Skip to main content

JAK Kinases in Leukemias, Lymphomas, and Multiple Myeloma

  • Chapter
  • 753 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The Janus kinase or just another kinase (JAK) family comprises cytoplasmic receptor-associated protein tyrosine kinases that are involved in signal transduction pathways mediated by many cytokines and cytokine-like hormones (14). Physiologically, these cytokines play a critical role in regulating normal cellular functions such as proliferation, survival, and differentiation. The importance of JAKs derives from the fact that they are the first proteins involved in the intracellular part of cytokine-induced signal transduction. The major signaling events downstream of JAKs are the activation of the signal transducer and activator of transcription (STAT) proteins, the Ras/Raf/mitogen-activated protein kinase (MAPK), and the phosphatidylinositol-3 kinase (PI3-K)/Akt pathways (5). Dysregulated JAK activity has pathological implications: constitutive or enhanced JAK activation has been implicated in neoplastic transformation and abnormal cell proliferation in various hematological malignancies including multiple myeloma. Therefore, JAKs represent an attractive target for the development of novel drugs that might selectively inhibit their activity. Although exciting breakthroughs have been achieved with other tyrosine kinase inhibitors, such as STI571/imatinib mesylate, pharmacological JAK inhibitors have not yet reached the clinical stage. This chapter focuses on what is known on the role of JAKs in hematological malignancies including multiple myeloma, and the development of pharmacological inhibitors for therapy of diseases associated with JAK activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leonard WJ, O’Shea JJ. Jaks and STATs: biological implications. Annu Rev Immunol 1998; 16:293–322.

    PubMed  CAS  Google Scholar 

  2. Ihle JN, Thierfelder W, Teglund S, et al. Signaling by the cytokine receptor superfamily. Ann NY Acad Sci 1998; 865:1–9.

    PubMed  CAS  Google Scholar 

  3. Schindler C, Strehlow I. Cytokines and STAT signaling. Adv Pharmacol 2000; 47:113–174.

    PubMed  CAS  Google Scholar 

  4. Ravandi F, Talpaz M, Kantarjian H, Estrov Z. Cellular signalling pathways: new targets in leukaemia therapy. Br J Haematol 2002; 116(1):57–77.

    PubMed  CAS  Google Scholar 

  5. Rane SG, Reddy EP. Janus kinases: components of multiple signaling pathways. Oncogene 2000; 19(49):5662–5679.

    PubMed  CAS  Google Scholar 

  6. Hubbard SR, Till JH. Protein tyrosine kinase structure and function. Annu Rev Biochem 2000; 69:373–398.

    PubMed  CAS  Google Scholar 

  7. Duhe RJ, Wang LH, Farrar WL. Negative regulation of Janus kinases. Cell Biochem Biophys 2001; 34(1):17–59.

    PubMed  CAS  Google Scholar 

  8. Schindler CW. Series introduction. JAK-STAT signaling in human disease. J Clin Invest 2002; 109(9):1133–1337.

    PubMed  CAS  Google Scholar 

  9. Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 2002; 285(1–2):1–24.

    PubMed  CAS  Google Scholar 

  10. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003; 374(Pt 1):1–20.

    PubMed  CAS  Google Scholar 

  11. Levy DE, Darnell JE, Jr. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 2002; 3(9):651–662.

    PubMed  CAS  Google Scholar 

  12. Rane SG, Reddy EP. JAKs, STATs and Src kinases in hematopoiesis. Oncogene 2002; 21(21):3334–3358.

    PubMed  CAS  Google Scholar 

  13. Danial NN, Losman JA, Lu T, et al. Direct interaction of Jak1 and v-Abl is required for v-Abl-induced activation of STATs and proliferation. Mol Cell Biol 1998; 18(11):6795–6804.

    PubMed  CAS  Google Scholar 

  14. Danial NN, Pernis A, Rothman PB. Jak-STAT signaling induced by the v-abl oncogene. Science 1995; 269(5232):1875–1877.

    PubMed  CAS  Google Scholar 

  15. Danial NN, Rothman P. JAK-STAT signaling activated by Abl oncogenes. Oncogene 2000; 19(21):2523–2531.

    PubMed  CAS  Google Scholar 

  16. Sexl V, Kovacic B, Piekorz R, et al. Jak1 deficiency leads to enhanced Abelson-induced B-cell tumor formation. Blood 2003; 101(12):4937–4943.

    PubMed  CAS  Google Scholar 

  17. Shuai K, Halpern J, ten Hoeve J, Rao X, Sawyers CL. Constitutive activation of STAT5 by the Bcr-Abl oncogene in chronic myelogenous leukemia. Oncogene 1996; 13(2):247–254.

    PubMed  CAS  Google Scholar 

  18. Henderson YC, Guo XY, Greenberger J, Deisseroth AB. Potential role of Bcr-Abl in the activation of JAK1 kinase. Clin Cancer Res 1997; 3(2):145–149.

    PubMed  CAS  Google Scholar 

  19. Chai SK, Nichols GL, Rothman P. Constitutive activation of JAKs and STATs in Bcr-Abl-expressing cell lines and peripheral blood cells derived from leukemic patients. J Immunol 1997; 159(10):4720–4728.

    PubMed  CAS  Google Scholar 

  20. Xie S, Wang Y, Liu J, et al. Involvement of Jak2 tyrosine phosphorylation in Bcr-Abl transformation. Oncogene 2001; 20(43):6188–6195.

    PubMed  CAS  Google Scholar 

  21. Ruchatz H, Coluccia AM, Stano P, Marchesi E, Gambacorti-Passerini C. Constitutive activation of Jak2 contributes to proliferation and resistance to apoptosis in NPM/ALK-transformed cells. Exp Hematol 2003; 31(4):309–315.

