Skip to main content

Neuronal Responses to Hypocretin/Orexin

  • Chapter
Book cover The Orexin/Hypocretin System

Abstract

The peptides hypocretin-1 and -2 (also called orexin-A and-B) were first described in 1998 in two independent papers by de Lecea et al. (1) and Sakurai et al. (2). These two peptides are synthesized from the same prepropeptide, and therefore both peptides are found in the same cells and are probably released simultaneously from axon terminals. The neurons that synthesize the hypocretins are found selectively in the lateral hypothalamus perifornical area, and axons from these cells project widely throughout the brain (3) and spinal cord (4). Two receptors have been identified (2). These appear to be Gq protein coupled. The hypocretin receptor 1 (orexin receptor 1) has a greater affinity for hypocretin-1, whereas the hypocretin receptor 2 (orexin receptor 2) is activated similarly by both hypocretin-1 and -2 (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Lecea, L. Kilduff, T.S., Peyron, C., et al. (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. U S A. 95, 322–327.

    Article  PubMed  Google Scholar 

  2. Sakurai, T. Amemiya, A., Ishii, M., et al. (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585.

    Article  PubMed  CAS  Google Scholar 

  3. Peyron, C. Tighe, D.K., van den Pol, A.N., et al. (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 18, 9996–10015.

    PubMed  CAS  Google Scholar 

  4. van den Pol, A.N. (1999) Hypothalamic hypocretin (orexin): robust innervation of the spinal cord. J. Neurosci. 19, 3171–3182.

    PubMed  Google Scholar 

  5. Marcus, J.N., Aschkenasi, C.J., Lee, C.E., et al. (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J. Comp. Neurol. 435, 6–25.

    Article  PubMed  CAS  Google Scholar 

  6. Lin, L., Faraco, J., Li, H., et al. (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98, 365–376.

    Article  PubMed  CAS  Google Scholar 

  7. Chemelli, R.M., Willie, J.T., Sinton, C.M., et al. (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437–451.

    Article  PubMed  CAS  Google Scholar 

  8. Thannickal, T.C., Moore, R.Y., Nienhuis, R., et al. (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27, 469–474.

    Article  PubMed  CAS  Google Scholar 

  9. Peyron, C., Faraco, J., Rogers, W., et al. (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat. Med. 6, 991–997.

    Article  PubMed  CAS  Google Scholar 

  10. Nishino, S., Ripley, B., Overeem, S., Lammers, G.J., and Mignot, E. (2000) Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355, 39–40.

    Article  PubMed  CAS  Google Scholar 

  11. Haynes, A.C., Jackson, B., Overend, P., et al. (1999) Effects of single and chronic intracerebroventricular administration of the orexins on feeding in the rat. Peptides 20, 1099–1105.

    Article  PubMed  CAS  Google Scholar 

  12. Cai, X.J., Widdowson, P.S., Harrold, J., et al. (1999) Hypothalamic orexin expression: modulation by blood glucose and feeding. Diabetes 48, 2132–2137.

    Article  PubMed  CAS  Google Scholar 

  13. Hara, J., Beuckmann, C.T., Nambu, T., et al. (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30, 345–354.

    Article  PubMed  CAS  Google Scholar 

  14. van den Pol, A.N., Gao, X.B., Obrietan, K., Kilduff, T.S., and Belousov, A.B. (1998) Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin. J. Neurosci. 18, 7962–7971.

    PubMed  Google Scholar 

  15. van den Pol, A.N., Patrylo, P.R., Ghosh, P.K., and Gao, X.B. (2001) Lateral hypothalamus—early developmental expression and response to hypocretin (orexin). J. Comp. Neurol. 433, 349–363.

    Article  Google Scholar 

  16. Li, Y., Gao, X.B., Sakurai, T., and van den Pol, A.N. (2002) Hypocretin/orexin excites hypocretin neurons via a local glutamate neuron-a potential mechanism for orchestrating the hypothalamic arousal system. Neuron 36, 1–20.

