Skip to main content

Neuroendocrine Role of the Orexins (Hypocretins)

  • Chapter
The Orexin/Hypocretin System

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Although the orexin (hypocretin) neuron cell bodies are exclusively located in the lateral perifornical hypothalamus (the classical “feeding center”), they send projections throughout the neuraxis (1,2). This suggests that orexin neuropeptides and their receptors have functions beyond their originally observed effects on food intake and their currently accepted pivotal role in the regulation of sleep and wakefulness (36). In particular, orexin fibers have been observed to innervate several brain, and specifically hypothalamic, regions that are intimately involved in the regulation of pituitary hormone secretion. Therefore, a link between the orexins and pituitary hormone secretion appeared highly likely from the outset. This view was underscored by the observed role of orexins in sleep regulation, since the secretion of some hormones is closely linked to circadian rhythms (e.g., corticotrophin, [AC TH]) and sleep (e.g., growth hormone).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peyron, C., Tighe, D.K., van den Pol, A.N. et al. (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 18, 9996–10015.

    PubMed  CAS  Google Scholar 

  2. Taheri, S., Zeitzer, J.M., Mignot, E. (2002) The role of hypocretins (orexins) in sleep regulation and narcolepsy. Annu. Rev. Neurosci. 25, 283–313.

    Article  PubMed  CAS  Google Scholar 

  3. Sakurai, T., Amemiya, A., Ishii, M. et al. (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585.

    Article  PubMed  CAS  Google Scholar 

  4. Taheri, S., Bloom, S. (2001) Orexins/hypocretins: waking up the scientific world. Clin. Endocrinol. (Oxf). 54, 421–429.

    Article  CAS  Google Scholar 

  5. Willie, J.T., Chemelli, R.M., Sinton, C.M., and Yanagisawa M. (2001) To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu. Rev. Neurosci. 24, 429–458.

    Article  PubMed  CAS  Google Scholar 

  6. Sakurai, T. (2002) Roles of orexins in the regulation of feeding and arousal. Sleep Med. 3(suppl. 2), S3–S9.

    Article  PubMed  Google Scholar 

  7. Jennes, L. and Conn, P.M. (1994) Gonadotropin-releasing hormone and its receptors in rat brain. Front. Neuroendocrinol. 15, 51–77.

    Article  PubMed  CAS  Google Scholar 

  8. Taheri, S., Mahmoodi, M., Opacka-Juffry, J., Ghatei, M.A., and Bloom, S.R. (1999) Distribution and quantification of immunoreactive orexin A in rat tissues. FEBS Lett. 457, 157–161.

    Article  PubMed  CAS  Google Scholar 

  9. Pu, S., Jain, M.R., Kalra, P.S., and Kalra, S.P. (1998) Orexins, a novel family of hypothalamic neuropeptides, modulate pituitary luteinizing hormone secretion in an ovarian steroid-dependent manner. Regul. Pept. 78, 133–136.

    Article  PubMed  CAS  Google Scholar 

  10. Irahara, M., Tamura, T., Matuzaki, T., et al. (2001) Orexin-A suppresses the pulsatile secretion of luteinizing hormone via beta-endorphin. Biochem. Biophys. Res. Commun. 281, 232–236.

    Article  PubMed  CAS  Google Scholar 

  11. Kohsaka, A., Watanobe, H., Kakizaki, Y., Suda, T., and Schioth, H.B. (2001) A significant participation of orexin-A, a potent orexigenic peptide, in the preovulatory luteinizing hormone and prolactin surges in the rat. Brain Res. 898, 166–170.

    Article  PubMed  CAS  Google Scholar 

  12. Russell, S.H., Small, C.J., Kennedy, A.R., et al. (2001) Orexin A interactions in the hypothalamopituitary gonadal axis. Endocrinology 142, 5294–5302.