    PubMed  CAS  Google Scholar 

  22. Krebs DL, Hilton DJ. SOCS proteins: negative regulators of cytokine signaling. Stem Cells 2001; 19(5):378–387.

    PubMed  CAS  Google Scholar 

  23. Kubo M, Hanada T, Yoshimura A. Suppressors of cytokine signaling and immunity. Nat Immunol 2003; 4(12):1169–1176.

    PubMed  CAS  Google Scholar 

  24. Yasukawa H, Sasaki A, Yoshimura A. Negative regulation of cytokine signaling pathways. Annu Rev Immunol 2000; 18:143–164.

    PubMed  CAS  Google Scholar 

  25. Neel BG, Gu H, Pao L. The “Shp”ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci 2003; 28(6):284–293.

    PubMed  CAS  Google Scholar 

  26. Stahl N, Farruggella TJ, Boulton TG, Zhong Z, Darnell JE, Jr., Yancopoulos GD. Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science 1995; 267(5202):1349–1353.

    PubMed  CAS  Google Scholar 

  27. Fuhrer DK, Feng GS, Yang YC. Syp associates with gp130 and Janus kinase 2 in response to interleukin-11 in 3T3-L1 mouse preadipocytes. J Biol Chem 1995; 270(42):24826–24830.

    PubMed  CAS  Google Scholar 

  28. Jiao H, Berrada K, Yang W, Tabrizi M, Platanias LC, Yi T. Direct association with and dephosphorylation of Jak2 kinase by the SH2-domain-containing protein tyrosine phosphatase SHP-1. Mol Cell Biol 1996; 16(12):6985–6992.

    PubMed  CAS  Google Scholar 

  29. Yin T, Shen R, Feng GS, Yang YC. Molecular characterization of specific interactions between SHP-2 phosphatase and JAK tyrosine kinases. J Biol Chem 1997; 272(2):1032–1037.

    PubMed  CAS  Google Scholar 

  30. David M, Chen HE, Goelz S, Larner AC, Neel BG. Differential regulation of the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol Cell Biol 1995; 15(12):7050–7058.

    PubMed  CAS  Google Scholar 

  31. Yetter A, Uddin S, Krolewski JJ, Jiao H, Yi T, Platanias LC. Association of the interferon-dependent tyrosine kinase Tyk-2 with the hematopoietic cell phosphatase. J Biol Chem 1995; 270(31):18179–18182.

    PubMed  CAS  Google Scholar 

  32. Tabrizi M, Yang W, Jiao H, et al. Reduced Tyk2/SHP-1 interaction and lack of SHP-1 mutation in a kindred of familial hemophagocytic lymphohistiocytosis. Leukemia 1998; 12(2):200–206.

    PubMed  CAS  Google Scholar 

  33. Yi T, Mui AL, Krystal G, Ihle JN. Hematopoietic cell phosphatase associates with the interleukin-3 (IL-3) receptor beta chain and down-regulates IL-3-induced tyrosine phosphorylation and mitogenesis. Mol Cell Biol 1993; 13(12):7577–7586.

    PubMed  CAS  Google Scholar 

  34. Migone TS, Cacalano NA, Taylor N, Yi T, Waldmann TA, Johnston JA. Recruitment of SH2-containing protein tyrosine phosphatase SHP-1 to the interleukin 2 receptor; loss of SHP-1 expression in human T-lymphotropic virus type I-transformed T cells. Proc Natl Acad Sci USA 1998; 95(7):3845–3850.

    PubMed  CAS  Google Scholar 

  35. Haque SJ, Harbor P, Tabrizi M, Yi T, Williams BR. Protein-tyrosine phosphatase Shp-1 is a negative regulator of IL-4-and IL-13-dependent signal transduction. J Biol Chem 1998; 273(51):33893–33896.

    PubMed  CAS  Google Scholar 

  36. Klingmuller U, Lorenz U, Cantley LC, Neel BG, Lodish HF. Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 1995; 80(5):729–738.

    PubMed  CAS  Google Scholar 

  37. Bittorf T, Seiler J, Zhang Z, Jaster R, Brock J. SHP1 protein tyrosine phosphatase negatively modulates erythroid differentiation and suppression of apoptosis in J2E erythroleukemic cells. Biol Chem 1999; 380(10):1201–1209.

    PubMed  CAS  Google Scholar 

  38. You M, Yu DH, Feng GS. Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway. Mol Cell Biol 1999; 19(3):2416–2424.

    PubMed  CAS  Google Scholar 

  39. Lehmann U, Schmitz J, Weissenbach M, et al. SHP2 and SOCS3 contribute to Tyr-759-dependent attenuation of interleukin-6 signaling through gp130. J Biol Chem 2003; 278(1):661–671.

    PubMed  CAS  Google Scholar 

  40. Carpenter LR, Farruggella TJ, Symes A, Karow ML, Yancopoulos GD, Stahl N. Enhancing leptin response by preventing SH2-containing phosphatase 2 interaction with Ob receptor. Proc Natl Acad Sci USA 1998; 95(11):6061–6066.

    PubMed  CAS  Google Scholar 

  41. Li C, Friedman JM. Leptin receptor activation of SH2 domain containing protein tyrosine phosphatase 2 modulates Ob receptor signal transduction. Proc Natl Acad Sci USA 1999; 96(17):9677–9682.

    PubMed  CAS  Google Scholar 

  42. Shultz LD, Schweitzer PA, Rajan TV, et al. Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell 1993; 73(7):1445–1454.

    PubMed  CAS  Google Scholar 

  43. Ohtani T, Ishihara K, Atsumi T, et al. Dissection of signaling cascades through gp130 in vivo: reciprocal roles for STAT3-and SHP2-mediated signals in immune responses. Immunity 2000; 12(1):95–105.

    PubMed  CAS  Google Scholar 

  44. Atsumi T, Ishihara K, Kamimura D, et al. A point mutation of Tyr-759 in interleukin 6 family cytokine receptor subunit gp130 causes autoimmune arthritis. J Exp Med 2002; 196(7):979–990.

