Skip to main content

Part of the book series: Nutrition and Health ((NH))

  • 1605 Accesses

Abstract

Since the classical experiments of Otto Loewi, it has been known that acetylcholine acts as a neurotransmitter. The actions of acetylcholine are exerted on its receptors, and these receptors are subdivided according to pharmacological sensitivity to two alkaloids of natural origin—muscarine and nicotine. Although the effects of nicotine on the nervous system have been known for a number of years, research on nicotinic receptors focused mainly on the neuromuscular junction and in the neuro-neuronal synapsis in the autonomic ganglia. The actions of nicotine on the central nervous system (CNS) were largely ignored for years. In the last two decades, however, research on the effects of nicotine on the CNS has greatly increased. Recent results have revealed that there is a complex network of nicotine receptor subtypes, closely related to several neurotransmitter systems, that are able to regulate their function. This influence seems to be particularly important in the recently discovered reciprocal relationship between depression and the alterations of sleep often observed in this psychiatric disease. In this chapter we will review the current knowledge of the effects of nicotine and how it influences depression and concurrent sleep alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alkondon, M., Rocha, E. S., Maelicke, A., & Alburquerque, E. X. (1993) Diversity of nicotinic acetylcholine receptors in rat brain: V. Alpha-bungarotoxin-sensitive nicotinic receptors in olfactory bulb neurons and presynaptic modulation of glutamate release. Journal of Pharmacology and Experimental Therapeutics, 265, 1455–1473.

    CAS  Google Scholar 

  • Aramakis, V. B., & Metherate, R. (1998). Nicotine selectively enhances NMDA receptor-mediated synaptic transmission during postnatal development in sensory neocortex. Journal of Neuroscience, 18, 8485–8495.

    CAS  Google Scholar 

  • Ascher, P., Large, W. A., & Rang, H. P. (1979). Studies on the mechanism of action of acetylcholine antagonists on rat parasympathetic ganglion cells. Journal of Physiology, 295, 139–170.

    CAS  Google Scholar 

  • Benca, R. M., Obermayer, W. H., Thisted, R. A., & Gillin, J. C. (1992). Sleep and psychiatric disorders; a meta-analysis. Archives of Genetic Psychiatry, 49, 651–668.

    CAS  Google Scholar 

  • Borsini, F., & Meli, A. (1988) Is the forced swimming test a suitable model for revealing antidepressant activity? Psychopharmacology, 94, 147–160.

    Article  CAS  Google Scholar 

  • Carr, D. B., & Sesack, S. R. (2000) Projections from the rat prefrontal cortex to the ventral tegmental area: Target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. Journal of Neuroscience, 20, 3864–3873.

    CAS  Google Scholar 

  • Chávez-Noriega, L. E., Corona, J. H., Washburn, M. S., Urrutia, A., Elliot, K. J., & Johnson, E. C. (1997). Pharmacological characterization of recombinant human neuronal nicotinic acetylcholine receptors h alpha2 beta2, h alpha2-beta4, h alpha3-beta2, h alpha 3-beta 4, h alpha4-beta2, h alpha4-beta4 and h alpha7 expressed in xenopus oocytes. Journal of Pharmacology and Experimental Therapeutics, 280, 346.

    Google Scholar 

  • Corrigall, W. A., & Coen, K. M. (1991). Selective dopamine antagonists reduce nicotine self-administration. Psychopharmacology, 104, 171–176.

    Article  CAS  Google Scholar 

  • Corrigall, W. A., Coen, K. M., & Adamson, K. L. (1994). Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Research, 653, 274–278.

    Article  Google Scholar 

  • Corringer, P. J., Le Novere, N., & Changeux, J. P. (2000). Nicotinic receptors at the amino acid level. Annual Review of Pharmacology and Toxicology, 40, 431–458.

    Article  CAS  Google Scholar 

  • Covey, L. S. (1999). Tobacco cessation among patients with depression. Primary Care, 26, 691–706.

    CAS  Google Scholar 

  • Davila, D. G., Hurt, R. D., Offord, K. P., Harris, C. D., & Shepard, J. W., Jr. (1994). Acute effects of transdermal nicotine on sleep architecture, snoring, and sleep-disordered breathing in nonsmokers. American Journal of Respiratory and Critical Care Medicine, 150, 469–474.