    Article  PubMed  CAS  Google Scholar 

  13. Mahesh, V.B. and Brann, D.W. (1998) Regulation of the preovulatory gonadotropin surge by endogenous steroids. Steroids 63, 616–629.

    Article  PubMed  CAS  Google Scholar 

  14. Hagan, J.J., Leslie, R.A., Patel, S., et al. (1999) Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc. Natl. Acad. Sci. U S A 96, 10911–10916.

    Article  PubMed  CAS  Google Scholar 

  15. Russell, S.H., Kim, M.S., Small, C.J., et al. (2000) Central administration of orexin A suppresses basal and domperidone stimulated plasma prolactin. J. Neuroendocrinol. 12, 1213–1218.

    Article  PubMed  CAS  Google Scholar 

  16. Jones, D.N., Gartlon, J., Parker, F., et al. (2001) Effects of centrally administered orexin-B and orexin-A: a role for orexin-1 receptors in orexin-B-induced hyperactivity. Psychopharmacology (Berl.) 153, 210–218.

    Article  CAS  Google Scholar 

  17. Freeman, M.E., Kanyicska, B., Lerant, A., and Nagy, G. (2000) Prolactin: structure, function, and regulation of secretion. Physiol. Rev. 80, 1523–1631.

    PubMed  CAS  Google Scholar 

  18. Hsueh, Y.C., Cheng, S.M., Pan, J.T. (2002) Fasting stimulates tuberoinfundibular dopaminergic neuronal activity and inhibits prolactin secretion in oestrogen-primed ovariectomized rats: involvement of orexin A and neuropeptide Y. J. Neuroendocrinol. 14, 745–752.

    Article  PubMed  CAS  Google Scholar 

  19. Lux-Lantos, V., Becu-Villalobos, D., Bianchi, M. et al. (2001) GABA(B) receptors in anterior pituitary cells. Mechanism of action coupled to endocrine effects. Neuroendocrinology 73, 334–343.

    Article  PubMed  CAS  Google Scholar 

  20. Malabu, U.H., Kilpatrick, A., Ware, M., Vernon, R.G., and Williams, G. (1994) Increased neuropeptide Y concentrations in specific hypothalamic regions of lactating rats: possible relationship to hyperphagia and adaptive changes in energy balance. Peptides 15, 83–87.

    Article  PubMed  CAS  Google Scholar 

  21. Pickavance, L., Dryden, S., Hopkins, D., et al. (1996) Relationships between hypothalamic neuropeptide Y and food intake in the lactating rat. Peptides 17, 577–582.

    Article  PubMed  CAS  Google Scholar 

  22. Brogan, R.S., Mitchell, S.E., Trayhurn, P., and Smith, M.S. (1999) Suppression of leptin during lactation: contribution of the suckling stimulus versus milk production. Endocrinology 140, 2621–2627.

    Article  PubMed  CAS  Google Scholar 

  23. Smith, M.S. and Grove, K.L. (2002) Integration of the regulation of reproductive function and energy balance: lactation as a model. Front. Neuroendocrinol. 23, 225–256.

    Article  PubMed  CAS  Google Scholar 

  24. Cai, X.J., Denis, R., Vernon, R.G., et al. (2001) Food restriction selectively increases hypothalamic orexin-B levels in lactating rats. Regul. Pept. 97, 163–168.

    Article  PubMed  CAS  Google Scholar 

  25. Kok, S.W., Roelfsema, F., Overeem, S., et al. (2004) Pulsatile LH release is diminished, while FSH secretion is normal in hypocretin deficient narcoleptic men. Am. J. Physiol. Endocrinol. Metab. 287, E630–E636.

    Article  PubMed  CAS  Google Scholar 

  26. Mitsuma, T., Hirooka, Y., Mori, Y., et al. (1999) Effects of orexin A on thyrotropin-releasing hormone and thyrotropin secretion in rats. Horm. Metab. Res. 31, 606–609.