    PubMed  CAS  Google Scholar 

  45. Irie-Sasaki J, Sasaki T, Matsumoto W, et al. CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 2001; 409(6818):349–354.

    PubMed  CAS  Google Scholar 

  46. Tanuma N, Nakamura K, Shima H, Kikuchi K. Protein-tyrosine phosphatase PTPepsilon C inhibits Jak-STAT signaling and differentiation induced by interleukin-6 and leukemia inhibitory factor in M1 leukemia cells. J Biol Chem 2000; 275(36):28216–28221.

    PubMed  CAS  Google Scholar 

  47. Myers MP, Andersen JN, Cheng A, et al. TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. J Biol Chem 2001; 276(51):47771–47774.

    PubMed  CAS  Google Scholar 

  48. Yasukawa H, Misawa H, Sakamoto H, et al. The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. Embo J 1999; 18(5):1309–1320.

    PubMed  CAS  Google Scholar 

  49. Nicholson SE, Willson TA, Farley A, et al. Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. Embo J 1999; 18(2):375–385.

    PubMed  CAS  Google Scholar 

  50. Sasaki A, Yasukawa H, Suzuki A, et al. Cytokine-inducible SH2 protein-3 (CIS3/SOCS3) inhibits Janus tyrosine kinase by binding through the N-terminal kinase inhibitory region as well as SH2 domain. Genes Cells 1999; 4(6):339–351.

    PubMed  CAS  Google Scholar 

  51. Sasaki A, Yasukawa H, Shouda T, Kitamura T, Dikic I, Yoshimura A. CIS3/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK2. J Biol Chem 2000; 275(38):29338–29347.

    PubMed  CAS  Google Scholar 

  52. Coux O, Tanaka K, Goldberg AL. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 1996; 65:801–847.

    PubMed  CAS  Google Scholar 

  53. Yu CL, Burakoff SJ. Involvement of proteasomes in regulating Jak-STAT pathways upon interleukin-2 stimulation. J Biol Chem 1997; 272(22):14017–14020.

    PubMed  CAS  Google Scholar 

  54. Callus BA, Mathey-Prevot B. Interleukin-3-induced activation of the JAK/STAT pathway is prolonged by proteasome inhibitors. Blood 1998; 91(9):3182–3192.

    PubMed  CAS  Google Scholar 

  55. Kamura T, Sato S, Haque D, et al. The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev 1998; 12(24):3872–3881.

    PubMed  CAS  Google Scholar 

  56. Zhang JG, Farley A, Nicholson SE, et al. The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc Natl Acad Sci USA 1999; 96(5):2071–2076.

    PubMed  CAS  Google Scholar 

  57. Ungureanu D, Saharinen P, Junttila I, Hilton DJ, Silvennoinen O. Regulation of Jak2 through the ubiquitin-proteasome pathway involves phosphorylation of Jak2 on Y1007 and interaction with SOCS-1. Mol Cell Biol 2002; 22(10):3316–3326.

    PubMed  CAS  Google Scholar 

  58. Frantsve J, Schwaller J, Sternberg DW, Kutok J, Gilliland DG. Socs-1 inhibits TEL-JAK-mediated transformation of hematopoietic cells through inhibition of JAK2 kinase activity and induction of proteasome-mediated degradation. Mol Cell Biol 2001; 21(10):3547–3557.

    PubMed  CAS  Google Scholar 

  59. Kamizono S, Hanada T, Yasukawa H, et al. The SOCS box of SOCS-1 accelerates ubiquitin-dependent proteolysis of TEL-JAK. J Biol Chem 2001; 276(16):12530–12538.

    PubMed  CAS  Google Scholar 

  60. Ali S, Nouhi Z, Chughtai N. SHP-2 regulates SOCS-1-mediated Janus kinase-2 ubiquitination/degradation downstream of the prolactin receptor. J Biol Chem 2003; 278(52):52021–52031.

    PubMed  CAS  Google Scholar 

  61. Wu C, Guan Q, Wang Y, Zhao ZJ, Zhou GW. SHP-1 suppresses cancer cell growth by promoting degradation of JAK kinases. J Cell Biochem 2003; 90(5):1026–1037.

    PubMed  CAS  Google Scholar 

  62. Ward AC, Touw I, Yoshimura A. The Jak-Stat pathway in normal and perturbed hematopoiesis. Blood 2000; 95(1):19–29.

    PubMed  CAS  Google Scholar 

  63. Russell SM, Tayebi N, Nakajima H, et al. Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 1995; 270(5237):797–800.

    PubMed  CAS  Google Scholar 

  64. Macchi P, Villa A, Giliani S, Sacco MG, Frattini A, Porta F, et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 1995; 377(6544):65–68.

    PubMed  CAS  Google Scholar 

  65. Candotti F, Oakes SA, Johnston JA, et al. Structural and functional basis for JAK3-deficient severe combined immunodeficiency. Blood 1997; 90(10):3996–4003.

    PubMed  CAS  Google Scholar 

  66. Cacalano NA, Migone TS, Bazan F, et al. Autosomal SCID caused by a point mutation in the N-terminus of Jak3: mapping of the Jak3-receptor interaction domain. Embo J 1999; 18(6):1549–1558.

    PubMed  CAS  Google Scholar 

  67. Li S, Labrecque S, Gauzzi MC, et al. The human papilloma virus (HPV)-18 E6 oncoprotein physically associates with Tyk2 and impairs Jak-STAT activation by interferon-alpha. Oncogene 1999; 18(42):5727–5737.

    PubMed  CAS  Google Scholar 

  68. Miller DM, Rahill BM, Boss JM, et al. Human cytomegalovirus inhibits major histocompatibility complex class II expression by disruption of the Jak/Stat pathway. J Exp Med 1998; 187(5):675–683.

    PubMed  CAS  Google Scholar 

  69. Luo H, Hanratty WP, Dearolf CR. An amino acid substitution in the Drosophila hopTum-1 Jak kinase causes leukemia-like hematopoietic defects. Embo J 1995; 14(7):1412–1420.

