Skip to main content

The Role of Immune Monitoring in Evaluating Cancer Immunotherapy

  • Chapter

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Just as cancer vaccines have evolved tremendously over the past decades, so too have the methods used to monitor the immune responses that they are intended to induce. In this chapter, current cellular immune monitoring methods will be reviewed briefly in an effort to compare and contrast their utility. These methods include cytotoxicity and proliferation assays (radioactive and nonradioactive), cytokine assays (bulk and singlecell assays), and major histocompatibility complex-peptide multimer staining. Furthermore, the role that these assays can play in evaluating a cancer vaccine will be examined critically. It is likely that modern immune monitoring assays can be useful for comparing the immunogenicity of different vaccine approaches, even across clinical trials, but only if they are sufficiently standardized. Whether such assays will eventually be able to predict clinical efficacy of a vaccine remains to be determined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prehn RT, Main JM. Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst 1957; 18:769–778.

    PubMed  CAS  Google Scholar 

  2. Old LJ, Boyse EA. Antigenic properties of experimental leukemias. I. Serological studies in vitro with spontaneous and radiation-induced leukemias. J Natl Cancer Inst 1963; 31:977–995.

    PubMed  CAS  Google Scholar 

  3. Rouse BT, Rollinghoff M, Warner NL. Anti-theta serum-induced suppression of the cellular transfer of tumour-specific immunity to a syngeneic plasma cell tumour. Nat New Biol 1972; 238:116–117.

    PubMed  CAS  Google Scholar 

  4. Finn OJ. Cancer vaccines: between the idea and the reality. Nat Rev Immunol 2003; 3:630–641.

    Article  PubMed  CAS  Google Scholar 

  5. Gilboa E. The promise of cancer vaccines. Nat Rev Cancer 2004; 4:401–411.

    Article  PubMed  CAS  Google Scholar 

  6. Crum CP, Rivera MN. Vaccines for cervical cancer. Cancer J 2003; 9:368–376.

    PubMed  CAS  Google Scholar 

  7. Hernando JJ, Park TW, Kuhn WC. Dendritic cell-based vaccines in breast and gynaecologic cancer. Anticancer Res 2003; 23:4293–4303.

    PubMed  Google Scholar 

  8. Ko BK, Kawano K, Murray JL, et al. Clinical studies of vaccines targeting breast cancer. Clin Cancer Res 2003; 9:3222–3234.

    PubMed  CAS  Google Scholar 

  9. Hege KM, Carbone DP. Lung cancer vaccines and gene therapy. Lung Cancer 2003; 41(Suppl 1):S103–S113.

    Article  PubMed  Google Scholar 

  10. Basak SK, Kiertscher SM, Harui A, Roth MD. Modifying adenoviral vectors for use as gene-based cancer vaccines. Viral Immunol 2004; 17:82–196.

    Article  CAS  Google Scholar 

  11. Castelli C, Rivoltini L, Rini F, et al. (2004). Heat shock proteins: biological functions and clinical application as personalized vaccines for human cancer. Cancer Immunol Immunother 2004; 53:27–233.

    Article  CAS  Google Scholar 

  12. Mosca PJ, Hobeika AC, Clay TM, Morse MA, Lyerly HK. Direct detection of cellular immune responses to cancer vaccines. Surgery 2001; 129:248–254.

    Article  PubMed  CAS  Google Scholar 

  13. Coulie, PG, van der Bruggen P. T-cell responses of vaccinated cancer patients. Curr Opin Immunol 2003; 15:131–137.

    Article  PubMed  CAS  Google Scholar 

  14. Gehrz RC, Knorr SO. Characterization of the role of mononuclear cell subpopulations in the in vitro lymphocyte proliferation assay. Clin Exp Immunol 1979; 37:551–557.

    PubMed  CAS  Google Scholar 

  15. McCoy JL, Herberman RB, Rosenberg EB, Donnelly FC, Levine PH, Alford C. 51 Chromium-release assay for cell-mediated cytotoxicity of human leukemia and lymphoid tissue-culture cells. Natl Cancer Inst Monogr 1973; 37:59–67.

    PubMed  CAS  Google Scholar 

  16. Maecker HT, Maino VC, Picker LJ. Immunofluorescence analysis of T-cell responses in health and disease. J Clin Immunol 2000; 20:391–399.