    Article  PubMed  CAS  Google Scholar 

  27. Russell, S.H., Small, C.J., Dakin, C.L., et al. (2001) The central effects of orexin-A in the hypothalamic-pituitary-adrenal axis in vivo and in vitro in male rats. J. Neuroendocrinol 13, 561–566.

    Article  PubMed  CAS  Google Scholar 

  28. Russell, S.H., Small, C.J., Sunter, D., et al. (2002) Chronic intraparaventricular nuclear administration of orexin A in male rats does not alter thyroid axis or uncoupling protein-1 in brown adipose tissue. Regul. Pept. 104, 61–68.

    Article  PubMed  CAS  Google Scholar 

  29. Yoshida, Y., Fujiki, N., Maki, R.A., Schwarz, D., and Nishino, S. (2003) Differential kinetics of hypocretins in the cerebrospinal fluid after intracerebroventricular administration in rats. Neurosci. Lett. 346, 182–186.

    Article  PubMed  CAS  Google Scholar 

  30. Marcus, J.N., Aschkenasi, C.J., Lee, C.E., et al. (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J. Comp. Neurol. 435, 6–25.

    Article  PubMed  CAS  Google Scholar 

  31. Lopez, M., Seoane, L., Senaris, R.M., and Dieguez, C. (2001) Prepro-orexin mRNA levels in the rat hypothalamus, and orexin receptors mRNA levels in the rat hypothalamus and adrenal gland are not influenced by the thyroid status. Neurosci. Lett. 300, 171–175.

    Article  PubMed  CAS  Google Scholar 

  32. Emlen, W., Segal, D.S., and Mandell, A.J. (1972) Thyroid state: effects on pre-and postsynaptic central noradrenergic mechanisms. Science 175, 79–82.

    Article  PubMed  CAS  Google Scholar 

  33. Yamamoto, T. Hirose, N., and Miyoshi, K. (1977) Polygraphic study of periodic breathing and hypersomnolence in a patient with severe hypothyroidism. Eur. Neurol. 15, 188–193.

    PubMed  CAS  Google Scholar 

  34. Carpenter, A.C. and Timiras, P.S. (1982) Sleep organization in hypo-and hyperthyroid rats. Neuroendocrinology 34, 438–443.

    PubMed  CAS  Google Scholar 

  35. Mignot, E., Lammers, G.J., Ripley, B., et al. (2002) The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch. Neurol. 59, 1553–1562.

    Article  PubMed  Google Scholar 

  36. Jessop, D.S. (1999) Stimulatory and inhibitory regulators of the hypothalamo-pituitaryadrenocortical axis. Baillieres Best Pract. Res. Clin. Endocrinol. Metab. 13, 491–501.

    Article  PubMed  CAS  Google Scholar 

  37. Backberg, M., Hervieu, G., Wilson, S., and Meister, B. (2002) Orexin receptor-1 (OX-R1) immunoreactivity in chemically identified neurons of the hypothalamus: focus on orexin targets involved in control of food and water intake. Eur. J. Neurosci. 15, 315–328.

    Article  PubMed  Google Scholar 

  38. Jaszberenyi, M., Bujdoso, E., Pataki, I., and Telegdy, G. (2000) Effects of orexins on the hypothalamicpituitary-adrenal system. J. Neuroendocrinol. 12, 1174–1178.

    Article  PubMed  CAS  Google Scholar 

  39. Jaszberenyi, M., Bujdoso, E., and Telegdy, G. (2001) The role of neuropeptide Y in orexin-induced hypothalamic-pituitary-adrenal activation. J. Neuroendocrinol. 13, 438–441.

    Article  PubMed  CAS  Google Scholar 

  40. Al-Barazanji, K.A., Wilson, S., Baker, J., Jessop, D.S., and Harbuz, M.S. (2001) Central orexin-A activates hypothalamic-pituitary-adrenal axis and stimulates hypothalamic corticotropin releasing factor and arginine vasopressin neurones in conscious rats. J. Neuroendocrinol. 13, 421–424.