    PubMed  CAS  Google Scholar 

  70. Harrison DA, Binari R, Nahreini TS, Gilman M, Perrimon N. Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. Embo J 1995; 14(12):2857–2865.

    PubMed  CAS  Google Scholar 

  71. Benekli M, Baer MR, Baumann H, Wetzler M. Signal transducer and activator of transcription proteins in leukemias. Blood 2003; 101(8):2940–2954.

    PubMed  CAS  Google Scholar 

  72. Verma A, Kambhampati S, Parmar S, Platanias LC. Jak family of kinases in cancer. Cancer Metastasis Rev 2003; 22(4):423–434.

    PubMed  CAS  Google Scholar 

  73. Cools J, Peeters P, Voet T, et al. Genomic organization of human JAK2 and mutation analysis of its JH2-domain in leukemia. Cytogenet Cell Genet 1999; 85(3–4):260–266.

    PubMed  CAS  Google Scholar 

  74. Meydan N, Grunberger T, Dadi H, et al. Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 1996; 379(6566):645–648.

    PubMed  CAS  Google Scholar 

  75. Levitzki A. Protein tyrosine kinase inhibitors as novel therapeutic agents. Pharmacol Ther 1999; 82(2–3):231–239.

    PubMed  CAS  Google Scholar 

  76. Miyamoto N, Sugita K, Goi K, et al. The JAK2 inhibitor AG490 predominantly abrogates the growth of human B-precursor leukemic cells with 11q23 translocation or Philadelphia chromosome. Leukemia 2001; 15(11):1758–1768.

    PubMed  CAS  Google Scholar 

  77. Lacronique V, Boureux A, Valle VD, et al. A TEL-JAK fusion protein with constitutive kinase activity in human leukemia. Science 1997; 278(5341):1309–1312.

    PubMed  CAS  Google Scholar 

  78. Peeters P, Raynaud SD, Cools J, et al. Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood 1997; 90(7):2535–2540.

    PubMed  CAS  Google Scholar 

  79. Ho JM, Beattie BK, Squire JA, Frank DA, Barber DL. Fusion of the ets transcription factor TEL to Jak2 results in constitutive Jak-Stat signaling. Blood 1999; 93(12):4354–4364.

    PubMed  CAS  Google Scholar 

  80. Schwaller J, Frantsve J, Aster J, et al. Transformation of hematopoietic cell lines to growth-factor independence and induction of a fatal myelo-and lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion genes. Embo J 1998; 17(18): 5321–5333.

    PubMed  CAS  Google Scholar 

  81. Carron C, Cormier F, Janin A, et al. TEL-JAK transgenic mice develop T-cell leukemia. Blood 2000; 95(12):3891–3899.

    PubMed  CAS  Google Scholar 

  82. Goldman JM, Melo JV. Chronic myeloid leukemia—advances in biology and new approaches to treatment. N Engl J Med 2003; 349(15):1451–1464.

    PubMed  CAS  Google Scholar 

  83. Joos S, Kupper M, Ohl S, et al. Genomic imbalances including amplification of the tyrosine kinase gene JAK2 in CD30+ Hodgkin cells. Cancer Res 2000; 60(3):549–552.

    PubMed  CAS  Google Scholar 

  84. Joos S, Granzow M, Holtgreve-Grez H, et al. Hodgkin’s lymphoma cell lines are characterized by frequent aberrations on chromosomes 2p and 9p including REL and JAK2. Int J Cancer 2003; 103(4):489–495.

    PubMed  CAS  Google Scholar 

  85. Wessendorf S, Schwaenen C, Kohlhammer H, et al. Hidden gene amplifications in aggressive B-cell non-Hodgkin lymphomas detected by microarray-based comparative genomic hybridization. Oncogene 2003; 22(9):1425–1429.

    PubMed  CAS  Google Scholar 

  86. Joos S, Otano-Joos MI, Ziegler S, et al. Primary mediastinal (thymic) B-cell lymphoma is characterized by gains of chromosomal material including 9p and amplification of the REL gene. Blood 1996; 87(4):1571–1578.

    PubMed  CAS  Google Scholar 

  87. Bentz M, Barth TF, Bruderlein S, et al. Gain of chromosome arm 9p is characteristic of primary mediastinal B-cell lymphoma (MBL): comprehensive molecular cytogenetic analysis and presentation of a novel MBL cell line. Genes Chromosomes Cancer 2001; 30(4):393–401.

    PubMed  CAS  Google Scholar 

  88. Savage KJ, Monti S, Kutok JL, et al. The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood 2003; 102(12):3871–3879.

    PubMed  CAS  Google Scholar 

  89. Zhang Q, Nowak I, Vonderheid EC, et al. Activation of Jak/STAT proteins involved in signal transduction pathway mediated by receptor for interleukin 2 in malignant T lymphocytes derived from cutaneous anaplastic large T-cell lymphoma and Sezary syndrome. Proc Natl Acad Sci USA 1996; 93(17):9148–9153.

    PubMed  CAS  Google Scholar 

  90. Nielsen M, Kaltoft K, Nordahl M, et al. Constitutive activation of a slowly migrating isoform of Stat3 in mycosis fungoides: tyrphostin AG490 inhibits Stat3 activation and growth of mycosis fungoides tumor cell lines. Proc Natl Acad Sci USA 1997; 94(13):6764–6769.

    PubMed  CAS  Google Scholar 

  91. Migone TS, Lin JX, Cereseto A, et al. Constitutively activated Jak-STAT pathway in T cells transformed with HTLV-I. Science 1995; 269(5220):79–81.

    PubMed  CAS  Google Scholar 

  92. Takemoto S, Mulloy JC, Cereseto A, et al. Proliferation of adult T cell leukemia/lymphoma cells is associated with the constitutive activation of JAK/STAT proteins. Proc Natl Acad Sci USA 1997; 94(25):13897–13902.

