Skip to main content

Hypocretin/Orexin Tonus and Vigilance Control

  • Chapter
The Orexin/Hypocretin System

Abstract

The importance of the hypocretin/orexin system in vigilance control has rapidly emerged from the discovery of narcolepsy genes in canines and mice and from the findings of ligand deficiency in human narcolepsy (14). (An earlier anatomical study suggested this involvement [5].) Narcolepsy, a chronic sleep disorder characterized by excessive daytime sleepiness, cataplexy, and dissociated manifestations of REM sleep (6), is now known to be caused by the loss of hypocretin neurotransmission. The loss could be caused either by a malfunction in hypocretin ligand production or by a loss of function of one of the two hypocretin receptors (i.e., hypocretin receptor 2/orexin 2 receptor) (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lin, L., Faraco, J., Li, R., et al. (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98, 365–376.

    Article  PubMed  CAS  Google Scholar 

  2. Nishino, S., Ripley, B., Overeem, S., Lammers, G.J., and Mignot, E. (2000) Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355, 39–40.

    Article  PubMed  CAS  Google Scholar 

  3. Peyron, C., Faraco J., Rogers, W., et al. (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat. Med. 6, 991–997.

    Article  PubMed  CAS  Google Scholar 

  4. Chemelli, R.M., Willie, J.T., Sinton, C.M., et al. (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437–451.

    Article  PubMed  CAS  Google Scholar 

  5. Peyron, C., Tighe, D.K., van den Pol, A.N., et al. (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 18, 9996–10,015.

    PubMed  CAS  Google Scholar 

  6. Nishino, S., Okura, M., and Mignot, E. (2000) Narcolepsy: genetic predisposition and neuropharmacological mechanisms. Sleep Med. Rev. 4, 57–99.

    Article  PubMed  Google Scholar 

  7. Gélineau, J.B.E. and De la narcolepsie. (1880) Gazette des hôpitaux 53, 626–628.

    Google Scholar 

  8. Honda, Y. (1998) Clinical features of narcolepsy, in HLA in Narcolepsy (Honda, Y. and Juji, T., eds.) Springer-Verlag, Berlin, pp. 24–57.

    Google Scholar 

  9. Brown, R.E., Sergeeva, O., Eriksson, K.S., and Haas, H.L. (2001) Orexin A excites serotonergic neurons in the dorsal raphe nucleus of the rat. Neuropharmacology 40, 457–459.

    Article  PubMed  CAS  Google Scholar 

  10. Eriksson, K.S., Sergeeva, O., Brown, R.E., and Haas, H.L. (2001) Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J. Neurosci. 21, 9273–9279.

    PubMed  CAS  Google Scholar 

  11. Huang, Z.L., Qu, W.M., Li, W.D., et al. (2001) Arousal effect of orexin A depends on activation of the histaminergic system. Proc. Natl. Acad. Sci. U S A 98, 9965–9970.

    Article  PubMed  CAS  Google Scholar 

  12. Nakamura, T., Uramura, K., Nambu, T., et al. (2000) Orexin-induced hyperlocomotion and stereotypy are mediated by the dopaminergic system. Brain Res. 873, 181–187.

    Article  PubMed  CAS  Google Scholar 

  13. Yamanaka, A., Muraki, Y., Tsujino, N., Goto, K., and Sakurai, T. (2003) Regulation of orexin neurons by the monoaminergic and cholinergic systems. Biochem. Biophys. Res. Commun. 303, 120–129.

    Article  PubMed  CAS  Google Scholar 

  14. Yamanaka, A., Beuckmann, C.T., Willie, J.T., et al. (2003) Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38, 701–713.

    Article  PubMed  CAS  Google Scholar 

  15. Nishino, S. (2003) The hypocretin/orexin system in health and disease. Biol. Psychiatry 54, 87–95.

    Article  PubMed  CAS  Google Scholar 

  16. Taheri, S., Sunter, D., Dakin, C., et al. (2000) Diurnal variation in orexin A immunoreactivity and prepro-orexin mRNA in the rat central nervous system. Neurosci. Lett. 279, 109–112.

    Article  PubMed  CAS  Google Scholar 

  17. Terao, A., Peyron, C., Ding, J., et al. (2000) Prepro-hypocretin (prepro-orexin) expression is unaffected by short-term sleep deprivation in rats and mice. Sleep 23, 867–874.

    PubMed  CAS  Google Scholar 

  18. Yoshida, Y., Fujiki, N., Nakajima, T., et al. (2001) Fluctuation of extracellular hypocretin-1 (orexin A) levels in the rat in relation to the light-dark cycle and sleep-wake activities. Eur. J. Neurosci. 14, 1075–1081.