    CAS  Google Scholar 

  • Delashaw, J. B., Foutz, A. S., Guilleminault, C., & Dement, W. C. (1979) Cholinergic mechanisms and narcolepsy in dogs. Experimental Neurology, 66, 745–757.

    Article  CAS  Google Scholar 

  • Diagnostic and Statistical Manual of Mental Disorders: DSM-IV. (1995). American Psychiatric Association. Washington, DC.

    Google Scholar 

  • DiChiara, G., & Imperato, A. (1988). Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proceedings of the National Academy of Science USA, 85, 5274–5278.

    Article  CAS  Google Scholar 

  • Djuríc, V. J., Dunn, E., Overstreet, D. H., Dragomir, A., & Steiner, M. (1999). Antidepressant effect of ingested nicotine in female rats of Flinders resistant and sensitive lines. Physiology Behavior, 67, 533–537.

    Article  Google Scholar 

  • Domino, E., & Yamamoto, K. (1965). Nicotine: Effect on the sleep cycle of the cat. Science, 150, 637–638.

    Article  CAS  Google Scholar 

  • Garzon, M., Vaughan, R. A., Uhl, G. R., Kuhar, M. J., & Pickel, V. M. (1999). Cholinergic axon terminals in the ventral tegmental area target a subpopulation of neurons expressing low levels of the dopamine transporter. Journal of Comparative and Neurology, 410, 197–210.

    Article  CAS  Google Scholar 

  • George, R., Haslett, E. L., & Jenden, D. J. (1964). A cholinergic mechanism in the brain stem reticular formation: Induction of paradoxical sleep. International Journal of Neuropharmacology, 3, 541–552.

    Article  CAS  Google Scholar 

  • Gilbert, D. G. (1979). Paradoxical tranquilizing and emotion-reducing effects of nicotine. Psychological Bulletin, 86, 643–661.

    Article  CAS  Google Scholar 

  • Giles, D. E., Jarret, R. B., Roffwarg, H. P., & Rush, A. J. (1987) Reduced rapid eye movement latency. A predictor of recurrence in depression. Neuropsychopharmacoogy, 1, 51–59.

    Google Scholar 

  • Gillin, J. C., Lardon, M., Ruiz, C., & Golshan, S. (1994). Dose-dependent effects of transdermal nicotine on early morning awakening and rapid eye movement sleep time in nonsmoking normal volunteers. Journal of Psychopharmacology, 14, 264–267.

    CAS  Google Scholar 

  • Gillin, J. C., Rapaport, M., Erman, M. K., Winocur, A., & Albala, B. J. (1997). A comparision of nefazodone and fluoxetine on mood and on objective, subjective, and clinician rated measures of sleep in depressed patients: A double-blind, 8-week clinical trial. Journal of Clinical and Psychiatry, 58, 185–192.

    CAS  Google Scholar 

  • Glassman, A. H. (1993). Cigarette smoking: Implications for psychiatric illness. American Journal of Psychiatry, 150, 546–553.

    CAS  Google Scholar 

  • Haro-Valencia, R., & Drucker-Colín, R. R. (2004). A two-year study on the effects of nicotine and its withdrawal on mood and sleep. Pharmacopsychiatry, 37, 221–227.

    Article  CAS  Google Scholar 

  • Hendrickse, W. A., Roffwarg, H. P., Grannemann, B. D., Orsulak, P. J., Armitage, R., Cain, J. W., Battaglia, J., Debus, J. R., & Rush, A. J. (1994). The effects of fluoxetine on the polysomnogram of depressed outpatients: A pilot study. Neuropsychopharmacology, 10, 85–91.

    CAS  Google Scholar 

  • Hernández-Peón, R., Chavez-Ibarra, G., Morgane, P. J., & Timo-Iaria, C. (1963). Limbic cholinergic pathways involved in sleep and emotional behavior. Experimental Neurology, 8, 93–111.

    Article  Google Scholar 

  • Hill, J. A., Zoli, M., Burgeois, J. P., & Changeux, J. P. (1993). Immunocytochemical localization of a neuronal nicotinic receptor: The beta 2 subunit. Journal of Neuroscience, 13, 1551–1568.