    PubMed  CAS  Google Scholar 

  93. Liu RY, Fan C, Garcia R, Jove R, Zuckerman KS. Constitutive activation of the JAK2/STAT5 signal transduction pathway correlates with growth factor independence of megakaryocytic leukemic cell lines. Blood 1999; 93(7):2369–2379.

    PubMed  CAS  Google Scholar 

  94. Nepomuceno RR, Snow AL, Robert Beatty P, Krams SM, Martinez OM. Constitutive activation of Jak/STAT proteins in Epstein-Barr virus—infected B-cell lines from patients with posttransplant lymphoproliferative disorder. Transplantation 2002; 74(3):396–402.

    PubMed  CAS  Google Scholar 

  95. Zamo A, Chiarle R, Piva R, et al. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene 2002; 21(7):1038–1047.

    PubMed  CAS  Google Scholar 

  96. Amin HM, Medeiros LJ, Ma Y, et al. Inhibition of JAK3 induces apoptosis and decreases anaplastic lymphoma kinase activity in anaplastic large cell lymphoma. Oncogene 2003; 22(35):5399–5407.

    PubMed  CAS  Google Scholar 

  97. Wu C, Sun M, Liu L, Zhou GW. The function of the protein tyrosine phosphatase SHP-1 in cancer. Gene 2003; 306:1–12.

    PubMed  CAS  Google Scholar 

  98. Galm O, Yoshikawa H, Esteller M, Osieka R, Herman JG. SOCS-1, a negative regulator of cytokine signaling, is frequently silenced by methylation in multiple myeloma. Blood 2003; 101(7):2784–2788.

    PubMed  CAS  Google Scholar 

  99. Chen CY, Tsay W, Tang JL, et al. SOCS1 methylation in patients with newly diagnosed acute myeloid leukemia. Genes Chromosomes Cancer 2003; 37(3):300–305.

    PubMed  CAS  Google Scholar 

  100. Tartaglia M, Niemeyer CM, Fragale A, et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 2003; 34(2):148–150.

    PubMed  CAS  Google Scholar 

  101. Weber-Nordt RM, Egen C, Wehinger J, et al. Constitutive activation of STAT proteins in primary lymphoid and myeloid leukemia cells and in Epstein-Barr virus (EBV)-related lymphoma cell lines. Blood 1996; 88(3):809–816.

    PubMed  CAS  Google Scholar 

  102. Gouilleux-Gruart V, Gouilleux F, Desaint C, et al. STAT-related transcription factors are constitutively activated in peripheral blood cells from acute leukemia patients. Blood 1996; 87(5):1692–1697.

    PubMed  CAS  Google Scholar 

  103. Hayakawa F, Towatari M, Iida H, et al. Differential constitutive activation between STAT-related proteins and MAP kinase in primary acute myelogenous leukaemia. Br J Haematol 1998; 101(3):521–528.

    PubMed  CAS  Google Scholar 

  104. Xia Z, Baer MR, Block AW, Baumann H, Wetzler M. Expression of signal transducers and activators of transcription proteins in acute myeloid leukemia blasts. Cancer Res 1998; 58(14):3173–3180.

    PubMed  CAS  Google Scholar 

  105. Bowman T, Garcia R, Turkson J, Jove R. STATs in oncogenesis. Oncogene 2000; 19(21):2474–2488.

    PubMed  CAS  Google Scholar 

  106. Epling-Burnette PK, Liu JH, Catlett-Falcone R, et al. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J Clin Invest 2001; 107(3):351–362.

    PubMed  CAS  Google Scholar 

  107. Aoki Y, Feldman GM, Tosato G. Inhibition of STAT3 signaling induces apoptosis and decreases survivin expression in primary effusion lymphoma. Blood 2003; 101(4):1535–1542.

    PubMed  CAS  Google Scholar 

  108. Klein B, Zhang XG, Lu ZY, Bataille R. Interleukin-6 in human multiple myeloma. Blood 1995; 85(4):863–872.

    PubMed  CAS  Google Scholar 

  109. Hallek M, Bergsagel PL, Anderson KC. Multiple myeloma: increasing evidence for a multistep transformation process. Blood 1998; 91(1):3–21.

    PubMed  CAS  Google Scholar 

  110. Catlett-Falcone R, Landowski TH, Oshiro MM, et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999; 10(1):105–115.

    PubMed  CAS  Google Scholar 

  111. Quintanilla-Martinez L, Kremer M, Specht K, et al. Analysis of signal transducer and activator of transcription 3 (Stat 3) pathway in multiple myeloma: Stat 3 activation and cyclin D1 dysregulation are mutually exclusive events. Am J Pathol 2003; 162(5):1449–1461.

    PubMed  CAS  Google Scholar 

  112. Rawat R, Rainey GJ, Thompson CD, Frazier-Jessen MR, Brown RT, Nordan RP. Constitutive activation of STAT3 is associated with the acquisition of an interleukin 6-independent phenotype by murine plasmacytomas and hybridomas. Blood 2000; 96(10):3514–3521.

    PubMed  CAS  Google Scholar 

  113. Stahl N, Boulton TG, Farruggella T, et al. Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science 1994; 263(5143):92–95.

    PubMed  CAS  Google Scholar 

  114. Kishimoto T, Akira S, Narazaki M, Taga T. Interleukin-6 family of cytokines and gp130. Blood 1995; 86(4):1243–1254.

    PubMed  CAS  Google Scholar 

  115. Berger LC, Hawley TS, Lust JA, Goldman SJ, Hawley RG. Tyrosine phosphorylation of JAK-TYK kinases in malignant plasma cell lines growth-stimulated by interleukins 6 and 11. Biochem Biophys Res Commun 1994; 202(1):596–605.

    PubMed  CAS  Google Scholar 

  116. Ogata A, Chauhan D, Teoh G, et al. IL-6 triggers cell growth via the Ras-dependent mitogen-activated protein kinase cascade. J Immunol 1997; 159(5):2212–2221.

