Effect of Dietary Hypercholesteremia on Host Immune Response

  • Roger M. Loria
Part of the Nutrition and Health book series (NH)


Although the concept of immunonutrition as a subject area and its use (Calder & Kew, 2002) is a relatively recent one, Hippocrates recognized a linkage between nutrition and good health in the following: “If we could give every individual the right amount of nourishment, and exercise, not too little and not too much, we would have found the safest way to health.” Many have documented the specific connection between nutrition host resistance and immunity (Field, 2000; Field, Johnson, & Schley, 2002).


Lipid Raft Host Resistance Mouse Hepatitis Virus Infectious Unit Control Normal Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarwal, V., Gupta, B., Singhal, U., & Bajpai, S. K. (1997). Examination stress: Changes in serum cholesterol, triglycerides and total lipids. Indian Journal of Physiology and Pharmacology, 41(4), 404–408.Google Scholar
  2. Alonso, M. A. & Millan, J. (2001). The role of lipid rafts in signaling and membrane trafficking in T lymphocytes. Journal of Cell Science 114(Pt. 22), 3957–3965.Google Scholar
  3. Bene, L., Balazs, M., Matko, J., Most, J., Dierich, M. P., Szollosi, J., & Damjanovich, S. (1994). Lateral organization of the ICAM-1 molecule at the surface of human lymphoblasts: A possible model for its co-distribution with the IL-2 receptor, class I and class II HLA molecules. European Journal of Immunology, 24(9), 2115–2123.CrossRefGoogle Scholar
  4. Bianca de Juarez, M., Iglesias, R., Scoppa, H. G., Agnelli, H., & Gauna, H. F. (2000). Cholesterolemia and arterial pressure levels. Relationship with different chronic stress configurations. Revista de la Facultad de Ciencias Medicas de la Universidad Nacional. de Cordoba, 57(2), 227–237.Google Scholar
  5. Bodnar, A., Bacso, Z., Enei, A. Jovin, T. M., Edidin, M., Damjanovich, S., & Matko, J. (2003). Class I HLA oligomerization at the surface of B cells is controlled by exogenous beta(2)-microglobulin: Implications in activation of cytotoxic T lymphocytes. International Immunology, 15(3), 331–339.CrossRefGoogle Scholar
  6. Bodnar, A., Jenei, A., Bene, L., Damjanovich, S., & Matko, J. (1996). Modification of membrane cholesterol level affects expression and clustering of class I HLA molecules at the surface of JY human lymphoblasts. Immunology Letters, 54(2–3), 221–226.CrossRefGoogle Scholar
  7. Brennan, F. X., Jr., Fleshner, M., Watkins, L. R., & Maier, S. F. (1996). Macrophage stimulation reduces the cholesterol levels of stressed and unstressed rats. Life Science, 58(20), 1771–1776.CrossRefGoogle Scholar
  8. Calder, P. C. (2003). Immunonutrition. British Medical Journal, 327(7407), 117–118.CrossRefGoogle Scholar
  9. Calder, P. C., & Kew, S. (2002). The immune system: A target for functional foods? The British Journal of Nutrition, 88(Suppl 2.), S165–77.CrossRefGoogle Scholar
  10. Campbell, A. E., Loria, R. M., & Madge, G. E. (1976). Infection of hypercholesterolemic mice with coxsackievirus B. Journal of Infectious Disease, 133(6), 655–662.Google Scholar
  11. Campbell, A. E., Loria, R. M., & Madge, G. E. (1978). Coxsackievirus B cardiopathy and angiopathy in the hypercholesteremic host. Atherosclerosis 31(3), 295–306.CrossRefGoogle Scholar
  12. Campbell, A. E., Loria, R. M., Madge, G. E., & Kaplan, A. M. (1982). Dietary hepatic cholesterol elevation: Effects on coxsackievirus B infection and inflammation.” Infection and Immunity, 37(1), 307–317.Google Scholar
  13. Edidin, M. (2003). The state of lipid rafts: From model membranes to cells. Annual Review of Biophysics and Biomolecular Structure, 32, 257–283.CrossRefGoogle Scholar
  14. Eggesbo, J. B., Hagve, T. A., Borsum, K., Hostmark, A. T., Hjermann, I., & Kierulf, P. (1996). Lipid composition of mononuclear cell membranes and serum from persons with high or low levels of serum HDL cholesterol. Scandinavian Journal of Clinical and Laboratory Investigation, 56(3), 199–210.Google Scholar