    Article  PubMed  CAS  Google Scholar 

  17. Slansky JE. Antigen-specific T cells: analyses of the needles in the haystack. PLoS Biol 2003; 1:E78.

    Article  PubMed  Google Scholar 

  18. Czerkinsky C, Andersson G, Ekre HP, Nilsson LA, Klareskog L, Ouchterlony O. Reverse ELISPOT assay for clonal analysis of cytokine production. I. Enumeration of gamma-interferon-secreting cells. J Immunol Methods 1988; 110:29–36.

    Article  PubMed  CAS  Google Scholar 

  19. Waldrop SL, Pitcher CJ, Peterson DM, Maino VC, Picker LJ. Determination of antigen-specific memory/effector CD4+ T cell frequencies by flow cytometry: evidence for a novel, antigen-specific homeostatic mechanism in HIV-associated immunodeficiency. J Clin Invest 1997; 99:1739–1750.

    Article  PubMed  CAS  Google Scholar 

  20. Betts MR, Brenchley JM, Price DA, et al. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods 2003; 281:65–78.

    Article  PubMed  CAS  Google Scholar 

  21. Altman JD, Moss PAH, Goulder PJR, et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 1996; 274:94–96.

    Article  PubMed  CAS  Google Scholar 

  22. Mehta BA, Maino VC. Simultaneous detection of DNA synthesis and cytokine production in staphylococcal enterotoxin B-activated CD4+ T lymphocytes by flow cytometry. J Immunol Methods 1997; 208:49–59.

    Article  PubMed  CAS  Google Scholar 

  23. Fulcher D, Wong S. Carboxyfluorescein succinimidyl ester-based proliferative assays for assessment of T cell function in the diagnostic laboratory. Immunol Cell Biol 1999; 77:559–564.

    Article  PubMed  CAS  Google Scholar 

  24. Jung T, Schauer U, Heusser C, Neumann C, Rieger C. Detection of intracellular cytokines by flow cytometry. J Immunol Methods 1993; 159:197–207.

    Article  PubMed  CAS  Google Scholar 

  25. Prussin C, Metcalfe DD. Detection of intracytoplasmic cytokine using flow cytometry and directly conjugated anti-cytokine antibodies. J Immunol Methods 1995; 188:117–128.

    Article  PubMed  CAS  Google Scholar 

  26. Suni MA, Picker LJ, Maino VC. Detection of antigen-specific T cell cytokine expression in whole blood by flow cytometry. J Immunol Methods 1998; 212:89–98.

    Article  PubMed  CAS  Google Scholar 

  27. Brosterhus H, Brings S, Leyendeckers H, et al. Enrichment and detection of live antigen-specific CD4(+) and CD8(+) T cells based on cytokine secretion. Eur J Immunol 1999; 29:4053–4059.

    Article  PubMed  CAS  Google Scholar 

  28. Greten TF, Slansky JE, Kubota R, et al. Direct visualization of antigen-specific T cells: HTLV-1 Tax11-19-specific CD8(+) T cells are activated in peripheral blood and accumulate in cerebrospinal fluid from HAM/TSP patients. Proc Natl Acad Sci USA 1998; 95:7568–7573.

    Article  PubMed  CAS  Google Scholar 

  29. Migueles SA, Laborico AC, Shupert WL, et al. HIV-specific CD8(+) T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat Immunol 2002; 3:1061–1068.

    Article  PubMed  CAS  Google Scholar 

  30. Iyasere C, Tilton JC, Johnson AJ, et al. Diminished proliferation of human immunodeficiency virusspecific CD4+ T cells is associated with diminished interleukin-2 (IL-2) production and is recovered by exogenous IL-2. J Virol 2003; 77:10,900–10,909.

    Article  PubMed  CAS  Google Scholar 

  31. Kuzushima K, Hoshino Y, Fujii K, et al. Rapid determination of Epstein-Barr virus-specific CD8+ Tcell frequencies by flow cytometry. Blood 1999; 94:3094–3100.

    PubMed  CAS  Google Scholar 

  32. Moretto WJ, Drohan LA, Nixon DF. Rapid quantification of SIV-specific CD8 T cell responses with recombinant vaccinia virus ELISPOT or cytokine flow cytometry. AIDS 2000; 14:2625–2627.