    PubMed  CAS  Google Scholar 

  117. Hideshima T, Chauhan D, Teoh G, et al. Characterization of signaling cascades triggered by human interleukin-6 versus Kaposi’s sarcoma-associated herpes virus-encoded viral interleukin 6. Clin Cancer Res 2000; 6(3):1180–1189.

    PubMed  CAS  Google Scholar 

  118. De Vos J, Jourdan M, Tarte K, Jasmin C, Klein B. JAK2 tyrosine kinase inhibitor tyrphostin AG490 downregulates the mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription (STAT) pathways and induces apoptosis in myeloma cells. Br J Haematol 2000; 109(4):823–828.

    PubMed  Google Scholar 

  119. Kopantzev Y, Heller M, Swaminathan N, Rudikoff S. IL-6 mediated activation of STAT3 bypasses Janus kinases in terminally differentiated B lineage cells. Oncogene 2002; 21(44):6791–6800.

    PubMed  CAS  Google Scholar 

  120. Brenne AT, Baade Ro T, Waage A, Sundan A, Borset M, Hjorth-Hansen H. Interleukin-21 is a growth and survival factor for human myeloma cells. Blood 2002; 99(10):3756–3762.

    PubMed  CAS  Google Scholar 

  121. Walters DK, Jelinek DF. A role for Janus kinases in crosstalk between ErbB3 and the interferon-alpha signaling complex in myeloma cells. Oncogene 2004; 23(6):1197–1205.

    PubMed  CAS  Google Scholar 

  122. Hirano T, Ishihara K, Hibi M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 2000; 19(21):2548–2556.

    PubMed  CAS  Google Scholar 

  123. Puthier D, Bataille R, Amiot M. IL-6 up-regulates mcl-1 in human myeloma cells through JAK / STAT rather than ras / MAP kinase pathway. Eur J Immunol 1999; 29(12):3945–3950.

    PubMed  CAS  Google Scholar 

  124. Oshiro MM, Landowski TH, Catlett-Falcone R, et al. Inhibition of JAK kinase activity enhances Fas-mediated apoptosis but reduces cytotoxic activity of topoisomerase II inhibitors in U266 myeloma cells. Clin Cancer Res 2001; 7(12):4262–4271.

    PubMed  CAS  Google Scholar 

  125. Alas S, Bonavida B. Inhibition of constitutive STAT3 activity sensitizes resistant non-Hodgkin’s lymphoma and multiple myeloma to chemotherapeutic drug-mediated apoptosis. Clin Cancer Res 2003; 9(1):316–326.

    PubMed  CAS  Google Scholar 

  126. Mitsiades CS, Mitsiades N, Poulaki V, et al. Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene 2002; 21(37):5673–5683.

    PubMed  CAS  Google Scholar 

  127. Mahboubi K, Li F, Plescia J, et al. Interleukin-11 up-regulates survivin expression in endothelial cells through a signal transducer and activator of transcription-3 pathway. Lab Invest 2001; 81(3):327–334.

    PubMed  CAS  Google Scholar 

  128. Chauhan D, Auclair D, Robinson EK, et al. Identification of genes regulated by dexamethasone in multiple myeloma cells using oligonucleotide arrays. Oncogene 2002; 21(9):1346–1358.

    PubMed  CAS  Google Scholar 

  129. Brocke-Heidrich K, Kretzschmar AK, Pfeifer G, et al. Interleukin-6-dependent gene expression profiles in multiple myeloma INA-6 cells reveal a Bcl-2 family-independent survival pathway closely associated with Stat3 activation. Blood 2004; 103(1):242–251.

    PubMed  CAS  Google Scholar 

  130. Hideshima T, Anderson KC. Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev Cancer 2002; 2(12):927–937.

    PubMed  CAS  Google Scholar 

  131. Schaper F, Gendo C, Eck M, et al. Activation of the protein tyrosine phosphatase SHP2 via the interleukin-6 signal transducing receptor protein gp130 requires tyrosine kinase Jak1 and limits acute-phase protein expression. Biochem J 1998; 335(Pt 3):557–565.

    PubMed  CAS  Google Scholar 

  132. Chauhan D, Pandey P, Hideshima T, et al. SHP2 mediates the protective effect of interleukin-6 against dexamethasone-induced apoptosis in multiple myeloma cells. J Biol Chem 2000; 275(36):27845–27850.

    PubMed  CAS  Google Scholar 

  133. Tu Y, Gardner A, Lichtenstein A. The phosphatidylinositol 3-kinase/AKT kinase pathway in multiple myeloma plasma cells: roles in cytokine-dependent survival and proliferative responses. Cancer Res 2000; 60(23):6763–6770.

    PubMed  CAS  Google Scholar 

  134. Hideshima T, Nakamura N, Chauhan D, Anderson KC. Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 2001; 20(42):5991–6000.

    PubMed  CAS  Google Scholar 

  135. Shi Y, Hsu JH, Hu L, Gera J, Lichtenstein A. Signal pathways involved in activation of p70S6K and phosphorylation of 4E-BP1 following exposure of multiple myeloma tumor cells to interleukin-6. J Biol Chem 2002; 277(18):15712–15720.

    PubMed  CAS  Google Scholar 

  136. Hsu JH, Shi Y, Hu L, Fisher M, Franke TF, Lichtenstein A. Role of the AKT kinase in expansion of multiple myeloma clones: effects on cytokine-dependent proliferative and survival responses. Oncogene 2002; 21(9):1391–1400.

    PubMed  CAS  Google Scholar 

  137. Liu Y, Rohrschneider LR. The gift of Gab. FEBS Lett 2002; 515(1–3):1–7.

    PubMed  CAS  Google Scholar 

  138. Levitzki A, Gazit A. Tyrosine kinase inhibition: an approach to drug development. Science 1995; 267(5205):1782–1788.