    CAS  Google Scholar 

  • Imperato, A., Mulas, A., & Di Chiara, G. (1986). Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats. European Journal of Pharmacology, 132, 337–338.

    Article  CAS  Google Scholar 

  • Itier, V., & Bertrand, D. (2001). Neuronal nicotinic receptors: From protein structure to function. FEBS Letters, 504, 125–128.

    Article  Google Scholar 

  • Janowsky, D. S., El-Yousef, M. K., Davis, J. M., & Sekerke, H. J. (1972). A cholinergic-adrenergic hypothesis of mania and depression. Lancet, 2, 632–635.

    Article  CAS  Google Scholar 

  • Jewett, R. E., & Norton, S. (1986). Effect of some stimulant and depressant drugs on sleep cycles of cats. Experimental Neurology, 15, 463–474.

    Article  Google Scholar 

  • Kalivas, P. W., Churchill, L., & Klitenick, M. A. (1993). GABA and enkephalin projection from the nucleus accumbens and ventral pallidum to the ventral tegmental area. Neuroscience, 57, 1047–1060.

    Article  CAS  Google Scholar 

  • Kalivas, P. W., Duffy, P., & Barrow, J. (1989). Regulation of the mesocorticolimbic dopamine system by glutamic acid receptor subtypes. Journal of Pharmacology and Experimental Therapeutics, 251, 378–387.

    CAS  Google Scholar 

  • Kalman, D. (2002). The subjective effects of nicotine: Methodological issues, a review of experimental studies, and recommendations for future research. Nicotine and Tobacco Research, 4, 25–70.

    Article  CAS  Google Scholar 

  • Ke, L., Eisenhow, C. M., Bencherif, M., & Lukas, R. J. (1998). Effects of chronic nicotine treatment on expression of diverse nicotinic acetylcholine receptor subtype: 1. Dose-and time-dependant effects of nicotine treatment Journal of Pharmacology and Experimental Therapeutics, 286, 825–840.

    CAS  Google Scholar 

  • Killen, J. D., Fortmann, S. P., Schatzberg, A., Hayward, C., & Varady, A. (2003). Onset of major depression during treatment for nicotine dependence. Addictive Behaviors, 28, 461–470.

    Article  Google Scholar 

  • Klink, R., de Kerchove, D. A., Zoli, M., & Changeux, J. P. (2001). Molecular and physiological diversity of nicotine acetylcholine receptor in the midbrain dopaminergic nuclei. Journal of Neuroscience, 21, 1452–1463.

    CAS  Google Scholar 

  • Lief, H. I. (1996). Bupropion treatment of depression to assist smoking cessation. American Journal of Psychiatry, 153(3), 442.

    CAS  Google Scholar 

  • Louis, M., & Clarke, P. B. (1998). Effect of ventral tegmental 6-hydroxydopamine lesions on the locomotor stimulant action of nicotine in rats. Neuropharmacology, 37(12), 1503–1513.

    Article  CAS  Google Scholar 

  • Mansvelder, H. D., Keath, J. R., & McGehee, D. S. (2002). Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron, 33, 905–919.

    Article  CAS  Google Scholar 

  • Markou, A. Kosten, T. R., & Koob, G. F. (1998). Neurobiological similarities in depression and drug dependence: A self-medication hypothesis. Neuropsychopharmacology, 18, 135–174.

    Article  CAS  Google Scholar 

  • Martínez-González, D., Prospéro-García, O., Mihailescu, S., & Drucker-Colín, R. (2002). Effects of nicotine on alcohol intake in a rat model of depression. Pharmacology, Biochemistry and Behavior, 72, 355–364.

    Article  Google Scholar 

  • Mihailescu, S. & Drucker-Colín, R. R. (2000). Nicotine, brain nicotine receptors and neuropsychiatric disorders. Archives of Medical Research, 31, 131–144.

    Article  CAS  Google Scholar 

  • Mihailescu, S., Palomero-Rivero, M., Meade-Huerta, P., Maza-Flores, A., & Drucker-Colín, R. (1998). Effects of nicotine and mecamylamine on rat dorsal raphe neurons. European Journal of Pharmacology, 360, 31–36.

