Skip to main content

Pharmacology of Hypocretin/Orexin Peptides and Small Molecules

  • Chapter
The Orexin/Hypocretin System

Abstract

Despite their relatively recent discovery in 1998, the hypocretins (also known as orexins) and their receptors are already the focus of several investigations as sites for therapeutic intervention in a number of endocrinological and neurological disorders. The rapidity with which the hypocretin system has been adopted as a high-interest target is mainly the result of an accumulation of compelling evidence from in vivo studies showing that the hypocretins regulate a number of aspects of physiology and behavior, especially those involved in sleep, arousal, and energy homeostasis. High-throughput screening efforts by a number of pharmaceutical companies have now identified novel small molecules that interact potently and specifically with the hypocretin receptors. Despite these considerable efforts, very little is known regarding the structures of the receptors, their endogenous ligands, the molecular basis of their interactions, or the signaling pathways they use. For example, no attempt has been made through receptor mutagenesis, or by any other means, to define the key interactions that occur between the receptors and the endogenous peptide ligands. Although such studies are likely to be ongoing within pharmaceutical companies with active hypocretin receptor drug discovery programs, the information available to the general scientific community remains very limited. This chapter reviews what is currently known about the molecular pharmacology of this system, focusing on the structures and activities of the peptides and some of the small molecules for which published biological data exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sakurai, T., Amemiya. A., Ishii, M., et al. (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585.

    Article  PubMed  CAS  Google Scholar 

  2. de Lecea, L., Kilduff, T.S., Peyron, C., et al. (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. U S A 95, 322–327.

    Article  PubMed  Google Scholar 

  3. Dyer, C.J., Touchette, K.J., Carroll, J.A., Allee, G.L., and Matteri, R.L. (1999) Cloning of porcine prepro-orexin cDNA and effects of an intramuscular injection of synthetic porcine orexin-B on feed intake in young pigs. Domest. Anim. Endocrinol. 16, 145–148.

    Article  PubMed  CAS  Google Scholar 

  4. Ohkubo, T., Boswell, T., and Lumineau, S. (2002) Molecular cloning of chicken prepro-orexin cDNA and preferential expression in the chicken hypothalamus. Biochim. Biophys. Acta 1577, 476–480.

    PubMed  CAS  Google Scholar 

  5. Voisin, T., Rouet-Benzineb, P., Reuter, N., and Laburthe, M. (2003) Orexins and their receptors: structural aspects and role in peripheral tissues. Cell. Mol. Life. Sci. 60, 72–87.

    Article  PubMed  CAS  Google Scholar 

  6. Okumura, T., Takeuchi, S., Motomura, W., et al. (2001) Requirement of intact disulfide bonds in orexin-A-induced stimulation of gastric acid secretion that is mediated by OX1 receptor activation. Biochem. Biophys. Res. Commun. 280, 976–981.

    Article  PubMed  CAS  Google Scholar 

  7. Zhu, Y., Miwa, Y., Yamanaka, A., et al. (2003) Orexin receptor type-1 couples exclusively to pertussis toxin-insensitive G-proteins, while orexin receptor type-2 couples to both pertussis toxinsensitive and-insensitive G-proteins. J. Pharmacol. Sci. 92, 259–266.

    Article  PubMed  CAS  Google Scholar 

  8. Malendowicz, L.K., Tortorella, C., and Nussdorfer, G.G. (1999) Orexins stimulate corticosterone secretion of rat adrenocortical cells, through the activation of the adenylate cyclase-dependent signaling cascade. J. Steroid Biochem. Mol. Biol. 70, 185–188.

    Article  PubMed  CAS  Google Scholar 

  9. Mazzocchi, G., Malendowicz, L.K., Gottardo, L., Aragona, F., and Nussdorfer, G.G. (2001) Orexin A stimulates cortisol secretion from human adrenocortical cells through activation of the adenylate cyclase-dependent signaling cascade. J. Clin. Endocrinol. Metab. 86, 778–782.

    Article  PubMed  CAS  Google Scholar 

  10. Nanmoku, T., Isobe, K., Sakurai, T., et al. (2000) Orexins suppress catecholamine synthesis and secretion in cultured PC12 cells. Biochem. Biophys. Res. Commun. 274, 310–315.

    Article  PubMed  CAS  Google Scholar 

  11. Nanmoku, T., Isobe, K., Sakurai, T., et al. (2002) Effects of orexin on cultured porcine adrenal medullary and cortex cells. Regul. Pept. 104, 125–130.

    Article  PubMed  CAS  Google Scholar 

  12. Karteris, E., Randeva, H.S., Grammatopoulos, D.K., Jaffe, R.B., and Hillhouse, E.W. (2001) Expression and coupling characteristics of the CRH and orexin type 2 receptors in human fetal adrenals. J. Clin. Endocrinol. Metab. 86, 4512–4519.

    Article  PubMed  CAS  Google Scholar 

  13. Lee, J.H., Bang, E., Chae, K.J., Kim, J.Y., Lee, D.W., and Lee, W. (1999) Solution structure of a new hypothalamic neuropeptide, human hypocretin-2/orexin-B. Eur. J. Biochem. 266, 831–839.

    Article  PubMed  CAS  Google Scholar 

  14. Monks, S.A., Karagianis, G., Howlett, G.J., and Norton, R.S. (1996) Solution structure of human neuropeptide Y. J. Biomol. NMR 8, 379–390.

    Article  PubMed  CAS  Google Scholar 

  15. Darker, J.G., Porter, R.A., Eggleston, D.S., et al. (2001) Structure-activity analysis of truncated orexin-A analogues at the orexin-1 receptor. Bioorg. Med. Chem. Lett. 11, 737–740.