    PubMed  CAS  Google Scholar 

  139. Blaskovich MA, Sun J, Cantor A, Turkson J, Jove R, Sebti SM. Discovery of JSI-124 (cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Res 2003; 63(6):1270–1279.

    PubMed  CAS  Google Scholar 

  140. Sharfe N, Dadi HK, Roifman CM. JAK3 protein tyrosine kinase mediates interleukin-7-induced activation of phosphatidylinositol-3′ kinase. Blood 1995; 86(6):2077–2085.

    PubMed  CAS  Google Scholar 

  141. Wang LH, Kirken RA, Erwin RA, Yu CR, Farrar WL. JAK3, STAT, and MAPK signaling pathways as novel molecular targets for the tyrphostin AG-490 regulation of IL-2-mediated T cell response. J Immunol 1999; 162(7):3897–3904.

    PubMed  CAS  Google Scholar 

  142. Kirken RA, Erwin-Cohen R, Behbod F, Wang M, Stepkowski SM, Kahan BD. Tyrphostin AG490 selectively inhibits activation of the JAK3/STAT5/MAPK pathway and rejection of rat heart allografts. Transplant Proc 2001; 33(1–2):95.

    PubMed  CAS  Google Scholar 

  143. Gazit A, Osherov N, Posner I, et al. Tyrphostins. 2. Heterocyclic and alpha-substituted benzylidenemalononitrile tyrphostins as potent inhibitors of EGF receptor and ErbB2/neu tyrosine kinases. J Med Chem 1991; 34(6):1896–1907.

    PubMed  CAS  Google Scholar 

  144. Simon HU, Yousefi S, Dibbert B, Levi-Schaffer F, Blaser K. Anti-apoptotic signals of granulocyte-macrophage colony-stimulating factor are transduced via Jak2 tyrosine kinase in eosinophils. Eur J Immunol 1997; 27(12):3536–3539.

    PubMed  CAS  Google Scholar 

  145. Kirken RA, Erwin RA, Taub D, et al. Tyrphostin AG-490 inhibits cytokine-mediated JAK3/STAT5a/b signal transduction and cellular proliferation of antigen-activated human T cells. J Leukoc Biol 1999; 65(6):891–899.

    PubMed  CAS  Google Scholar 

  146. Burger R, Bakker F, Guenther A, et al. Functional significance of novel neurotrophin-1/B cell-stimulating factor-3 (cardiotrophin-like cytokine) for human myeloma cell growth and survival. Br J Haematol 2003; 123(5):869–878.

    PubMed  CAS  Google Scholar 

  147. Burdelya L, Catlett-Falcone R, Levitzki A, et al. Combination therapy with AG-490 and interleukin 12 achieves greater antitumor effects than either agent alone. Mol Cancer Ther 2002; 1(11):893–899.

    PubMed  CAS  Google Scholar 

  148. Nielsen M, Kaestel CG, Eriksen KW, et al. Inhibition of constitutively activated Stat3 correlates with altered Bc1-2/Bax expression and induction of apoptosis in mycosis fungoides tumor cells. Leukemia 1999; 13(5):735–738.

    PubMed  CAS  Google Scholar 

  149. Sun X, Layton JE, Elefanty A, Lieschke GJ. Comparison of effects of the tyrosine kinase inhibitors AG957, AG490, and STI571 on Bcr-Abl-expressing cells, demonstrating synergy between AG490 and STI571. Blood 2001; 97(7):2008–2015.

    PubMed  CAS  Google Scholar 

  150. Marley SB, Davidson RJ, Goldman JM, Gordon MY. Effects of combinations of therapeutic agents on the proliferation of progenitor cells in chronic myeloid leukaemia. Br J Haematol 2002; 116(1):162–165.

    PubMed  CAS  Google Scholar 

  151. Donato NJ LG, Wu JY, Estrov Z, Ford RJ, Levitzki A, Talpaz M. Targeting Jak2-dependent signaling pathways for therapeutic intervention in multiple myeloma. Blood 2002; 100(11):814a.

    Google Scholar 

  152. Kong L TM, Priebe W, Levitzki A, Aggarwal B, Fokt I, Szymanski S, Donato NJ. Novel tyrphostin analogues inhibit Stat3 activation and induce apoptosis in multiple hematological malignancies. Blood 2003; 102(11):(#4534).

    Google Scholar 

  153. Fiorucci G, Percario ZA, Marcolin C, Coccia EM, Affabris E, Romeo G. Inhibition of protein phosphorylation modulates expression of the Jak family protein tyrosine kinases. J Virol 1995; 69(9):5833–5837.

    PubMed  CAS  Google Scholar 

  154. Elder RT, Xu X, Williams JW, Gong H, Finnegan A, Chong AS. The immunosuppressive metabolite of leflunomide, A77 1726, affects murine T cells through two biochemical mechanisms. J Immunol 1997; 159(1):22–27.

    PubMed  CAS  Google Scholar 

  155. Siemasko K, Chong AS, Jack HM, Gong H, Williams JW, Finnegan A. Inhibition of JAK3 and STAT6 tyrosine phosphorylation by the immunosuppressive drug leflunomide leads to a block in IgG1 production. J Immunol 1998; 160(4):1581–1588.

    PubMed  CAS  Google Scholar 

  156. Wasik MA, Nowak I, Zhang Q, Shaw LM. Suppression of proliferation and phosphorylation of Jak3 and STAT5 in malignant T-cell lymphoma cells by derivatives of octylaminoundecyl-dimethylxanthine. Leuk Lymphoma 1998; 28(5–6):551–560.

    PubMed  CAS  Google Scholar 

  157. Ferrigni NR, McLaughlin JL, Powell RG, Smith CR, Jr. Use of potato disc and brine shrimp bioassays to detect activity and isolate piceatannol as the antileukemic principle from the seeds of Euphorbia lagascae. J Nat Prod 1984; 47(2):347–352.