    Article  CAS  Google Scholar 

  • Moreno, A., Calderón, M. C., & Drucker-Colín, R. (2005). Long-term study of mood and sleep of chronic smokers during abstinence. Addiction (submitted).

    Google Scholar 

  • Nisell, M., Nomikos, G. G., & Svensson, T. H. (1994). Systemic nicotine-induced dopamine release in the rat nucleus accumbens is regulated by nicotinic receptors in the ventral tegmental area. Synapse, 16, 36–44.

    Article  CAS  Google Scholar 

  • Overstreet, D. H. (1986). Selective breeding for increased cholinergic function: Development of a new model of depression. Biology Psychiatry, 21, 49–58.

    Article  CAS  Google Scholar 

  • Picciotto, M. R., Solí, M., Rimondini, R., Lena, C., Marubio, L. M., Pich, E. M., Fuxe, K., & Changeux, J. P. (1998). Acetylcholine receptors containing the beta2 subunit are involved in reinforcing properties of nicotine. Nature, 391, 173–177.

    Article  CAS  Google Scholar 

  • Pidoplichco, V. I., DeBiasi, M., Williams, J. T., & Dani, J. A. (1997). Nicotine activates and desensitizes midbrain dopamine neurons. Nature, 390, 401–404.

    Article  CAS  Google Scholar 

  • Porsolt, R., Le Pichon, M., & Jalfre, M. (1977). Depression: A new animal model sensitive to antidepressant treatmenta. Nature, 266, 730–732.

    Article  CAS  Google Scholar 

  • Sacaan, A. I., Reid, R. T., Santori, E. M., Adams, P., Correa, L. D., Mahaffy, L. S., Bleicher, L., Oxford, N. D., Stauderman, K. A., McDonald, I. A., Rao, T. S., & Lloyd, G. K. (1997). Pharmacological characterization of SIB-1765F: A novel cholinergic ion channel agonist. Journal of Pharmacology and Experimental Therapeutics, 280, 373.

    CAS  Google Scholar 

  • Salín-Pascual, R. J., De la Fuente, J. R., Galicia Polo, L., & Drucker-Colín, R. R. (1995). Effects of transdermal nicotine on mood and sleep in nonsmoking major depressed patients. Psychopharmacology, 121, 476–479.

    Article  Google Scholar 

  • Salín-Pascual, R. J., & Drucker-Colín, R. R. (1998). A novel effect of nicotine on mood and sleep in major depression. Neuroreport, 9, 57–60.

    Article  Google Scholar 

  • Salín-Pascual, R. J., Moro Lopez, M. L., González Sánchez, H., & Blanco Centurión, C. (1999). Changes in sleep after acute and repeated administration of nicotine in the rat. Psychopharmacology, 145, 133–138.

    Article  Google Scholar 

  • Semba, J., Mataki, C., Yamada, S., Nankai, M., & Toru, M. (1998). Antidepressant-like effects of chronic nicotine on learned helplessness paradigm in rats. Biology Psychiatry, 43, 389–391.

    Article  CAS  Google Scholar 

  • Tao, T. S., Correa, L. D., Adams, P., Santori, E. M., & Sacaan, A. I. (2003). Pharmacological characterization of dopamine, norepinephrine and serotonin in the rat prefrontal cortex by neuronal nicotinic acetylcholine receptor agonists. Brain Research, 990, 203–208.

    Article  CAS  Google Scholar 

  • Tsoh, J. Y., Humfleet, G. L., Munoz, R. F., Reus, V. I., Hartz, D. T., & Hall, S. M. (2000). Development of major depression after treatment for smoking cessation. American Journal of Psychiatry 157(3), 368–374.

    Article  CAS  Google Scholar 

  • Tzschentke, T. M. (2001). Pharmacology and behavioral pharmacology of the mesocortical dopamine system. Progress in Neurobiology, 63(3), 241–320.

    Article  CAS  Google Scholar 

  • Umbriaco, D., Garcia, S., Beaulieu, C., & Descarries, L. (1995). Relational features of acetylcholine, noradrenaline, serotonion and GABA axon terminal in the striatum radiatum of adult rat hippocampus (CA1). Hippocampus, 5, 605–620.