    Article  PubMed  CAS  Google Scholar 

  19. Fujiki, N., Yoshida, Y., Ripley, B., Honda, K., Mignot, E., and Nishino, S. (2001) Changes in CSF hypocretin-1 (orexin A) levels in rats across 24 hours and in response to food deprivation. Neuroreport 12, 993–997.

    Article  PubMed  CAS  Google Scholar 

  20. Zeitzer, J.M., Buckmaster, C.L., Parker, K.J., Hauck, C.M., Lyons, D.M., and Mignot, E. (2003) Circadian and homeostatic regulation of hypocretin in a primate model: implications for the consolidation of wakefulness. J. Neurosci. 23, 3555–3560.

    PubMed  CAS  Google Scholar 

  21. Estabrooke, I.V., McCarthy, M.T., Ko, E., et al. (2001) Fos expression in orexin neurons varies with behavioral state. J. Neurosci. 21, 1656–1662.

    PubMed  CAS  Google Scholar 

  22. Hara, J., Beuckmann, C.T., Nambu, T., et al. (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30, 345–354.

    Article  PubMed  CAS  Google Scholar 

  23. Beuckmann, C.T., Sinton, C.M., Williams, S.C., et al. (2004) Expression of a poly-glutamine-ataxin-3 transgene in orexin neurons induces narcolepsy-cataplexy in the rat. J. Neurosci. 24, 4469–4477.

    Article  PubMed  CAS  Google Scholar 

  24. Borbély, A.A. and Wirz-Justice, A. (1982) Sleep, sleep deprivation and depression. A hypothesis derived from a model of sleep regulation. Hum. Neurobiol. 1, 205–210.

    PubMed  Google Scholar 

  25. Edgar, D.M., Dement, W.C., and Fuller, C.A. (1993) Effect of SCN-lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep-wake regulation. J. Neurosci. 13, 1065–1079.

    PubMed  CAS  Google Scholar 

  26. Takahashi, J.S. (1995) Molecular neurobiology and genetics of circadian rhythems in mammals. Annu. Rev. Neurosci. 18, 531–553.

    Article  PubMed  CAS  Google Scholar 

  27. Tassi, P. and Muzet, A. (2000) Sleep inertia. Sleep Med. Rev. 4, 341–353.

    Article  PubMed  Google Scholar 

  28. Lavie, P. (1986) Ultrashort sleep-waking schedule. III. “Gates” and “forbidden zones” for sleep. Electroencephalogr. Clin. Neurophysiol. 63, 414–425.

    Article  CAS  Google Scholar 

  29. Dijk, D.J. and Czeisler, C.A. (1994) Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans. Neurosci. Lett. 166, 63–68.

    Article  PubMed  CAS  Google Scholar 

  30. Zepelin, H. (1994) Mammalian sleep, in Principles and Practice of Sleep Medicine (Kryger, M.H., Roth, T., and Dement, W.C., eds.), WB Saunders, Philadelphia, pp. 69–80.

    Google Scholar 

  31. Siegel, J.M. (1994) Brainstem mechanisms generating REM sleep, Principles and Practice of Sleep Medicine (Kryger, M.H., Roth, T., and Dement, W.C., eds.), WB Saunders, Philadelphia, pp. 125–144.

    Google Scholar 

  32. Jouvet, M. (1994) Paradoxical sleep mechanisms. Sleep 17, S77–S83.

    PubMed  CAS  Google Scholar 

  33. Alam, M.N., Gong, H., Alam, T., Jaganath, R., McGinty, D., and Szymusiak, R. (2002) Sleepwaking discharge patterns of neurons recorded in the rat perifornical lateral hypothalamic area. J. Physiol. 538, 619–631.

    Article  PubMed  CAS  Google Scholar 

  34. Koyama, Y., Takahashi, K., Kodama, T., and Kayama, Y. (2003) State-dependent activity of neurons in the perifornical hypothalamic area during sleep and waking. Neuroscience 119, 1209–1219.

    Article  PubMed  CAS  Google Scholar 

  35. Koyama, Y., Honda, T., Kusakabe, M., Kayama, Y., and Sugiura, Y. (1998) In vivo electrophysiological distinction of histochemically-identified cholinergic neurons using extracellular recording and labelling in rat laterodorsal tegmental nucleus. Neuroscience 83, 1105–1112.