    Article  Google Scholar 

  17. Bayer, L., Eggermann, E., Saint-Mleux, B., et al. (2002) Selective action of orexin (hypocretin) on nonspecific thalamocortical projection neurons. J. Neurosci. 22, 7835–7839.

    PubMed  CAS  Google Scholar 

  18. Yang, B., Samson, W.K., and Ferguson, A.V. (2003) Excitatory effects of orexin-A on nucleus tractus solitarius neurons are mediated by phospholipase C and protein kinase C. J. Neurosci. 23, 6215–6222.

    PubMed  CAS  Google Scholar 

  19. van den Top, M., Nolan, M.F., Lee, K., et al. (2003) Orexins induce increased excitability and synchronisation of rat sympathetic preganglionic neurones. J. Physiol. 549, 809–821

    Article  PubMed  Google Scholar 

  20. Grudt, T.J., van den Pol, A.N., and Perl, E.R. (2002) Hypocretin-2 (orexin-B) modulation of superficial dorsal horn activty in rat. J. Physiol. 538, 517–525.

    Article  PubMed  CAS  Google Scholar 

  21. Eriksson, K.S., Sergeeva, O., Brown, R.E., and Haas, H.L. (2001) Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J. Neurosci. 21, 9273–9279.

    PubMed  CAS  Google Scholar 

  22. Hwang, L.-L., Chen, C., and Dun, N.J. (2001) Mechanisms of orexin-induced depolarizations in rat dorsal motor nucleus of vagus neurons in vitro. J. Physiol. 537, 511–520.

    Article  PubMed  CAS  Google Scholar 

  23. Wu, M., Zhang, Z., Leranth, C., Xu, C., van den Pol, A.N., and Alreja, M. (2002) Hypocretin increases impulse flow in the septohippocampal GABAergic pathway: implications for arousal via a mechanism of hippocampal disinhibition. J. Neurosci. 22, 7754–7765.

    PubMed  CAS  Google Scholar 

  24. Liu, R.J., van den Pol, A.N., and Aghajanian, G.K. (2002) Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. J. Neurosci. 22, 9453–9464.

    PubMed  CAS  Google Scholar 

  25. Wu, M., Zaborszky, L., Hajszan, T., van den Pol, A.N., and Alreja, M. (2004) Hypocretin/orexin innervation and excitation of identified septohippocampal cholinergic neurons. J. Neurosci. 24, 3527–3536.

    Article  PubMed  CAS  Google Scholar 

  26. van den Pol, A.N., Ghosh, P.K., Liu, R., Li, Y., Aghajanian, G.K., and Gao, X.B. (2002) Hypocretin (orexin) enhances neuron activity and cell synchrony in developing mouse GFPexpressing locus coeruleus. J. Physiol. 541, 169–185.

    Article  PubMed  Google Scholar 

  27. Yang, B. and Ferguson, A.V. (2003) Orexin-A depolarizes nucleus tractus solitarius neurons through effects on nonselective cationic channels and K+ conductances. J. Neurophysiol. 89, 2167–2175.

    Article  PubMed  CAS  Google Scholar 

  28. Agahjanian, G. and Vandermaelen, C.P. (1982) Intracellular identification of central noradrenergic and serotonergic neurons by a new double labeling procedure. J. Neurosci. 2, 1786–1792.

    Google Scholar 

  29. Brown, R.E., Sergeeva, O.A., Eriksson, K.S., and Haas, H.L. (2002) Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline). J. Neurosci. 22, 8850–8859.

    PubMed  CAS  Google Scholar 

  30. Burlet, S., Tyler, C.J., and Leonard, C.S. (2002) Direct and indirect excitation of laterodorsal tegmental neurons by hypocretin/orexin peptides: implications for wakefulness and narcolepsy. J. Neurosci. 22, 2862–2872.

    PubMed  CAS  Google Scholar 

  31. Burdakov, D., Liss, B., and Ashcroft, F.M. (2003) Orexin excites GABAergic neurons of the arcuate nucleus by activating the sodium-calcium exchanger. J. Neurosci. 23, 4951–4957.

