Diagnostic Assays

  • William Borkowsky
Part of the Infectious Disease book series (ID)


Prior to the advent of highly sensitive antigen and nucleic acid detection methods, the diagnosis of acute infection was based on the measurement of the appearance of pathogen-specific antibodies, which most commonly were immunoglobulin G (IgG). A variety of assays were initially used, including complement fixation, hemagglutination, hemagglutination inhibition, immunofluorescence assays, radioimmunoassay (RIA), and eventually enzyme-linked immunosorbent assay (ELISA). Complement fixation, hemagglutination, hemagglutination inhibition, and immunofluorescence assays are usually titrated by assessing the highest dilution of serum that results in a positive response. In the case of RIA and ELISA, a quantitative value is determined at a single dilution of serum.


Human Immunodeficiency Virus Hemagglutination Inhibition Neonatal Screening Congenital Infection Congenital Toxoplasmosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gitlin D. Development and metabolism of the immune globulins. In Kagan BM, Stiehm ER, eds. Immunologic Incompetence. Chicago: Year Book, 1971:3–13.Google Scholar
  2. 2.
    Chhabra RS, Brion LP, Castro M, Freundlich L, Glaser JH. Comparison of maternal sera, cord blood, and neonatal sera for detecting presumptive congenital syphilis: relationship with maternal treatment. Pediatrics 1993;91:88–91.PubMedGoogle Scholar
  3. 3.
    Alford CA, Stagno S, Reynolds DW. Diagnosis of chronic perinatal infections. Am J Dis Child 1975;129:455–463.PubMedGoogle Scholar
  4. 4.
    Alford CA, Schaefer J, Blankenship WJ, et al. A correlative immunologic, microbiologic and clinical approach for the diagnosis of acute and chronic infections in newborn infants. N Eng J Med 1967;227:437–449.CrossRefGoogle Scholar
  5. 5.
    McCracken GH, Hardy JB, Chen T, et al. Serum immunoglobulin levels in newborn infants. II. Survey of cord and follow-up sera from 123 infants with congenital rubella. J Pediatr 1969;74:383–392.PubMedCrossRefGoogle Scholar
  6. 6.
    Mason EO, South MA, Montgomery JR. Cord serum IgA in congenital CMV infection. J Pediatr 1976;89:945–946.PubMedCrossRefGoogle Scholar
  7. 7.
    Maguire, J, Lynfield H, Stechenberg R, et al. Neonatal serologic screening and early treatment for congenital Toxoplasma gondii infection. The New England Regional Toxoplasma Working Group. N Engl J Med 1994;330:1858–1863.PubMedCrossRefGoogle Scholar
  8. 8.
    Eaton RB, Petersen E, Seppanen H, Tuuminen T. Multicenter evaluation of a fluorometric enzyme immunocapture assay to detect toxoplasma-specific immunoglobulin M in dried blood filter paper specimens from newborns. J Clin Microbiol 1996;34:3147–3150.PubMedGoogle Scholar
  9. 9.
    Paul M, Petersen E, Pawlowski ZS, Szczapa J. Neonatal screening for congenital toxoplasmosis in the Poznan region of Poland by analysis of Toxoplasma gondii-specific IgM antibodies eluted from filter paper blood spots. Pediatr Infect Dis J 2000;19:30–36.PubMedCrossRefGoogle Scholar
  10. 10.
    Petersen E, Eaton RB. Control of congenital infection with Toxoplasma gondii by neonatal screening based on detection of specific immunoglobulin M antibodies eluted from phenylketonuria filter-paper blood-spot samples. Acta Paediatr Suppl 1999;88:36–39.PubMedCrossRefGoogle Scholar
  11. 11.
    Stagno S, Tinker MK, Elrod C, Fuccillo DA, Cloud G, O’Beirne AJ. Immunoglobulin M antibodies detected by enzyme-linked immunosorbent assay and radioimmunoassay in the diagnosis of cytomegalovirus infections in pregnant women and newborn infants. J Clin Microbiol 1985;21:930–935.PubMedGoogle Scholar
  12. 12.
    Jenum PA, Stray-Pedersen B, Melby KK, et al. Incidence of Toxoplasma gondii infection in 35,940 pregnant women in Norway and pregnancy outcome for infected women. J Clin Microbiol 1998;36:2900–2906.PubMedGoogle Scholar
  13. 13.
