with cyclophosphamide and immune Lyt-1+,2 T cells. Tumor eradication does not require participation of cytotoxic T cells. J Exp Med 1985; 161:1122–1134.

    Article  PubMed  CAS  Google Scholar 

  68. Toes RE, Ossendorp F, Offringa R, Melief CJ. CD4 T cells and their role in antitumor immune responses. J Exp Med 1999; 189:693–702.

    Article  Google Scholar 

  69. Disis ML, Calenoff E, McLaughlin G, et al. Existent T cell and antibody immunity to HER-2/neu protein in patients with breast cancer. Cancer Res 1994; 54:16–20.

    PubMed  CAS  Google Scholar 

  70. Montgomery RB, Makary E, Schiffman K, Goodell V, Disis ML. Endogenous anti-HER2 antibodies block HER2 phosphorylation and signaling through extracellular signal-regulated kinase. Cancer Res 2005; 65:650–656.

    PubMed  CAS  Google Scholar 

  71. Dhodapkar KM, Krasovsky J, Williamson B, Dhodapkar MV. Antitumor monoclonal antibodies enhance cross-presentation of cellular antigens and the generation of myeloma-specific killer T cells by dendritic cells. J Exp Med 2002; 195:125–133.

    Article  PubMed  CAS  Google Scholar 

  72. Meyer zum Büschenfelde C, Hermann C, Schmidt B, Peschel C, Bernhard H. Antihuman epidermal growth factor receptor 2 (HER2) monoclonal antibody trastuzumab enhances cytolytic activity of class I-restricted HER2-specific T lymphocytes against HER2-overexpressing tumor cells. Cancer Re 2002; 62:2244–2247.

    Google Scholar 

  73. Overwijk WW, Theoret MR, Finkelstein SE, et al. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 2003; 198:569–580.

    Article  PubMed  CAS  Google Scholar 

  74. Matzinger P. An innate sense of danger. Semin Immunol 1998; 10:399–415.

    Article  PubMed  CAS  Google Scholar 

  75. Jameson SC. Maintaining the norm: T-cell homeostasis. Nat Rev Immunol 2002; 2:547–556.

    PubMed  CAS  Google Scholar 

  76. Robbins PF, Dudley ME, Wunderlich J, et al. Persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J Immunol 2004; 173:7125–7130.

    PubMed  CAS  Google Scholar 

  77. Zhou J, Dudley ME, Rosenberg SA, Robbins PF. Selective growth, in vitro and in vivo, of individual T cell clones from tumor-infiltrating lymphocytes obtained from patients with melanoma. J Immunol 2004; 173:7622–7629.

    PubMed  CAS  Google Scholar 

  78. Sakaguchi S, Sakaguchi N, Shimizu J, et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 2001; 182:18–32.

    Article  PubMed  CAS  Google Scholar 

  79. Antony PA, Piccirillo CA, Akpinarli A, et al. CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol 2005; 174:2591–2601.

    PubMed  CAS  Google Scholar 

  80. Ganss R, Limmer A, Sacher T, Arnold B, Hämmerling GJ. Autoaggression and tumor rejection: it takes more than self-specific T-cell activation. Immunol Rev 1999; 169:263–272.

    Article  PubMed  CAS  Google Scholar 

  81. Ganss R, Ryschich E, Klar E, Arnold B, Hämmerling GJ. Combination of T-cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication. Cancer Res 2002; 62:1462–1470.

    PubMed  CAS  Google Scholar 

  82. Kawarada Y, Ganss R, Garbi N, Sacher T, Arnold B, Hämmerling GJ. NK-and CD8+ T cell-mediated eradication of established tumors by peritumoral injection of CpG-containing oligodeoxynucleotides. J Immunol 2001; 167:5247–5253.

    PubMed  CAS  Google Scholar 

  83. Yu P, Lee Y, Liu W, et al. Priming of naive T cells inside tumors leads to eradication of established tumors. Nat Immunol 2004; 5:141–149.

    Article  PubMed  CAS  Google Scholar 

  84. Bernhard H, Schmidt B, Busch DH, Harbeck N, Peschel C. Isolation and expansion of HER2-specific, tumor-reactive T cell clones from patients with HER2-overexpressing breast cancer: prospects for adoptive T cell therapy. Breast Cancer Res Treat 2002; 76(Suppl 1):S79.

    Google Scholar 

  85. Meidenbauer N, Marienhagen J, Laumer M, et al. Survival and tumor localization of adoptively transferred melan-A-specific T cells in melanoma patients. J Immunol 2003; 170:2161–2169.

    PubMed  CAS  Google Scholar 

  86. Zhang Y, Sun Z, Nicolay H, et al. Monitoring of anti-vaccine CD4 T cell frequencies in melanoma patients vaccinated with a MAGE-3 protein. J Immunol 2005; 174:2404–2411.

    PubMed  CAS  Google Scholar 

  87. Meyer RG, Britten CM, Siepmann U, et al. A phase I vaccination study with tyrosinase in patients with stage II melanoma using recombinant modified vaccinia virus Ankara (MVA-hTyr). Cancer Immunol Immunother 2005; 54:453–467.

    Article  PubMed  CAS  Google Scholar 

  88. Cheever M, Greenberg P, Fefer A. Specific adoptive therapy of established leukemia with syngeneic lymphocytes sequentially immunized in vivo and in vitro and nonspecifically expanded by culture with interleukin-2. Immunol 1981; 126:1318–1322.

    CAS  Google Scholar 

  89. Steinman RM, Mellman I. Immunotherapy: bewitched, bothered, and bewildered no more. Science 2004; 305:197–200.

    Article  PubMed  CAS  Google Scholar 

  90. Drake CG, Pardoll DM. Tumor immunology towards a paradigm of reciprocal research. Semin Cancer Biol 2002; 12:73–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Bernhard, H., Neudorfer, J., Gebhard, K., Conrad, H., Busch, D.H., Peschel, C. (2006). Tumor-Reactive T-Cells for Adoptive Immunotherapy. In: Disis, M.L. (eds) Immunotherapy of Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59745-011-1:167

Download citation

Publish with us

Policies and ethics