  15. Eggesbo, J. B., Hjermann, I, Joo, G. B., Ovstebo, R., & Kierulf, P. (1995). LPS-induced release of EGF, GM-CSF, GRO alpha, LIF, MIP-1 alpha and PDGF-AB in PBMC from persons with high or low levels of HDL lipoprotein. Cytokine, 7(6), 562–567.CrossRefGoogle Scholar
  16. Eggesbo, J. B., Hjermann, I., Lund, P. K., Joo, G. B., Ovstebo, R., & Kierulf, P. (1994). LPS-induced release of IL-1 beta, IL-6, IL-8, TNF-alpha and sCD14 in whole blood and PBMC from persons with high or low levels of HDL-lipoprotein. Cytokine, 6(5), 521–529.CrossRefGoogle Scholar
  17. Feo, F., Canuto, R. A., Torrielli, M. V., Garcea, R., & Dianzani, M. U. (1976). Effect of a cholesterol-rich diet on cholesterol content and phagocytic activity of rat macrophages. Agents Actions, 6(1–3), 135–142.CrossRefGoogle Scholar
  18. Field, C. J. (2000). Use of T cell function to determine the effect of physiologically active food components. American Journal of Clinical Nutrition, 71(6 Suppl), 1720S–1727S.Google Scholar
  19. Field, C. J., Johnson, I. R., & Schley, P. D. (2002). Nutrients and their role in host resistance to infection. Journal of Leukocyte Biology, 71(1), 16–32.Google Scholar
  20. Gibson Wood, W., Eckert, G. P., Igbavboa, U., Muller, W. E., & Walter E. (2003). Amyloid beta-protein interactions with membranes and cholesterol: Causes or casualties of Alzheimer’s disease. Biochimica et Biophysica Acta, 1610(2), 281–290.CrossRefGoogle Scholar
  21. Kaplan, A. M., Bear, H. D., Kirk, L., Cummins, C., & Mohanakumar, T. (1978). Relationship of expression of a cell-surface antigen on activated murine macrophages to tumor cell cytotoxicity.” Journal of Immunology, 120(6), 2080–2085.Google Scholar
  22. Knoflach, M., Mayrl, B., Mayerl, C., Sedivy, R., & Wick, G. (2003). Atherosclerosis as a paradigmatic disease of the elderly: Role of the immune system. Immunology and Allergy Clinics of North America, 23(1), 117–132.CrossRefGoogle Scholar
  23. Kos, W. L., Kos, K. A., & Kaplan, A. M. (1984). Impaired function of immune reactivity to Listeria monocytogenes in diet-fed mice. Infection and Immunity, 43(3), 1094–1096.Google Scholar
  24. Kos, W. L., Loria, R. M., Snodgrass, M. J., Cohen, D., Thorpe, T. G., & Kaplan, A. M. (1979). Inhibition of host resistance by nutritional hypercholesteremia. Infection and Immunity, 26(2), 658–667.Google Scholar
  25. Kwik, J., Boyle, S., Fooksman, D., Margolis, L., Sheetz, M. P., & Edidin, M. (2003). Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin. Proceedings of the National Academy of Sciences of the United States of America, 100(24), 13,964–13,969.CrossRefGoogle Scholar
  26. Larbi, A., Douziech, N., Dupuis, G., Khalil, A., Pelletier, H., Guerard, K. P., & Fulop, T., Jr. (2004). Age-associated alterations in the recruitment of signal-transduction proteins to lipid rafts in human T lymphocytes. Journal of Leukocyte Biology, 75(2), 373–381.CrossRefGoogle Scholar
  27. Larbi, A., Douziech, N., Khalil, A., Dupuis, G., Gherairi, S., Guerard, K. P., & Fulop, T., Jr. (2004). Effects of methyl-beta-cyclodextrin on T lymphocytes lipid rafts with aging. Experimental Gerontology, 39(4), 551–558.CrossRefGoogle Scholar
  28. Loria, R. M. (1986). Coxsackievirus B, lipids, and immunity as shared determinants in diabetes and atherosclerosis. In A. Szentivanyi & H. Friedman (Eds.), Viruses, immunity, and immunodeficiency. New York: Plenum.Google Scholar
  29. Loria, R. M., Kibrick, S., & Madge, G. E. (1976). Infection of hypercholesterolemic mice with coxsackievirus B. Journal of Infectious Diseases, 133(6), 655–662.Google Scholar
  30. Loria, R. M., Kos, W. L., Campbell, A. E., & Madge, G. E. (1979). Suppression of aortic elastic tissue autofluorescence for the detection of viral antigen. Histochemistry, 61(2), 151–155.CrossRefGoogle Scholar