    Article  PubMed  CAS  Google Scholar 

  33. Asemissen AM, Nagorsen D, Keilholz U, et al. Flow cytometric determination of intracellular or secreted IFNgamma for the quantification of antigen reactive T cells. J Immunol Methods 2001; 251:101–108.

    Article  PubMed  CAS  Google Scholar 

  34. Pahar B, Li J, Rourke T, Miller CJ, McChesney MB. Detection of antigen-specific T cell interferon gamma expression by ELISPOT and cytokine flow cytometry assays in rhesus macaques. J Immunol Methods 2003; 282:103–115.

    Article  PubMed  CAS  Google Scholar 

  35. Sun Y, Iglesias E, Samri A, et al. A systematic comparison of methods to measure HIV-1 specific CD8 T cells. J Immunol Methods 2003; 272:23–34.

    Article  PubMed  CAS  Google Scholar 

  36. Whiteside TL, Zhao Y, Tsukishiro T, Elder EM, Gooding W, Baar J. Enzyme-linked immunospot, cytokine flow cytometry, and tetramers in the detection of T-cell responses to a dendritic cell-based multipeptide vaccine in patients with melanoma. Clin Cancer Res 2003; 9:641–649.

    PubMed  CAS  Google Scholar 

  37. Karlsson AC, Martin JN, Younger SR, et al. Comparison of the ELISPOT and cytokine flow cytometry assays for the enumeration of antigen-specific T cells. J Immunol Methods 2003; 283:141–153.

    Article  PubMed  CAS  Google Scholar 

  38. Helms T, Boehm BO, Asaad RJ, Trezza RP, Lehmann PV, Tary-Lehmann M. Direct visualization of cytokine-producing recall antigen-specific CD4 memory T cells in healthy individuals and HIV patients. J Immunol 2000; 164:3723–3732.

    PubMed  CAS  Google Scholar 

  39. Dunn HS, Haney DJ, Ghanekar SA, Stepick-Biek P, Lewis DB, Maecker HT. Dynamics of CD4 and CD8 T cell responses to cytomegalovirus in healthy human donors. J Infect Dis 2002; 186:15–22.

    Article  PubMed  CAS  Google Scholar 

  40. Smith JG, Liu X, Kaufhold RM, Clair J, Caulfield MJ. Development and validation of a gamma interferon ELISPOT assay for quantitation of cellular immune responses to varicella-zoster virus. Clin Diagn Lab Immunol 2001; 8:871–879.

    Article  PubMed  CAS  Google Scholar 

  41. Mwau M, McMichael AJ, Hanke T. Design and validation of an enzyme-linked immunospot assay for use in clinical trials of candidate HIV vaccines. AIDS Res Hum Retroviruses 2002; 18:611–618.

    Article  PubMed  CAS  Google Scholar 

  42. Lathey J. Preliminary steps toward validating a clinical bioassay: case study of the ELISpot assay. Biopharm Intl 2003; March:42–50.

    Google Scholar 

  43. Perez-Diez A, Spiess PJ, Restifo NP, Matzinger P, Marincola FM. Intensity of the vaccine-elicited immune response determines tumor clearance. J Immunol 2002; 168:338–347.

    PubMed  CAS  Google Scholar 

  44. Kern F, Surel IP, Faulhaber N, et al. Target structures of the CD8(+)-T-cell response to human cytomegalovirus: the 72-kilodalton major immediate-early protein revisited. J Virol 1999; 73:8179–8184.

    PubMed  CAS  Google Scholar 

  45. Kern F, Bunde T, Faulhaber N, et al. Cytomegalovirus (CMV) phosphoprotein 65 makes a large contribution to shaping the T cell repertoire in CMV-exposed individuals. J Infect Dis 2002; 185:1709–1716.

    Article  PubMed  CAS  Google Scholar 

  46. Gea-Banacloche JC, Migueles SA, Martino L, et al. Maintenance of large numbers of virus-specific CD8+ T cells in HIV-infected progressors and long-term nonprogressors. J Immunol 2000; 165:1082–1092.