    Article  PubMed  CAS  Google Scholar 

  16. Asahi, S., Egashira, S., Matsuda, M., et al. (2003) Development of an orexin-2 receptor selective agonist, [Ala(11), D-Leu(15)]orexin-B. Bioorg. Med. Chem. Lett. 13, 111–113.

    Article  PubMed  CAS  Google Scholar 

  17. Lang, M., Soll, R.M., Durrenberger, F., Dautzenberg, F.M., and Beck-Sickinger, A.G. (2004) Structure-activity studies of orexin A and orexin B at the human orexin 1 and orexin 2 receptors led to orexin 2 receptor selective and orexin 1 receptor preferring ligands. J. Med. Chem. 47, 1153–1160.

    Article  PubMed  CAS  Google Scholar 

  18. Porter, R.A., Chan, W.N., Coulton, S., et al. (2001) 1,3-Biarylureas as selective non-peptide antagonists of the orexin-1 receptor. Bioorg. Med. Chem. Lett. 11, 1907–1910.

    Article  PubMed  CAS  Google Scholar 

  19. Smart, D., Sabido-David, C., Brough, S.J., et al. (2001) SB-334867-A: the first selective orexin-1 receptor antagonist. Br. J. Pharmacol. 132, 1179–1182.

    Article  PubMed  CAS  Google Scholar 

  20. Soffin, E.M., Evans, M.L., Gill, C.H., Harries, M.H., Benham, C.D., and Davies, C.H. (2002) SB-334867-A antagonises orexin mediated excitation in the locus coeruleus. Neuropharmacology 42, 127–133.

    Article  PubMed  CAS  Google Scholar 

  21. Haynes, A.C., Jackson, B., Chapman, H., et al. (2000) A selective orexin-1 receptor antagonist reduces food consumption in male and female rats. Regul. Pept. 96, 45–51.

    Article  PubMed  CAS  Google Scholar 

  22. Rodgers, R.J., Halford, J.C., Nunes de Souza, R.L., et al. (2001) SB-334867, a selective orexin-1 receptor antagonist, enhances behavioural satiety and blocks the hyperphagic effect of orexin-A in rats. Eur. J. Neurosci. 13, 1444–1452.

    Article  PubMed  CAS  Google Scholar 

  23. Ishii, Y., Blundell, J.E., Halford, J.C., et al. (2004) Differential effects of the selective orexin-1 receptor antagonist SB-334867 and lithium chloride on the behavioural satiety sequence in rats. Physiol. Behav. 81, 129–140.

    Article  PubMed  CAS  Google Scholar 

  24. Duxon, M.S., Stretton, J., Starr, K., et al. (2001) Evidence that orexin-A-evoked grooming in the rat is mediated by orexin-1 (OX1) receptors, with downstream 5-HT2C receptor involvement. Psychopharmacology (Berl.) 153, 203–209.

    Article  CAS  Google Scholar 

  25. Kushikata, T., Hirota, K., Yoshida, H., et al. (2003) Orexinergic neurons and barbiturate anesthesia. Neuroscience 121, 855–863.

    Article  PubMed  CAS  Google Scholar 

  26. Haynes, A.C., Chapman, H., Taylor, C., et al. (2002) Anorectic, thermogenic and anti-obesity activity of a selective orexin-1 receptor antagonist in ob/ob mice. Regul. Pept. 104, 153–159.

    Article  PubMed  CAS  Google Scholar 

  27. Bingham, S., Davey, P.T., Babbs, A.J., et al. (2001) Orexin-A, a hypothalamic peptide with analgesic properties. Pain 92, 81–90.

    Article  PubMed  CAS  Google Scholar 

  28. Hirota, K., Kushikata, T., Kudo, M., Kudo, T., Smart, D., and Matsuki, A. (2003) Effects of central hypocretin-1 administration on hemodynamic responses in young-adult and middle-aged rats. Brain Res. 981, 143–150.

    Article  PubMed  CAS  Google Scholar 

  29. Langmead, C.J., Jerman, J.C., Brough, S.J., Scott, C., Porter, R.A., and Herdon, H.J. (2004) Characterisation of the binding of [3H]-SB-674042, a novel nonpeptide antagonist, to the human orexin-1 receptor. Br. J. Pharmacol. 141, 340–346.

    Article  PubMed  CAS  Google Scholar 

  30. Hirose, M., Egashira, S., Goto, Y., et al. (2003) N-acyl 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline: the first orexin-2 receptor selective non-peptidic antagonist. Bioorg. Med. Chem. Lett. 13, 4497–4499.

    Article  PubMed  CAS  Google Scholar 

  31. McAtee, L.C., Sutton, S.W., Rudolph, D.A., et al. (2004) Novel substituted 4-phenyl-[1,3]dioxanes: potent and selective orexin receptor 2 (OX(2)R) antagonists. Bioorg. Med. Chem. Lett. 14, 4225–4229.

    Article  PubMed  CAS  Google Scholar 

  32. Aissaoui, H., Clozel, M., Weller, T., Koberstein, R., Sifferlen, T., and Fischli, W. Sulfonylaminoacetic acid derivatives. WO 2004/033418 A2. Actelion Pharmaceuticals Ltd., Allschwil, Switzerland, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Perry, S.J., Schwarz, D.A., Maki, R.A. (2006). Pharmacology of Hypocretin/Orexin Peptides and Small Molecules. In: Nishino, S., Sakurai, T. (eds) The Orexin/Hypocretin System. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1385/1-59259-950-8:349

Download citation

Publish with us

Policies and ethics