Skip to main content

Hypocretin Receptor-Activated G Proteins Revealed by [35S]GTPγS Autoradiography

  • Chapter
The Orexin/Hypocretin System

Abstract

The focus of this chapter is the hypocretin (orexin) ligand-receptor system as quantitatively characterized by [35S]guanylyl 5′-(γ-thio) triphosphate ([35S]GTPγS) autoradiography. We highlight future ways in which hypocretin-stimulated [35S]GTPγS binding may provide insights into functional roles of the hypocretinergic system. For a comprehensive discussion of [35S]GTPγS binding and autoradiography, the reader is referred to recent reviews (14).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harrison, C. and Traynor, J.R. (2003) The [35S]GTPγS binding assay: approaches and applications in pharmacology. Life Sci. 74, 489–508.

    Article  PubMed  CAS  Google Scholar 

  2. Laitinen, J.T. (2004) [35S]GTPγS autoradiography: a powerful functional approach with expanding potential for neuropharmacological studies on receptors coupled to Gi family of G proteins. Curr. Neuropharmacol. 2, 191–206.

    Article  CAS  Google Scholar 

  3. Milligan, G. (2003) Principles: extending the utility of [35S]GTPγS binding assays. Trends Pharmacol. Sci. 24, 87–90.

    Article  PubMed  CAS  Google Scholar 

  4. Sóvágó, J., Dupuis, D.S., Gulyás, B., and Hall, H. (2001) An overview on functional receptor autoradiography using [35S]GTPγS. Brain Res. Rev. 38, 149–164.

    Article  PubMed  Google Scholar 

  5. Jenkinson, D.H. (2003) Classical approaches to the study of drug-receptor interactions, in Textbook of Receptor Pharmacology, 2nd ed. (Foreman, J.C. and Johansen, T. eds.) CRC, Boca Raton, pp. 3–78.

    Google Scholar 

  6. Langley, J.N. (1906) On nerve endings and on special excitable substances in cells. Proc. R. Soc. Lond. Ser. B 78, 170–194.

    CAS  Google Scholar 

  7. Ehrlich, P. (1913) Address in pathology on chemotherapeutics: scientific principles, methods, and results. Lancet 2, 445–446.

    Google Scholar 

  8. Clark, A.J. (1926) The reaction between acetyl choline and muscle cells. J. Physiol. 61, 530–546.

    PubMed  CAS  Google Scholar 

  9. Paton, W.D. and Rang, H.P. (1965) The uptake of atropine and related drugs by intestinal smooth muscle of the guinea-pig in relation to acetylcholine receptors. Proc. R. Soc. Lond. Ser. B 163, 1–44.

    Article  CAS  Google Scholar 

  10. Potter, L.T. (1967) Uptake of propranolol by isolated guinea-pig atria. J. Pharmacol. Exp. Ther. 155, 91–100.

    PubMed  CAS  Google Scholar 

  11. Kuhar, M.J. (1978) Histological localization of neurotransmitter receptors, in Neurotransmitter Receptor Binding (Yamamura, H.I., Enna, S.J., and Kuhar, M.J., eds.) Raven, New York, pp. 113–126.

    Google Scholar 

  12. Sim, L.J., Selley, D.E., and Childers, S.R. (1995) In vitro autoradiography of receptor-activated G proteins in rat brain by agonist-stimulated guanylyl 5′-[γ-[35S]thio]-triphosphate binding. Proc. Natl. Acad. Sci. U S A 92, 7242–7246.

    Article  PubMed  CAS  Google Scholar 

  13. Capece, M.L., Baghdoyan, H.A., and Lydic, R. (1998) Opioids activate G proteins in REM sleeprelated brain stem nuclei of rat. Neuroreport; 9, 3025–3028.

    Article  PubMed  CAS  Google Scholar 

  14. Capece, M.L., Baghdoyan, H.A., and Lydic, R. (1998) Carbachol stimulates [35S]guanylyl 5′-(γ-thio)-triphosphate binding in rapid eye movement sleep-related brainstem nuclei of rat. J. Neurosci. 18, 3779–3785.

    PubMed  CAS  Google Scholar 

  15. DeMarco, G.J., Baghdoyan, H.A., and Lydic, R. (2003) Differential cholinergic activation of G proteins in rat and mouse brainstem: relevance for sleep and nociception. J. Comp. Neurol. 457, 175–184.