    PubMed  CAS  Google Scholar 

  47. Pitcher CJ, Quittner C, Peterson DM, et al. HIV-1-specific CD4+ T cells are detectable in most individuals with active HIV-1 infection, but decline with prolonged viral suppression. Nat Med 1999; 5:518–525.

    Article  PubMed  CAS  Google Scholar 

  48. Altes HK, Price DA, Jansen VA. Effector cytotoxic T lymphocyte numbers induced by vaccination should exceed levels in chronic infection for protection from HIV. Vaccine 2001; 20:3–6.

    Article  PubMed  CAS  Google Scholar 

  49. Walker EB, Haley D, Miller W, et al. gp100(209-2M) peptide immunization of HLA-A2+ stage I–III melanoma patients induces significant increase in antigen-specific effector and long-term memory CD8+ T cells. Clin Cancer Res 2004; 10:668–680.

    Article  PubMed  CAS  Google Scholar 

  50. Betts MR, Price DA, Brenchley JM, et al. The functional profile of primary human antiviral CD8+ T cell effector activity is dictated by cognate peptide concentration. J Immunol 2004; 172:6407–6417.

    PubMed  CAS  Google Scholar 

  51. Rubio V, Stuge TB, Singh N, et al. Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat Med 2003; 9:1377–1382.

    Article  PubMed  CAS  Google Scholar 

  52. Trigona WL, Clair JH, Persaud N, et al. Intracellular staining for HIV-specific IFN-gamma production: statistical analyses establish reproducibility and criteria for distinguishing positive responses. J Interferon Cytokine Res 2003; 23:369–377.

    Article  PubMed  CAS  Google Scholar 

  53. Weinberg A, Wohl DA, Brown DG, et al. Effect of cryopreservation on measurement of cytomegalovirusspecific cellular immune responses in HIV-infected patients. J Acquir Immune Defic Syndr 2000; 25:109–114.

    Article  PubMed  CAS  Google Scholar 

  54. Costantini, A, Mancini S, Giuliodoro S, et al. Effects of cryopreservation on lymphocyte immunophenotype and function. J Immunol Methods 2003; 278:145–155.

    Article  PubMed  CAS  Google Scholar 

  55. Maecker HT, Moon J, Bhatia S, et al. Impact of cryopreservation on tetramer, cytokine flow cytometry, and ELISPOT. BMC Immunol 2005; 6:17.

    Article  PubMed  CAS  Google Scholar 

  56. Maecker HT, Dunn HS, Suni MA, et al. Use of overlapping peptide mixtures as antigens for cytokine flow cytometry. J Immunol Methods 2001; 255:27–40.

    Article  PubMed  CAS  Google Scholar 

  57. Hoffmeister B, Bunde T, Rudawsky IM, Volk HD, Kern F. Detection of antigen-specific T cells by cytokine flow cytometry: the use of whole blood may underestimate frequencies. Eur J Immunol 2003; 33:3484–3492.

    Article  PubMed  CAS  Google Scholar 

  58. Nomura LE, Walker JM, Maecker HT. Optimization of whole blood antigen-specific cytokine assays for CD4+ T cells. Cytometry 2000; 40:60–68.

    Article  PubMed  CAS  Google Scholar 

  59. Waldrop SL, Davis KA, Maino VC, Picker LJ. Normal human CD4+ memory T cells display broad heterogeneity in their activation threshold for cytokine synthesis. J Immunol 1998; 161:5284–5295.

    PubMed  CAS  Google Scholar 

  60. Nylander S, Kalies I, Brefeldin A, but not monensin, completely blocks CD69 expression on mouse lymphocytes: efficacy of inhibitors of protein secretion in protocols for intracellular cytokine staining by flow cytometry. J Immunol Methods 1999; 224:69–76.

    Article  PubMed  CAS  Google Scholar 

  61. Motulsky H. Intuitive Biostatistics. Oxford: Oxford University Press. 1995.

    Google Scholar 

  62. Betts MR, Casazza JP, Patterson BA, et al. Putative immunodominant human immunodeficiency virusspecific CD8(+) T-cell responses cannot be predicted by major histocompatibility complex class I haplotype. J Virol 2000; 74:9144–9151.