    Liesenfeld O, Montoya JG, Tathieneni NJ, et al. Confirmatory serologic testing for acute toxoplasmosis reduces rates of induced abortions among women reported to have positive toxoplasma immunoglobulin M antibody tests. Am J Obstet Gynecol 2001;184:140–145.PubMedCrossRefGoogle Scholar
  14. 14.
    Stagno S Pass RF, Cloud G, Britt W, Henderson J, et al. Primary cytomegalovirus infection in pregnancy. Incidence, transmission to fetus, and clinical outcome. JAMA 1986;256:1904–1908.PubMedCrossRefGoogle Scholar
  15. 15.
    Naot Y, Remington JS. An enzyme-linked immunosorbent assay for detection of IgM antibodies to Toxoplasma gondii: use for the diagnosis of acute acquired toxoplasmosis. J Infect Dis 1980;142:757–766.PubMedGoogle Scholar
  16. 16.
    Naot Y, Desmonts G, Remington JS. IgM enzyme-linked immunosorbent assay test for the diagnosis of congenital toxoplasma infection. J Pediatr 1981;98:32–36.PubMedCrossRefGoogle Scholar
  17. 17.
    Hedman K, Lappalainen M, Seppaia I, Makela O. Recent primary toxoplasma infection indicated by a low avidity of specific IgG. J Infect Dis 1989;159:736–740.PubMedGoogle Scholar
  18. 18.
    Liesenfeld O, Montoya JG, Kinney S, Press C, Remington JS. Effect of testing for IgG avidity in the diagnosis of Toxoplasma gondii infection in pregnant women: experience in a US reference laboratory. J Infect Dis 2001;183:1248–1253.PubMedCrossRefGoogle Scholar
  19. 19.
    Dannemann BR, Vuaghan WC, Thulliez P, et al. The differential agglutination test for diagnosis of recently acquired infection with Toxoplasma gondii. J Clin Microbiol 1990;28:1928–1933.PubMedGoogle Scholar
  20. 20.
    Bodeus M, Goubau P. Predictive value of maternal-IgG avidity for congenital human cytomegalovirus infection. J Clin Virol 1999;12:3–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Lazzarotto T, Varani S, Guerra B, Nicolosi A, Lanari M, Landini MP. Prenatal indicators of congenital cytomegalovirus infection. J Pediatr 2000;137:90–95.PubMedCrossRefGoogle Scholar
  22. 22.
    Lazzarotto T, Varani S, Gabrielli L, Spezzacatena P, Landini MP. New advances in the diagnosis of congenital cytomegalovirus infection. Intervirology 1999;42:390–397.PubMedCrossRefGoogle Scholar
  23. 23.
    Lazzarotto T, Varani S, Spezzacatena P, et al. Maternal IgG avidity and IgM detected by blot as diagnostic tools to identify pregnant women at risk of transmitting cytomegalovirus. Viral Immunol 2000;13:137–141.PubMedGoogle Scholar
  24. 24.
    Eggers M, Metzger C, Enders G. Differentiation between acute primary and recurrent human cytomegalovirus infection in pregnancy, using a microneutralization assay. J Med Virol 1998;56:351–358.PubMedCrossRefGoogle Scholar
  25. 25.
    Meitsch K, Enders G, Wolinsky JS, Faber R, Pustowoit B. The role of rubella-immunoblot and rubella-peptide-EIA for the diagnosis of the congenital rubella syndrome during the prenatal and newborn periods. J Med Virol 1997;51:280–283.PubMedCrossRefGoogle Scholar
  26. 26.
    Dieck D, Schild RL, Hansmann M, Eis-Hubinger AM. Prenatal diagnosis of congenital parvovirus B19 infection: value of serological and PCR techniques in maternal and fetal serum. Prenat Diagn 1999;19:1119–1123.PubMedCrossRefGoogle Scholar
  27. 27.
    Foulon W, Pinon JM, Stray-Pedersen B, et al. Prenatal diagnosis of congenital toxoplasmosis: a multicenter evaluation of different diagnostic parameters. Am J Obstet Gynecol 1999;181:843–847.PubMedCrossRefGoogle Scholar
  28. 28.