    Article  PubMed  CAS  Google Scholar 

  16. DeMarco, G.J., Baghdoyan, H.A., and Lydic, R. (2004) Carbachol in the pontine reticular formation of C57BL/6J mouse decreases acetylcholine release in prefrontal cortex. Neuroscience. 123, 17–29.

    Article  PubMed  CAS  Google Scholar 

  17. Douglas, C.L., DeMarco, G.J., Baghdoyan, H.A., and Lydic, R. (2004) Pontine and basal forebrain cholinergic interaction: implications for sleep and breathing. Respir. Physiol. Neurobiol. 143, 251–262.

    Article  PubMed  CAS  Google Scholar 

  18. Sim-Selley, L.J., Vogt, L.J., Xiao, R., Childers, S.R., and Selley, D.E. (2000) Region-specific changes in 5-HT1A receptor-activated G-proteins in rat brain following chronic buspirone. Eur. J. Pharmacol. 389, 147–153.

    Article  PubMed  CAS  Google Scholar 

  19. Waeber, C. and Moskowitz, M.A. (1997) 5-Hydroxytryptamine1A and 5-hydroxytryptamine1B receptors stimulated [35S]guanosine-5′-O-(3-thio)triphosphate binding to rodent brain sections as visualized by in vitro autoradiography. Mol. Pharmacol. 52, 623–631.

    PubMed  CAS  Google Scholar 

  20. Laitinen, J.T., and Jokinen, M. (1998) Guanosine 5′-(γ-[35S]thio)triphosphate autoradiography allows selective detection of histamine H3 receptor-dependent G protein activation in rat brain tissue sections. J. Neurochem. 71, 808–816.

    Article  PubMed  CAS  Google Scholar 

  21. Breivogel, C.S., Childers, S.R., Deadwyler, S.A., Hampson, R.E., Vogt, L. J., and Sim-Selley, L.J. (1999) Chronic Δ9-tetrahydrocannabinol treatment produces a time-dependent loss of cannabinoid receptors and cannabinoid receptor-activated G proteins in rat brain. J. Neurochem. 73, 2447–2459.

    Article  PubMed  CAS  Google Scholar 

  22. He, L., Di Monte, D.A., Langston, J.W., and Quik, M. (2000) Autoradiographic analysis of dopamine receptor-stimulated [35S]GTPγS binding in rat striatum. Brain Res. 885, 133–136.

    Article  PubMed  CAS  Google Scholar 

  23. Laitinen, J.T. (1999) Selective detection of adenosine A1 receptor-dependent G protein activity in basal and stimulated conditions of rat brain [35S]guanosine 5′-(γ-thio)triphosphate autoradiography. Neuroscience. 90, 1265–1279.

    Article  PubMed  CAS  Google Scholar 

  24. Tanase, D., Martin, W.A., Baghdoyan, H.A., and Lydic, R. (2001) G protein activation in rat ponto-mesencephalic nuclei is enhanced by combined treatment with a mu opioid and an adenosine A1 receptor agonist. Sleep. 24, 52–62.

    PubMed  CAS  Google Scholar 

  25. Bernard, R., Lydic, R., and Baghdoyan, H.A. (2002) Hypocretin-1 activates G proteins in arousal-related brainstem nuclei of rat. Neuroreport. 13, 447–450.

    Article  PubMed  CAS  Google Scholar 

  26. Bernard, R., Lydic, R., and Baghdoyan, H.A. (2003) Hypocretin-1 causes G protein activation and increases ACh release in rat pons. Eur. J. Neurosci. 18, 1775–1785.

    Article  PubMed  Google Scholar 

  27. Zhu, Y., Miwa, Y., Yamanaka, A., et al. (2003) Orexin receptor type-1 couples exclusively to pertussis toxin-insensitive G-proteins, while orexin receptor type-2 couples to both pertussis toxin-sensitive and-insensitive G-proteins. J. Pharmacol. Sci. 92, 259–266.

    Article  PubMed  CAS  Google Scholar 

  28. Gilman, A.G. (1987) G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 56, 615–649.

    Article  PubMed  CAS  Google Scholar 

  29. Sim, L.J., Selley, D.E., and Childers, S.R. (1997) Autoradiographic visualization in brain of receptor-G protein coupling using [35S]GTPγS binding. Methods Mol. Biol. 83, 117–132.

    PubMed  CAS  Google Scholar 

  30. Zarbin, M.A., Palacios, J.M., Wamsley, J.K., and Kuhar, M.J. (1983) Axonal transport of beta-adrenergic receptors. Mol. Pharmacol. 24, 341–348.