    Article  PubMed  CAS  Google Scholar 

  63. Ferrari G, Neal W, Ottinger J, et al. Absence of immunodominant anti-Gag p17 (SL9) responses among Gag CTL-positive, HIV-uninfected vaccine recipients expressing the HLA-A*0201 allele. J Immunol 2004; 173:2126–2133.

    PubMed  CAS  Google Scholar 

  64. Suni MA, Dunn HS, Orr PL, et al. Performance of plate-based cytokine flow cytometry with automated data analysis. BMC Immunology 2003; 4:9.

    Article  PubMed  Google Scholar 

  65. Maecker HT. Cytokine flow cytometry. In: Hawley TS, Hawley RG, eds. Flow Cytometry Protocols, 2nd Edition. Totowa: Humana Press. 2004: pp. 95–107.

    Google Scholar 

  66. Dunne JF, Maecker HT. Automation of cytokine flow cytometry assays. J Assoc Lab Automation 2004; 9:5–9.

    Article  CAS  Google Scholar 

  67. Lee PP, Yee C, Savage PA, et al. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 1999; 5:677–685.

    Article  PubMed  CAS  Google Scholar 

  68. Lee KH, Wang E, Nielsen MB, et al. Increased vaccine-specific T cell frequency after peptide-based vaccination correlates with increased susceptibility to in vitro stimulation but does not lead to tumor regression. J Immunol 1999; 163:6292–6300.

    PubMed  CAS  Google Scholar 

  69. Nielsen MB, Monsurro V, Migueles SA, et al. Status of activation of circulating vaccine-elicited CD8+ T cells. J Immunol 2000; 165:2287–2296.

    PubMed  CAS  Google Scholar 

  70. Smith JW II, Walker EB, Fox BA, et al. Adjuvant immunization of HLA-A2-positive melanoma patients with a modified gp100 peptide induces peptide-specific CD8+ T-cell responses. J Clin Oncol 2003; 21:1562–1573.

    Article  PubMed  CAS  Google Scholar 

  71. Brossart P, Wirths S, Stuhler G, Reichardt VL, Kanz L, Brugger W. Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood 2000; 96:3102–3108.

    PubMed  CAS  Google Scholar 

  72. Fong L, Hou Y, Rivas A, et al. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci USA 2001; 98:8809–8814.

    Article  PubMed  CAS  Google Scholar 

  73. Karanikas V, Lodding J, Maino VC, McKenzie IF. Flow cytometric measurement of intracellular cytokines detects immune responses in MUC1 immunotherapy. Clin Cancer Res 2000; 6:829–837.

    PubMed  CAS  Google Scholar 

  74. Maecker HT, Auffermann-Gretzinger S, Nomura LE, Liso A, Czerwinski DK, Levy R. Detection of CD4 T-cell responses to a tumor vaccine by cytokine flow cytometry. Clin Cancer Res 2001; 7(Suppl 3):902s–908s.

    PubMed  CAS  Google Scholar 

  75. Weng WK, Czerwinski D, Timmerman J, Hsu FJ, Levy R. Clinical outcome of lymphoma patients after idiotype vaccination is correlated with humoral immune response and immunoglobulin G Fc receptor genotype. J Clin Oncol 2004; 22:4717–4724.

    Article  PubMed  CAS  Google Scholar 

  76. Reynolds SR, Zeleniuch-Jacquotte A, Shapiro RL, et al. Vaccine-induced CD8+ T-cell responses to MAGE-3 correlate with clinical outcome in patients with melanoma. Clin Cancer Res 2003; 9:657–662.

    PubMed  CAS  Google Scholar 

  77. Viguier M, Lemaitre F, Verola O, et al. Foxp3 expressing CD4+CD25 (high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J Immunol 2004; 173:1444–1453.

    PubMed  CAS  Google Scholar 

  78. Chakraborty NG, Chattopadhyay S, Mehrotra S, Chhabra A, Mukherji B. Regulatory T-cell response and tumor vaccine-induced cytotoxic T lymphocytes in human melanoma. Hum Immunol 2004; 65:794–802.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Maecker, H.T. (2006). The Role of Immune Monitoring in Evaluating Cancer Immunotherapy. In: Disis, M.L. (eds) Immunotherapy of Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59745-011-1:059

Download citation

Publish with us

Policies and ethics