    Article  CAS  Google Scholar 

  • Vázquez-Palacios, G., Bonilla-Jaime, H., & Velázquez-Moctezuma, J. (2004). Antidepressant-like effects of the acute and chronic administration of nicotine in the rat forced swimming test and its interaction with flouxetine. Pharmacology, Biochemistry and Behavior, 78, 165–169.

    Article  CAS  Google Scholar 

  • Vázquez-Palacios, G., Bonilla-Jaime, H., & Velázquez-Moctezuma, J. (2005). Antidepressant effects of nicotine and fluoxetine in an animal model of depression induced by neonatal treatment with clomipramine. Progress in Neuropsychopharmacology and Biological Psychiatry, 29, 39–46.

    Article  CAS  Google Scholar 

  • Velázquez-Moctezuma, J., Shalauta, M. D., Gillin, J. C., & Shiromani, P. J. (1990) Microinjection of nicotine in the medial pontine reticular formation elicits REM sleep. Neuroscience Letters, 115, 265–268.

    Article  Google Scholar 

  • Velázquez-Moctezuma, J., Shiromani, P. J. & Gillin, J. C. (1990). Acetylcholine and acetylcholine receptor subtypes in REM sleep generation. Progress in Brain Research, 84, 407–413.

    Article  Google Scholar 

  • Vezina, P., Herve, D., Glowinski, J., & Tassin, J. P. (1994). Injections of 6-OHDA into the ventral tegmental area destroy mesocorticolimbic dopamine neurons but spare the locomotor activating effects of nicotine. Neuroscience Letters, 168, 11–114.

    Article  Google Scholar 

  • Vizi, E. S., & Kiss, J. P. (1998). Neurochemistry and pharmacology of the major hippocampal transmitter systems: Synaptic and nonsynaptic interactions. Hippocampus, 8, 566–607.

    Article  CAS  Google Scholar 

  • Vizi, E. S., & Labos, E. (1991). Nonsynaptic interactions at presynaptic level. Progress in Neurobiology, 37, 145–163.

    Article  CAS  Google Scholar 

  • Vizi, E. S., & Lendvai, B. (1999). Modulatory role of presynaptic nicotinic receptors in synaptic and nonsynaptic chemical communication in the central nervous system. Brain Research Reviews, 30, 219–235.

    Article  CAS  Google Scholar 

  • Vogel, G., Hartley, P., Neill, D., Hagler, M., & Kors, D. (1990). A new animal model of endogenous depression: A summary of present finding. Neuroscience Biobehavior Review, 14, 85–91.

    Article  CAS  Google Scholar 

  • Wada, E., Wada, K., Boulter, J., Deneris, E., Heinemann, S., Patrick, J., & Swanson, L. W. (1989). Distribution of alpha2, alpha3, alpha 4 and beta 2 nicotinic receptor subunit mRNAs in the central nervous system: A hybridization histochemical study in the rat. Journal of Comparative Neurology, 284, 314.

    Article  CAS  Google Scholar 

  • Whiting, P., & Lindstrom, J. (1986). Pharmacological properties of immuno-isolated neuronal acetylcholine receptors. Journal of Neuroscience, 6, 3061.

    CAS  Google Scholar 

  • Willner, P. (1991). Behavioral models in psychopharmacology. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Wonnacott, S. (1997). Presynaptic nicotinic Ach receptors. Trends in Neuroscience, 20, 92–98.

    Article  CAS  Google Scholar 

  • Yang, X., Criswell, H. E., & Breese, G. R. (1996). Nicotine-induced inhibition in medial septum involves activation of presynaptic nicotinic cholinergic receptors on gamma-aminobutyric acid-containing neurons. Journal of Pharmacology and Experimental Therapeutics, 276, 482–489.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Velázquez-Moctezuma, J., Drucker-Colín, R. (2006). Nicotine, Sleep, and Depression. In: Yehuda, S., Mostofsky, D.I. (eds) Nutrients, Stress, and Medical Disorders. Nutrition and Health. Humana Press. https://doi.org/10.1385/1-59259-952-4:231

Download citation

Publish with us

Policies and ethics