    PubMed  CAS  Google Scholar 

  31. Kruzich, P.J., Chen, A.C.H., Unterwald, E.M., and Kreek, M.J. (2003) Subject-regulated dosing alters morphine self-administration behavior and morphine-stimulated [35S]GTPγS binding. Synapse. 47, 243–249.

    Article  PubMed  CAS  Google Scholar 

  32. Sim, L.J., Selley, D.E., Dworkin, S.I., and Childers, S.R. (1996) Effects of chronic morphine administration on μ opioid receptor-stimulated [35S]GTPγS autoradiography in rat brain. J. Neurosci. 16, 2684–2692.

    PubMed  CAS  Google Scholar 

  33. Hopkins, A.L. and Groom, C.R. (2002) The druggable genome. Nat. Rev. Drug Discov. 1, 727–730.

    Article  PubMed  CAS  Google Scholar 

  34. Saland, L.C., Abeyta, A., Frausto, S., et al. (2004) Chronic ethanol consumption reduces δ-and μ-opioid receptor-stimulated G-protein coupling in rat brain. Alcohol Clin. Exp. Res. 28, 98–104.

    Article  PubMed  CAS  Google Scholar 

  35. Olianas, M.C., and Onali, P. (1993) Synergistic interaction of muscarinic and opioid receptors with Gs-linked neurotransmitter receptors to stimulate adenylyl cyclase activity in rat olfactory bulb. J. Neurochem. 61, 2183–2190.

    Article  PubMed  CAS  Google Scholar 

  36. Shiba, T., Ozu, M., Yoshida, Y., Mignot, E., and Nishino, S. (2002) Hypocretin stimulates [35S]GTPγS binding in hcrtr 2-transfected cell lines and in brain homogenate. Biochem. Biophys. Res. Commun. 294, 615–620.

    Article  PubMed  CAS  Google Scholar 

  37. Adlersberg, M., Arango, V., Hsiung, S.C., et al. (2000) In vitro autoradiography of serotonin 5-HT2A/2C receptor-activated G protein: guanosine-5′-(γ-[35S]thio)triphosphate binding in rat brain. J. Neurosci. Res. 61, 674–685.

    Article  PubMed  CAS  Google Scholar 

  38. Baghdoyan, H.A. and Lydic, R. (2002) Neurotransmitters and neuromodulators regulating sleep, in Sleep and Epilepsy: The Clinical Spectrum (Bazil, C., Malow, B., and Sammaritano, M., eds.) Elsevier Science, and New York, pp.17–44.

    Google Scholar 

  39. Lydic, R. and Baghdoyan, H.A. (2003) Neurochemical evidence for the cholinergic modulation of sleep and breathing, in Sleep Related Breathing Disorders: Experimental Models and Therapeutic Potential (Carley, D. and Radulovacki, M., eds.) Marcel Dekker, New York, pp. 57–91.

    Google Scholar 

  40. Bourgin, P., Huitron-Resendiz, S., Spier, A.D., et al. (2000) Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons. J. Neurosci. 20, 7760–7765.

    PubMed  CAS  Google Scholar 

  41. Xi, M.C., Morales, F.R., and Chase, M.H. (2001) Effects on sleep and wakefulness of the injection of hypocretin-1 (orexin-A) into the laterodorsal tegmental nucleus of the cat. Brain Res. 901, 259–264.

    Article  PubMed  CAS  Google Scholar 

  42. Xi, M.C., Fung, S.J., Yamuy, J., Morales, F.R., and Chase, M.H. (2002) Induction of active (REM) sleep and motor inhibition by hypocretin in the nucleus pontis oralis of the cat. J. Neurophysiol. 87, 2880–2888.

    PubMed  CAS  Google Scholar 

  43. Smart, D., Sabido-David, C., Brough, S.J., et al. (2001) SB-334867-A: the first selective orexin-1 receptor antagonist. Br. J. Pharmacol. 132, 1179–1182.

    Article  PubMed  CAS  Google Scholar 

  44. Bernard, R., Lydic, R., and Baghdoyan, H.A. (2003) Pertussis toxin (PTX) blocks hypocretin-1-stimulated G protein activation in rat pontine reticular nucleus, oral part (PnO). Soc. Neurosci. Abstr. 29, 930–939.

    Google Scholar 

  45. Hoang, Q.V., Bajic, D., Yanagisawa, M., Nakajima, S., and Nakajima, Y. (2003) Effects of orexin (hypocretin) on GIRK channels. J. Neurophysiol. 90, 693–702.