    Article  PubMed  CAS  Google Scholar 

  36. Cirelli, C. and Tononi, G. (2000) On the functional significance of c-fos induction during the sleep-waking cycle. Sleep 23, 53–69.

    Google Scholar 

  37. Strand, F.L. (1999) Neuropeptides: Regulators of Pysiological Processes. MIT Press, Cambridge, MA.

    Google Scholar 

  38. Ripley, B., Fujiki, N., Okura, M., Mignot, E., and Nishino, S. (2001) Hypocretin levels in sporadic and familial cases of canine narcolepsy. Neurobiol. Dis. 8, 525–534.

    Article  PubMed  CAS  Google Scholar 

  39. Chen, C.T., Dun, S.L., Kwok, E.H., Dun, N.J., and Chang, J.K. (1999) Orexin A-like immunoreactivity in the rat brain. Neurosci. Lett. 260, 161–164.

    Article  PubMed  CAS  Google Scholar 

  40. Agnati, L.F., Bjelke, B., and Fuxe, K. (1995) Volume versus wiring transmission in the brain: a new theoretical frame for neuropsychopharmacology. Med. Res. Rev. 15, 33–45.

    Article  PubMed  CAS  Google Scholar 

  41. Nishino, S., Ripley, B., Overeem, S., et al. (2001) Low CSF hypocretin (orexin) and altered energy homeostasis in human narcolepsy. Ann. Neurol. 50, 381–388.

    Article  PubMed  CAS  Google Scholar 

  42. Yoshida, Y., Fujiki, N., Maki, R.A., Schwarz, D., and Nishino, S. (2003) Differential kinetics of hypocretins in the cerebrospinal fluid after intracerebroventricular administration in rats. Neurosci. Lett. 346, 182–186.

    Article  PubMed  CAS  Google Scholar 

  43. Pedrazzoli, M., D’Almeida, V., Martins, P.J., et al. (2004) Increased hypocretin-1 levels in cerebrospinal fluid after REM sleep deprivation. Brain Res. 995, 1–6.

    Article  PubMed  CAS  Google Scholar 

  44. Martins, P.J., D’Almeida, V., Pedrazzoli, M., Lin, L., Mignot, E., and Tufik, S. (2004) Increased hypocretin-1 (orexin-A) levels in cerebrospinal fluid of rats after short-term forced activity. Regul. Pept. 117, 155–158.

    Article  PubMed  CAS  Google Scholar 

  45. Desarnaud, F., Murillo-Rodriguez, E., Lin, L., et al. (2004) The diurnal rhythm of hypocretin in young and old F344 rats. Sleep 27, 851–856.

    PubMed  Google Scholar 

  46. Zhang, S., Zeitzer, J.M., Yoshida, Y., et al. (2004) Lesions of the suprachiasmatic nucleus eliminate the daily rhythm of hypocretin-1 release. Sleep 27, 619–627.

    PubMed  Google Scholar 

  47. Watts, A.G., Swanson, L.W., and Sanchez-Watts, G. (1987) Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J. Comp. Neurol. 258, 204–229.

    Article  PubMed  CAS  Google Scholar 

  48. Watts, A.G. and Swanson, L.W. (1987) Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat. J. Comp. Neurol. 258, 230–252.

    Article  PubMed  CAS  Google Scholar 

  49. Chou, T.C., Scammell, T.E., Gooley, J.J., Gaus, S.E., Saper, C.B., and Lu, J. (2003) Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J. Neurosci. 23, 10691–10702.

    PubMed  CAS  Google Scholar 

  50. Aston-Jones, G., Chen, S., Zhu, Y., and Oshinsky, M.L. (2001) A neural circuit for circadian regulation of arousal. Nat. Neurosci. 4, 732–738.

    Article  PubMed  CAS  Google Scholar 

  51. Bernardis, L.L. and Bellinger, L.L. (1998) The dorsomedial hypothalamic nucleus revisited: 1998 update. Proc. Soc. Exp. Biol. Med. 218, 284–306.

    PubMed  CAS  Google Scholar 

  52. Deboer, T., Overeem, S., Visser, N.A., et al. (2004) Hypocretin-1 is under influence of circadian and homeostatic mechanisms. Sleep 27 (Suppl), A1–A2.

    Google Scholar 

  53. Wu, M.F., John, J., Maidment, N., Lam, H.A., and Siegel, J.M. (2002) Hypocretin release in normal and narcoleptic dogs after food and sleep deprivation, eating, and movement. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R1079–R1086.