    Cohen IR, Norins LC, Julian AJ. Competition between, and effectiveness of, IgG and IgM antibodies in indirect fluorescent antibody and other tests. J Immunol 1967;98:143–149.PubMedGoogle Scholar
  29. 29.
    Gupta JD, Peterson V, Stout M, Murphy AM. Single sample diagnosis of recent rubella by fractionation of antibody on Sephadex G-200 column. J Clin Pathol 1971;24:547–550.PubMedCrossRefGoogle Scholar
  30. 30.
    Thomas HIJ, Morgan-Capner P, Connor NS. Adaptation of a commercial rubella-specific IgG kit to assess specific IgG avidity. Serodiagn Immunother Infect Disease 1993;1:13–16.CrossRefGoogle Scholar
  31. 31.
    Millian SJ, Wegman D. Rubella serology: applications, limitations, and interpretations. Am J Public Health 1972;62:171–176.Google Scholar
  32. 32.
    Tuomanen EI, Powell KR. Staphylococcal protein A adsorption of neonatal serum to facilitate early diagnosis of congenital infection. J Pediatr 1980;97:238–243.PubMedCrossRefGoogle Scholar
  33. 33.
    Akerstrom B, Brodin T, Reis K, Bjorck L. Protein G: a powerful tool for binding and detection of monoclonal and polyclonal antibodies. J Immunol 1985;135:2589–2592.PubMedGoogle Scholar
  34. 34.
    Yolken RH, Leister FJ. Enzyme immunoassays for measurement of cytomegalovirus immunoglobulin M antibody. J Clin Microbiol 1981;14:427–443.PubMedGoogle Scholar
  35. 35.
    Wallon M, Dunn D, Slimani D, Girault V, Gay-Andrieu F, Peyron F. Diagnosis of congenital toxoplasmosis at birth: what is the value of testing for IgM and IgA? Eur J Pediatr 1999;158:645–649.PubMedCrossRefGoogle Scholar
  36. 36.
    Bessieres MH, Berrebi A, Rolland M, et al. Neonatal screening for congenital toxoplasmosis in a cohort of 165 women infected during pregnancy and influence of in utero treatment on the results of neonatal tests. Eur J Obstet Gynecol Reprod Biol 2001;94:37–45.PubMedCrossRefGoogle Scholar
  37. 37.
    Foudrinier F, Marx-Chemla C, Aubert D, Bonhomme A, Pinon JM. Value of specific immunoglobulin A detection by two immunocapture assays in the diagnosis of toxoplasmosis. Eur J Clin Microbiol Infect Dis 1995;14:585–590.PubMedCrossRefGoogle Scholar
  38. 38.
    Naessens A, Jenum PA, Pollak A, et al. Diagnosis of congenital toxoplasmosis in the neonatal period: a multicenter evaluation. J Pediatr 1999;135:714–719.PubMedCrossRefGoogle Scholar
  39. 39.
    Foulon W, Pinon JM, Stray-Pedersen B, et al. Prenatal diagnosis of congenital toxoplasmosis: a multicenter evaluation of different diagnostic parameters. Am J Obstet Gynecol 1999;181:843–847.PubMedCrossRefGoogle Scholar
  40. 40.
    Gorgievski-Hrisoho M, Germann D, Matter L. Diagnostic implications of kinetics of immunoglobulin M and A antibody responses to Toxoplasma gondii. J Clin Microbiol 1996;34:1506–1511.PubMedGoogle Scholar
  41. 41.
    Wallon M, Dunn D, Slimani D, Girault V, Gay-Andrieu F, Peyron F. Diagnosis of congenital toxoplasmosis at birth: what is the value of testing for IgM and IgA? Eur J Pediatr 1999;158:645–649.PubMedCrossRefGoogle Scholar
  42. 43.
    Pinon JM, Toubas D, Marx C, et al. Detection of specific immunoglobulin E in patients with toxoplasmosis. J Clin Microbiol 1990;28:1739–1743.PubMedGoogle Scholar
  43. 44.
    Herne V, Hedman K, Reedik P. Immunoglobulin G avidity in the serodiagnosis of congenital rubella syndrome. Eur J Clin Microbiol Infect Dis 1997;16:763–766.PubMedCrossRefGoogle Scholar
  44. 45.