    PubMed  CAS  Google Scholar 

  32. Ivanov, A. and Aston-Jones, G. (2000) Hypocretin/orexin depolarizes and decreases potassium conductance in locus coeruleus neurons. Neuroreport 11, 1755–1758.

    Article  PubMed  CAS  Google Scholar 

  33. Brown, R.E., Sergeeva, O., Eriksson, K.S., and Haas, H.L. (2001) Orexin A excites serotonergic neurons in the dorsal raphe nucleus of the rat. Neuropharmacology 40, 457–459.

    Article  PubMed  CAS  Google Scholar 

  34. Horvath, T.L., Peyron, C., Diano, S., et al. (1999) Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J. Comp. Neurol. 415, 145–159.

    Article  PubMed  CAS  Google Scholar 

  35. Stocker, M., Krause, M., and Pedarzani, P. (1999) An apamin-sensitive Ca2+-activated K+ current in hippocampal pyramidal neurons. Proc. Natl. Acad. Sci. U S A 96, 5662–4667.

    Article  Google Scholar 

  36. Kohlmeier, K.A., Inoue, T., and Leonard, C.S. (2004) Hypocretin/orexin signaling in the ascending arousal system: elevation of intracellular calcium in the mouse dorsal raphe and laterodorsal tegmentum. J. Neurophysiol. 92, 221–235.

    Article  PubMed  CAS  Google Scholar 

  37. Uramura, K., Funahashi, H., Muroya, S., Shioda, S., Takigawa, M., and Yada, T. (2001) Orexin-A activates phospholipase-C and protein kinase C-mediated Ca2+ signaling in dopamine neurons of ventral tegmental area. Neuroreport 12, 1885–1889.

    Article  PubMed  CAS  Google Scholar 

  38. Smart, D., Jerman, J.C., Brough, S.J., et al. (1999) Characterization of recombinant human orexin receptor pharmacology in a Chinese hamster ovary cell-line using FLIPR. Br. J. Pharmacol. 128, 1–3.

    Article  PubMed  CAS  Google Scholar 

  39. Lund, P., Shariatmadari, R., Uustare, A., et al. (2000) The orexin OX1 receptor activates a novel Ca2+ influx pathway necessary for coupling to phospholipase C. J. Biol. Chem. 40, 30,806–30,812.

    Article  Google Scholar 

  40. Smith, B.N., Davis, S.F., van den Pol, A.N., and Xu, W. (2002) Selective enhancement of excitatory synaptic activity in the rat nucleus tractus solitarius by hypocretin 2. Neuroscience 115, 707–714.

    Article  PubMed  CAS  Google Scholar 

  41. Lambe, E.K. and Aghajanian, G.K. (2003) Hypocretin (orexin) induces calcium transients in single spines postsynaptic to identified thalamocortical boutons in prefrontal slice. Neuron 40, 139–150.

    Article  PubMed  CAS  Google Scholar 

  42. Acuna-Goycolea, C., Li, Y., and van den Pol, A.N. (2004) Group 3 metabotropic glutamate receptors maintain tonic inhibition of excitatory synaptic input to hypocretin/orexin neurons. J. Neurosci. 24, 3013–3022.

    Article  PubMed  CAS  Google Scholar 

  43. Christie, M.J., Williams, J.T., and North, R.A. (1989) Electrical coupling synchronizes subthreshold activity in locus coeruleus neurons in vitro from neonatal rats. J. Neurosci. 9, 3584–3589.

    PubMed  CAS  Google Scholar 

  44. Usher, M., Cohen, J.D., Servan-Schreiber, D., Rajkowski, J., and Aston-Jones, G. (1999) The role of locus coeruleus in the regulation of cognitive performance. Science 283, 549–554.

    Article  PubMed  CAS  Google Scholar 

  45. Logan, S.D., Pickering, A.E., Gibson, I.C., Nolan, M.F., and Spanswick, D. (1996) Electrotonic coupling between rat sympathetic preganglionic neurons in vitro. J. Physiol. 495, 491–502.