    Article  PubMed  CAS  Google Scholar 

  46. Carty, D.J. (1994) Pertussis toxin-catalyzed ADP-ribosylation of G proteins. Methods Enzymol. 237, 63–70.

    PubMed  CAS  Google Scholar 

  47. Hermans, E. (2003) Biochemical and pharmacological control of the multiplicity of coupling at G-protein-coupled receptors. Pharmacol. Ther. 99, 25–44.

    Article  PubMed  CAS  Google Scholar 

  48. Angers, S., Salahpour, A., and Bouvier, M. (2002) Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu. Rev. Pharmacol. Toxicol. 42, 409–435.

    Article  PubMed  CAS  Google Scholar 

  49. Brady, A.E. and Limbird, L.E. (2002) G protein-coupled receptor interacting proteins: emerging roles in localization and signal transduction. Cell Signal. 14, 297–309.

    Article  PubMed  CAS  Google Scholar 

  50. Devi, L.A. (2001) Heterodimerization of G-protein-coupled receptors: pharmacology, signaling and trafficking. Trends Pharm. Sci. 22, 532–537.

    Article  PubMed  CAS  Google Scholar 

  51. Peyron, C., Tighe, D.K., van den Pol, A.N., et al. (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 18, 9996–10,015.

    PubMed  CAS  Google Scholar 

  52. Greco, M.A. and Shiromani, P.J. (2001) Hypocretin receptor protein and mRNA expression in the dorsolateral pons of rats. Brain Res. Mol. Brain Res. 88, 176–182.

    Article  PubMed  CAS  Google Scholar 

  53. Marcus, J.N., Aschkenasi, C.J., Lee, C.E., et al. (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J. Comp. Neurol. 435, 6–25.

    Article  PubMed  CAS  Google Scholar 

  54. Trivedi, P., Yu, H., MacNeil, D.J., Van der Ploeg, L.H.T., and Guan, X.M. (1998) Distribution of orexin receptor mRNA in the rat brain. FEBS Lett. 438, 71–75.

    Article  PubMed  CAS  Google Scholar 

  55. Saper, C.B. and Scammell, T.E. (2004) Modafinil: a drug in search of a mechanism. Sleep. 27, 11–12.

    PubMed  Google Scholar 

  56. Taylor, C.P., Gee, N.S., Su, T.-Z., et al. (1998) A summary of mechanistic hypotheses of gabapentin pharmacology. Epilepsy Res. 29, 233–249.

    Article  PubMed  CAS  Google Scholar 

  57. Nishino, S. (2003) The hypocretin/orexin system in health and disease. Biol. Psychiatry. 54, 87–95.

    Article  PubMed  CAS  Google Scholar 

  58. González-Maeso, J., Torre, I., Rodríguez-Puertas, R., García-Sevilla, J.A., Guimón, J., and Meana, J.J. (2002) Effects of age, postmortem delay and storage time on receptor-mediated activation of G-proteins in human brain. Neuropsychopharmacology. 26, 468–478.

    Article  PubMed  Google Scholar 

  59. Lin, L., Faraco, J., Li, R., et al. (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 98, 365–376.

    Article  PubMed  CAS  Google Scholar 

  60. Hara, J., Beuckmann, C.T., Nambu, T., et al. (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron. 30, 345–354.

    Article  PubMed  CAS  Google Scholar 

  61. Bernard, R., Hill, A., Morgan, L.A., et al. (2004) Orexin/ataxin-3 transgenic (Tg) mice show increased hypocretin (hcrt)-1-induced G protein activation in the pontine reticular formation (PRF). FASEB J. 18, 394–397.

    Google Scholar 

  62. Mieda, M., Willie, J.T., Hara, J., Sinton, C.M., Sakurai, T., and Yanagisawa, M. (2004) Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. Proc. Natl. Acad. Sci. U S A 101, 4649–4654.

    Article  PubMed  CAS  Google Scholar 

  63. Paxinos, G. and Watson, C. (1998) The Rat Brain in Stereotaxic Coordinates, 4th ed. Academic, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Bernard, R., Lydic, R., Baghdoyan, H.A. (2006). Hypocretin Receptor-Activated G Proteins Revealed by [35S]GTPγS Autoradiography. In: Nishino, S., Sakurai, T. (eds) The Orexin/Hypocretin System. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1385/1-59259-950-8:83

Download citation

Publish with us

Policies and ethics