    PubMed  Google Scholar 

  54. Zeitzer, J.M., Buckmaster, C.L., Lyons, D.M., and Mignot, E. (2004) Locomotor-dependent and independent components to hypocretin-1 (orexin A) regulation in sleep-wake consolidating monkeys. J. Physiol. 557, 1045–1053.

    Article  PubMed  CAS  Google Scholar 

  55. Salomon, R.M., Ripley, B., Kennedy, J.S., et al. (2003) Diurnal variation of cerebrospinal fluid hypocretin-1 (orexin-A) levels in control and depressed subjects. Biol. Psychiatry 54, 96–104.

    Article  PubMed  CAS  Google Scholar 

  56. Scammell, T.E., Estabrooke, I.V., McCarthy, M.T., et al. (2000) Hypothalamic arousal regions are activated during modafinil-induced wakefulness. J. Neurosci. 20, 8620–8628.

    PubMed  CAS  Google Scholar 

  57. Torterolo, P., Yamuy, J., Sampogna, S., Morales, F.R., and Chase, M.H. (2003) Hypocretinergic neurons are primarily involved in activation of the somatomotor system. Sleep 26, 25–28.

    PubMed  Google Scholar 

  58. Espana, R.A., Plahn, S., and Berridge, C.W. (2002) Circadian-dependent and circadian-independent behavioral actions of hypocretin/orexin. Brain Res. 943, 224–236.

    Article  PubMed  CAS  Google Scholar 

  59. Sakurai, T., Amemiya, A., Ishil, M., et al. (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585.

    Article  PubMed  CAS  Google Scholar 

  60. Kiyashchenko, L.I., Mileykovskiy, B.Y., Maidment, N., et al. (2002) Release of hypocretin (orexin) during waking and sleep states. J. Neurosci. 22, 5282–5286.

    PubMed  CAS  Google Scholar 

  61. Tafti, M., Rondouin, G., Basset, A., and Billiard, M. (1992) Sleep deprevation in narcoleptic subjects: effect on sleep stages and EEG power density. Electroencephalogr. Clin. Neurophysiol. 83, 339–349.

    Article  CAS  Google Scholar 

  62. Tafti, M., Villemin, E., Carlander, B., Besset, A., and Biliard, M. (1992) Sleep onset rapid-eye-movement episodes in narcolepsy: REM sleep pressure or nonrem-rem sleep dysregulation? J. Sleep Res. 1, 245–250.

    Article  PubMed  Google Scholar 

  63. Dantz, B., Edgar, D.M., and Dement, W.C. (1994) Circadian rhythms in narcolepsy: studies on a 90 minute day. Electrocephalogr. Clin. Neurophysiol. 90, 24–35.

    Article  CAS  Google Scholar 

  64. Broughton, R., Dunham, W., Newman, J., Lutley, K., Dushesne, P., and Rivers, M. (1988) Ambulatory 24 hour sleep-wake monitoring in narcolepsy-cataplexy compared to matched control. Electroencephalogr. Clin. Neurophysiol. 70, 473–481.

    Article  CAS  Google Scholar 

  65. Saper, C.B., Chou, T.C., and Scammell, T.E. (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 24, 726–731.

    Article  PubMed  CAS  Google Scholar 

  66. Franken, P., Tobler, I., and Borbely, A.A. (1991) Sleep homeostasis in the rat: simulation of the time course of EEG slow-wave activity. Neurosci. Lett. 130, 141–144.

    Article  PubMed  CAS  Google Scholar 

  67. Nishino, S., Taheri, S., Black, J., Nofzinger, E., and Mignot, E. (2004) The neurobiology of sleep in relation to mental illness, in Neurobiology of Mental Illness (Charney, D.S., ed.), Oxford University Press, New York, pp. 1160–1179.

    Google Scholar 

  68. Aston-Jones, G. and Bloom, F.E. (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J. Neurosci. 1, 876–886.

    PubMed  CAS  Google Scholar 

  69. Trulson, M.E. and Jacobs, B.L. (1979) Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res. 163, 135–150.

    Article  PubMed  CAS  Google Scholar 

  70. Steininger, T.L., Alam, M.N., Gong, H., Szymusiak, R., and McGinty, D. (1999) Sleep-waking discharge of neurons in the posterior lateral hypothalamus of the albino rat. Brain Res. 840, 138–147.

    Article  PubMed  CAS  Google Scholar 

  71. Horvath, T.L., Peyron, C., Diano, S., et al. (1999) Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J. Comp. Neurol. 415, 145–159.

    Article  PubMed  CAS  Google Scholar 

  72. Eggermann, E., Serafin, M., Bayer, L., et al. (2001) Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience 108, 177–181.