    PubMed  CAS  Google Scholar 

  158. Su L, David M. Distinct mechanisms of STAT phosphorylation via the interferon-alpha/beta receptor. Selective inhibition of STAT3 and STAT5 by piceatannol. J Biol Chem 2000; 275(17):12661–12666.

    PubMed  CAS  Google Scholar 

  159. Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 2003; 23(1A):363–398.

    PubMed  CAS  Google Scholar 

  160. Natarajan C, Bright JJ. Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signaling through Janus kinase-STAT pathway in T lymphocytes. J Immunol 2002; 168(12):6506–6513.

    PubMed  CAS  Google Scholar 

  161. Bharti AC, Donato N, Aggarwal BB. Curcumin (Diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells. J Immunol 2003; 171(7):3863–3871.

    PubMed  CAS  Google Scholar 

  162. Goodman PA, Niehoff LB, Uckun FM. Role of tyrosine kinases in induction of the c-jun protooncogene in irradiated B-lineage lymphoid cells. J Biol Chem 1998; 273(28):17742–17748.

    PubMed  CAS  Google Scholar 

  163. Sudbeck EA, Liu XP, Narla RK, et al. Structure-based design of specific inhibitors of Janus kinase 3 as apoptosis-inducing antileukemic agents. Clin Cancer Res 1999; 5(6):1569–1582.

    PubMed  CAS  Google Scholar 

  164. Uckun FM, Ek O, Liu XP, Chen CL. In vivo toxicity and pharmacokinetic features of the janus kinase 3 inhibitor WHI-P131 [4-(4′shydroxyphenyl)-amino-6,7-dimethoxyquinazoline. Clin Cancer Res 1999; 5(10):2954–2962.

    PubMed  CAS  Google Scholar 

  165. Brown GR, Bamford AM, Bowyer J, et al. Naphthyl ketones: a new class of Janus kinase 3 inhibitors. Bioorg Med Chem Lett 2000; 10(6):575–579.

    PubMed  CAS  Google Scholar 

  166. Adams C, Aldous DJ, Amendola S, et al. Mapping the kinase domain of Janus Kinase 3. Bioorg Med Chem Lett 2003; 13(18):3105–3110.

    PubMed  CAS  Google Scholar 

  167. Mortellaro A, Songia S, Gnocchi P, et al. New immunosuppressive drug PNU156804 blocks IL-2-dependent proliferation and NF-kappa B and AP-1 activation. J Immunol 1999; 162(12):7102–7109.

    PubMed  CAS  Google Scholar 

  168. Stepkowski SM, Erwin-Cohen RA, Behbod F, et al. Selective inhibitor of Janus tyrosine kinase 3, PNU156804, prolongs allograft survival and acts synergistically with cyclosporine but additively with rapamycin. Blood 2002; 99(2):680–689.

    PubMed  CAS  Google Scholar 

  169. Stepkowski SM, Nagy ZS, Wang ME, et al. PNU156804 inhibits Jak3 tyrosine kinase and rat heart allograft rejection. Transplant Proc 2001;33(7–8):3272,3273.

    PubMed  CAS  Google Scholar 

  170. Wang M, Kirken R, Behbod F, Erwin-Cohen R, Stepkowski SM, Kahan BD. Inhibition of Jak3 tyrosine kinase by PNU156804 blocks rat heart allograft rejection. Transplant Proc 2001; 33(1–2):201.

    PubMed  Google Scholar 

  171. Changelian PS, Flanagan ME, Ball DJ, et al. Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science 2003; 302(5646):875–878.

    PubMed  CAS  Google Scholar 

  172. Kudlacz E, Perry B, Sawyer P, et al. The novel JAK-3 inhibitor CP-690550 is a potent immunosuppressive agent in various murine models. Am J Transplant 2004; 4(1):51–57.

    PubMed  CAS  Google Scholar 

  173. Grunberger T, Demin P, Rounova O, et al. Inhibition of acute lymphoblastic and myeloid leukemias by a novel kinase inhibitor. Blood 2003; 102(12):4153–4158.

    PubMed  CAS  Google Scholar 

  174. Thompson JE, Cubbon RM, Cummings RT, et al. Photochemical preparation of a pyridone containing tetracycle: a Jak protein kinase inhibitor. Bioorg Med Chem Lett 2002; 12(8):1219–1223.

    PubMed  CAS  Google Scholar 

  175. Levitzki A. Tyrosine kinases as targets for cancer therapy. Eur J Cancer 2002; 38(Suppl 5):S11–S18.

    PubMed  Google Scholar 

  176. Ravandi F, Talpaz M, Estrov Z. Modulation of cellular signaling pathways: prospects for targeted therapy in hematological malignancies. Clin Cancer Res 2003; 9(2):535–550.

    PubMed  CAS  Google Scholar 

  177. Ito T, May WS. Drug development train gathering steam. Nat Med 1996; 2(4):403–404.

    PubMed  CAS  Google Scholar 

  178. Lindauer K, Loerting T, Liedl KR, Kroemer RT. Prediction of the structure of human Janus kinase 2 (JAK2) comprising the two carboxy-terminal domains reveals a mechanism for autoregulation. Protein Eng 2001; 14(1):27–37.

    PubMed  CAS  Google Scholar 

  179. Giordanetto F, Kroemer RT. Prediction of the structure of human Janus kinase 2 (JAK2) comprising JAK homology domains 1 through 7. Protein Eng 2002; 15(9):727–737.

    PubMed  CAS  Google Scholar 

  180. Seidel HM, Lamb P, Rosen J. Pharmaceutical intervention in the JAK/STAT signaling pathway. Oncogene 2000; 19(21):2645–2656.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Burger, R., Gramatzki, M. (2006). JAK Kinases in Leukemias, Lymphomas, and Multiple Myeloma. In: Fabbro, D., McCormick, F. (eds) Protein Tyrosine Kinases. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-962-1:115

Download citation

Publish with us

Policies and ethics