    PubMed  CAS  Google Scholar 

  46. Hagan, J.J., Leslie, R.A., Patel, S., et al. (1999) Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc. Natl. Acad. Sci. U S A 96, 10911–10926.

    Article  PubMed  CAS  Google Scholar 

  47. Bayer, L., Eggermann, E., Serafin, M., et al. (2001) Orexins (hypocretins) directly excite tuberomammillary neurons. Eur. J. Neurosci. 14, 1571–1575.

    Article  PubMed  CAS  Google Scholar 

  48. Panula, P., Yang, H.Y., and Costa, E. (1984) Histamine-containing neurons in the rat hypothalamus. Proc. Natl. Acad. Sci. U S A 81, 2572–2576.

    Article  PubMed  CAS  Google Scholar 

  49. Guan, J.L., Uehara, K., Lu, S., et al. (2002) Reciprocal synaptic relationships between orexin-and melanin-concentrating hormone-containing neurons in the rat lateral hypothalamus: a novel circuit implicated in feeding regulation. Int. J. Obesity Relat. Metab. Disord. 26, 1523–1532.

    Article  CAS  Google Scholar 

  50. van den Pol, A.N., Acuna-Goycolea, C., Clark, R., and Ghosh, P.K. (2004) Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection infection. Neuron 42, 635–652.

    Article  PubMed  Google Scholar 

  51. Eggermann, E., Serafin, M., Bayer, L., et al. (2001) Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience 108, 177–181.

    Article  PubMed  CAS  Google Scholar 

  52. Horvath, T.L., Diano, S., and van den Pol, A.N. (1999) Synaptic interaction between hypocretin (orexin) containing neurons and arcuate nucleus NPY-producing cells in rodent and primate-a new hypothalamic circuit implicated in energy homeostasis. J. Neurosci. 19, 1072–1087.

    PubMed  CAS  Google Scholar 

  53. van den Top, M., Lee, K., Whyment, A.D., Blanks, A.M., and Spanswick, D. (2004) Orexigensensitive NPY/AgRP pacemaker neurons in the hypothalamic arcuate nucleus. Nat. Neurosci. 7, 493–494.

    Article  PubMed  Google Scholar 

  54. Bayer, L., Serafin, M., Eggermann, E., et al. (2004) Postsynaptic action of hypocretin-orexin on sublayer 6b cortical neurons. J. Neurosci. 24, 6760–6764.

    Article  PubMed  CAS  Google Scholar 

  55. Haj-Dahmane, S. and Shen, R.Y. (2005) Wake-promoting peptide orexin-B inhibits glutamatergic transmission to dorsal raphe nucleus serotonin neurons through retrograde endocannabinoid signaling. J. Neurosci. 25, 896–905.

    Article  PubMed  CAS  Google Scholar 

  56. Li, Y. and van den Pol, A.N. (2005) Direct and indirect inhibition by catecholamines of hypocretin/orexin neurons. J. Neurosci. 25, 173–183.

    Article  PubMed  CAS  Google Scholar 

  57. Acuna-Goycolea, C. and van den Pol, A.N. (2004) Glucagon-like peptide 1 excites hypocretin/orexin neurons by direct and indirect mechanisms: implications for viscera-mediated arousal. J. Neurosci. 24, 8141–8152.

    Article  PubMed  CAS  Google Scholar 

  58. Fu, L.Y., Acuna-Goycolea, C., and van den Pol, A.N. (2004) Neuropeptide Y inhibits hypocretin/orexin neurons by multiple presynaptic and postsynaptic mechanisms: tonic depression of the hypothalamic arousal system. J. Neurosci. 24, 8741–8751.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

van den Pol, A.N., Acuna-Goycolea, C. (2006). Neuronal Responses to Hypocretin/Orexin. In: Nishino, S., Sakurai, T. (eds) The Orexin/Hypocretin System. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1385/1-59259-950-8:45

Download citation

Publish with us

Policies and ethics