    Article  PubMed  CAS  Google Scholar 

  73. Xi, M.-C., Morales, F.R., and Chase, M.H. (2001) Effects on sleep and wakefulness of the injection of hypocretin-1 (orexin-A) into the latero dorsal tegmental nucleus of the cat. Brain Res. 901, 259–264.

    Article  PubMed  CAS  Google Scholar 

  74. El Mansari, M., Sakai, K., and Jouvet, M. (1989) Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep-waking cycle in freely moving cats. Exp. Brain Res. 76, 519–529.

    Article  PubMed  Google Scholar 

  75. Massaquoi, S.G. and McCarley, R.W. (1992) Extension of the limit cycle reciprocal interaction model of REM cycle control. An integrated sleep control model. J. Sleep Res. 1, 138–143.

    PubMed  Google Scholar 

  76. Steriade, M., Datta, S., Paré, D., Oakson, G., and Curró Dossi, R. (1990) Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J. Neurosci. 10, 2541–2559.

    PubMed  CAS  Google Scholar 

  77. Velazquez-Moctezuma, J., Gillin, J.C., and Shiromani, P.J. (1989) Effect of specific M1, M2 muscarinic receptor agonists on REM sleep generation. Brain Res. 503, 128–131.

    Article  PubMed  CAS  Google Scholar 

  78. Webster, H.H. and Jones, B.E. (1988) Neurotoxic lesions of the dorsolateral pontomesencephalic tegmentum-cholinergic cell area in the cat. II. Effects upon sleep-waking states. Brain Res. 458, 285–302.

    Article  PubMed  CAS  Google Scholar 

  79. Jones, B.E. and Webster, H.H. (1988) Neurotoxic lesions of the dorsolateral pontomesencephalic tegmentum-cholinergic cell area in the cat. I. Effects upon the cholinergic innervation of the brain. Brain Res. 451, 13–32.

    Article  PubMed  CAS  Google Scholar 

  80. Gallopin, T., Fort, P., Eggermann, E., et al. (2000) Identification of sleep-promoting neurons in vitro. Nature 404, 992–995.

    Article  PubMed  CAS  Google Scholar 

  81. Li, Y., Gao, X.B., Sakurai, T., and van den Pol, A.N. (2002) Hypocretin/orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron 36, 1169–1181.

    Article  PubMed  CAS  Google Scholar 

  82. Borbély, A.A. (1977) Sleep in the rat during food deprivation and subsequent restitution of food. Brain Res. 124, 457–471.

    Article  PubMed  Google Scholar 

  83. Danguir, J. and Nicolaidis, S. (1979) Dependence of sleep on nutrients’ availability. Physiol. Behav. 22, 735–740.

    Article  PubMed  CAS  Google Scholar 

  84. Dewasmes, G., Duchamp, C., and Minaire, Y. (1989) Sleep changes in fasting rats. Physiol. Behav. 46, 179–184.

    Article  PubMed  CAS  Google Scholar 

  85. Challet, E., Pevet, P., Vivien-Roels, B., and Malan, A. (1997) Phase-advanced daily rhythms of melatonin, body temperature, and locomotor activity in food-restricted rats fed during daytime. J. Biol. Rhythms 12, 65–79.

    Article  PubMed  CAS  Google Scholar 

  86. Williams, T.D., Chambers, J.B., Henderson, R.P., Rashotte, M.E., and Overton, J.M. (2002) Cardiovascular responses to caloric restriction and thermoneutrality in C57BL/6J mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R1459–R1467.

    PubMed  CAS  Google Scholar 

  87. Sakurai, T. (2002) Roles of orexins in regulation of feeding and wakefulness. Neuroreport 13, 987–995.

    Article  PubMed  CAS  Google Scholar 

  88. Borbéry, A.A. (2000) Introduction, in the Regulation of Sleep (Borbéry, A.A., Hayaishi, O., Sejnowski, A.J., and Altman, J.S., eds.), HFSP, Strasbourg, pp. 17–25.

    Google Scholar 

  89. Sheman, T.G., Akil, H., and Watson, S.J. (1984) The molecular biology of neuropeptides. Discussions in Neuroscience, vol. 6. Elsevier, Amsterdam, pp. 1–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Yoshida, Y., Nishino, S. (2006). Hypocretin/Orexin Tonus and Vigilance Control. In: Nishino, S., Sakurai, T. (eds) The Orexin/Hypocretin System. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1385/1-59259-950-8:155

Download citation

Publish with us

Policies and ethics