  31. Ludewig, B., Jaggi, M., Dumrese, T., Brduscha-Riem, K., Odermatt, B., Hengartner, H., & Zinkernagel, R. M. (2001). Hypercholesterolemia exacerbates virus-induced immunopathologic liver disease via suppression of antiviral cytotoxic T cell responses. Journal of Immunology, 166(5), 3369–3376.Google Scholar
  32. McLaurin, J., Darabie, A. A., & Morrison, M. R. (2003). Cholesterol, a modulator of membrane-associated Abeta-fibrillogenesis. Pharmacopsychiatry, 36(Suppl 2), S130–135.Google Scholar
  33. Miles, E. A., Allen, E., & Calder, P. C. (2002). In vitro effects of eicosanoids derived from different 20-carbon Fatty acids on production of monocyte-derived cytokines in human whole blood cultures. Cytokine, 20(5), 215–223.CrossRefGoogle Scholar
  34. Miles, E. A., Aston, L., & Calder, P.C. (2003). In vitro effects of eicosanoids derived from different 20-carbon fatty acids on T helper type 1 and T helper type 2 cytokine production in human whole-blood cultures. Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology, 33(5), 624–632.Google Scholar
  35. Millan, J., Montoya, M. C., Sancho, D., Sanchez-Madrid, F., & Alonso, M. A. (2002). Lipid rafts mediate biosynthetic transport to the T lymphocyte uropod subdomain and are necessary for uropod integrity and function. Blood, 99(3), 978–984.CrossRefGoogle Scholar
  36. Minick, C. R., Murphy, G. E., & Campbell, W. G., Jr. (1996). Experimental induction of athero-arteriosclerosis by the synergy of allergic injury to arteries and lipid-rich diet. I. Effect of repeated injections of horse serum in rabbits fed a dietary cholesterol supplement. The Journal of Experimental Medicine, 124(4), 635–652.CrossRefGoogle Scholar
  37. Padgett, D. A., Loria, R. M., & Sheridan, J. F. (2000). Steroid hormone regulation of antiviral immunity. Annals of the New York Academy of Sciences, 917, 935–943.CrossRefGoogle Scholar
  38. Pereira, C. A., Steffan, A. M., Koehren, F., Douglas, C. R., & Kirn, A. (1987). Increased susceptibility of mice to MHV 3 infection induced by hypercholesterolemic diet: Impairment of Kupffer cell function. Immunobiology, 174(3), 253–265.Google Scholar
  39. Selye, H. (1936). A syndrome produced by diverse nocuous agents. Nature, 138, 32.Google Scholar
  40. Sheridan, J. F., Dobbs, C., Jung, J., Chu, X., Konstantinos, A., Padgett, D., & Glaser, R (1998). Stress-induced neuroendocrine modulation of viral pathogenesis and immunity. Annals of the New York Academy of Sciences, 840, 803–808.CrossRefGoogle Scholar
  41. Sheridan, J. F., Stark, J. L., Avitsur, R., & Padgett, D. A. (2000). Social disruption, immunity, and susceptibility to viral infection. Role of glucocorticoid insensitivity and NGF. Annals of the New York Academy of Sciences, 917, 894–905.CrossRefGoogle Scholar
  42. Sniezek, L. J., & Loria, R. M. (1977). Coxsackie B5 virus in the hypercholesteremic mouse. Virginia Commonwealth University, Masters dissertation.Google Scholar
  43. Sparks, D. L., Kuo, Y. M., Roher, A., Martin, T., & Lukas, R. J. (2000). Alterations of Alzheimer’s disease in the cholesterol-fed rabbit, including vascular inflammation. Preliminary observations. Annals of the New York Academy of Sciences, 903, 335–344.CrossRefGoogle Scholar
  44. Thomas, P. D., Goodwin, J. M., & Goodwin, J. S. (1985). Effect of social support on stress-related changes in cholesterol level, uric acid level, and immune function in an elderly sample. American Journal of Psychiatry, 142(6), 735–737.Google Scholar
  45. Yip, C. M., Darabie, A. A., & McLaurin, J. (2002). Abeta42-peptide assembly on lipid bilayers. Journal of Molecular Biology, 318(1), 97–107.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • Roger M. Loria
    • 1
  1. 1.Department of Microbiology and ImmunologyVirginia Commonwealth UniversityRichmond

Personalised recommendations