    Revello MG, Zavattoni M, Baldanti F, Sarasini A, Paolucci S, Gerna G. Diagnostic and prognostic value of human cytomegalovirus load and IgM antibody in blood of congenitally infected newborns. J Clin Virol 1999;14:57–66.PubMedCrossRefGoogle Scholar
  45. 46.
    Koch WC, Harger JH, Barnstein B, Adler SP. Serologic and virologic evidence for frequent intrauterine transmission of human parvovirus B19 with a primary maternal infection during pregnancy. Pediatr Infect Dis J 1998;17:489–494.PubMedCrossRefGoogle Scholar
  46. 47.
    Gaetano C, Scano G, Carbonari M, et al. Delayed and defective anti-HIV IgM response in infants. Lancet. 1987;1:631.PubMedCrossRefGoogle Scholar
  47. 48.
    McIntosh K, Comeau AM, Wara D, et al. The utility of IgA antibody to human immunodeficiency virus type 1 in early diagnosis of vertically transmitted infection. National Institute of Allergy and Infectious Diseases and National Institute of Child Health and Human Development Women and Infants Transmission Study Group. Arch Pediatr Adolesc Med 1996;150:598–602.PubMedGoogle Scholar
  48. 49.
    Weiblen BJ, Lee FK, Cooper ER, et al. Early diagnosis of HIV infection in infants by detection of IgA HIV antibodies. Lancet 1990;335:988–990.PubMedCrossRefGoogle Scholar
  49. 50.
    Schupbach J, Tomasik Z, Jendis J, Boni J, Seger R, Kind C. IgG, IgM, and IgA response to HIV in infants born to HIV-1 infected mothers. Swiss Neonatal HIV Study Group. J Acquir Immune Defic Syndr 1994;7:421–427.PubMedGoogle Scholar
  50. 51.
    Nesheim S, Lee F, Sawyer M, et al. Diagnosis of human immunodeficiency virus infection by enzyme-linked immunospot assays in a prospectively followed cohort of infants of human immunodeficiency virus-seropositive women. Pediatr Infect Dis J 1992;11:635–639.PubMedGoogle Scholar
  51. 52.
    Pollack H, Zhan MX, Moore T, Krasinski K, Borkowsky W. Ontogeny of anti-HIV antibody production in HIV-infected infants. Proc Natl Acad Sci U S A 1993;90:2340–2344.PubMedCrossRefGoogle Scholar
  52. 53.
    Amadori A, De Rossi A, Chieco-Bianchi L, Giaquinto C, De Maria A, Ades AE. Diagnosis of human immunodeficiency virus 1 infection in infants: in vitro production of virus-specific antibody in lymphocytes. Pediatr Infect Dis J 1990;9:26–30.PubMedCrossRefGoogle Scholar
  53. 54.
    Wang XP, Paul M, Tetali S, et al. Improved specificity of in vitro anti-HIV antibody production: implications for diagnosis and timing of transmission in infants born to HIVseropositive mothers. AIDS Res Hum Retroviruses 1994;10:691–699.PubMedCrossRefGoogle Scholar
  54. 55.
    Pahwa S, Chirmule N, Leombruno C, et al. In vitro synthesis of human immunodeficiency virus-specific antibodies in peripheral blood lymphocytes of infants. Proc Natl Acad Sci U S A 1989;86:7532–7536.PubMedCrossRefGoogle Scholar
  55. 56.
    Reyes MB, Lorca M, Munoz P, Frasch AC. Fetal IgG specificities against Trypanosoma cruzii antigens in infected newborns. Proc Natl Acad Sci U S A 1990;87:2846–2850.PubMedCrossRefGoogle Scholar
  56. 57.
    Mets MB, Barton LL, Khan AS, Ksiazek TG. Lymphocytic choriomeningitis virus: an underdiagnosed cause of congenital chorioretinitis. Am J Opthalmol 2000;130:209–215.CrossRefGoogle Scholar
  57. 58.
    Brezin AP, Thulliez P, Cisneros B, Mets MB, Saron MF. Lymphocytic choriomeningitis virus chorioretinitis mimicking ocular toxoplasmosis in two otherwise normal children. Am J Opthalmol 2000;130:245–247.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • William Borkowsky
    • 1
  1. 1.Department of PediatricsNew York University School of MedicineNew York

Personalised recommendations