    Article  PubMed  CAS  Google Scholar 

  41. Kuru, M., Ueta, Y., Serino, R., et al. (2000) Centrally administered orexin/hypocretin activates HPA axis in rats. Neuroreport 11, 1977–1980.

    Article  PubMed  CAS  Google Scholar 

  42. Samson, W.K., Taylor, M.M., Follwell, M., and Ferguson, A.V. (2002) Orexin actions in hypothalamic paraventricular nucleus: physiological consequences and cellular correlates. Regul. Pept. 104, 97–103.

    Article  PubMed  CAS  Google Scholar 

  43. Ida, T., Nakahara, K., Kuroiwa, T., et al. (2000) Both corticotropin releasing factor and neuropeptide Y are involved in the effect of orexin on the food intake in rats. Neurosci. Lett. 293, 119–122.

    Article  PubMed  CAS  Google Scholar 

  44. Ida, T., Nakahara, K., Murakami, T., Hanada, R., Nakazato, M., and Murakami, N. (2000) Possible involvement of orexin in the stress reaction in rats. Biochem. Biophys. Res. Commun. 270, 318–323.

    Article  PubMed  CAS  Google Scholar 

  45. Zhu, L., Onaka, T., Sakurai, T., and Yada, T. (2002) Activation of orexin neurones after noxious but not conditioned fear stimuli in rats. Neuroreport 13, 1351–1353.

    Article  PubMed  CAS  Google Scholar 

  46. Zeitzer, J.M., Buckmaster, C.L., Parker, K.J., Hauck, C.M., Lyons, D.M., and Mignot, E. (2003) Circadian and homeostatic regulation of hypocretin in a primate model: implications for the consolidation of wakefulness. J. Neurosci. 23, 3555–3560.

    PubMed  CAS  Google Scholar 

  47. Nishino, S., Ripley, B., Overeem, S., Lammers, G.J., and Mignot, E. (2000) Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355, 39–40.

    Article  PubMed  CAS  Google Scholar 

  48. Mignot, E., Taheri, S., and Nishino, S. (2002) Sleeping with the hypothalamus: emerging therapeutic targets for sleep disorders. Nat. Neurosci. 5(suppl.), 1071–1075.

    Article  PubMed  CAS  Google Scholar 

  49. Higuchi, T., Takahashi, Y., Takahashi, K., Niimi, Y., and Miyasita, A. (1979) Twenty-four-hour secretory patterns of growth hormone, prolactin, and cortisol in narcolepsy. J. Clin. Endocrinol. Metab. 49, 197–204.

    Article  PubMed  CAS  Google Scholar 

  50. Kok, S.W., Roelfsema, F., Overeem, S., et al. (2002) Dynamics of the pituitary-adrenal ensemble in hypocretin-deficient narcoleptic humans: blunted basal adrenocorticotropin release and evidence for normal time-keeping by the master pacemaker. J. Clin. Endocrinol. Metab. 87, 5085–5091.

    Article  PubMed  CAS  Google Scholar 

  51. Stricker-Krongrad, A. and Beck, B. (2002) Modulation of hypothalamic hypocretin/orexin mRNA expression by glucocorticoids. Biochem. Biophys. Res. Commun. 296, 129–133.

    Article  PubMed  CAS  Google Scholar 

  52. Lopez, M., Seoane, L.M., Tovar, S., Nogueiras, R., Dieguez, C., and Senaris, R. (2004) Orexin-A regulates growth hormone-releasing hormone mRNA content in a nucleus-specific manner and somatostatin mRNA content in a growth hormone-dependent fashion in the rat hypothalamus. Eur. J. Neurosci. 19, 2080–2088.

    Article  PubMed  Google Scholar 

  53. Clark, R.W., Schmidt, H.S., and Malarkey, W.B. (1979) Disordered growth hormone and prolactin secretion in primary disorders of sleep. Neurology 29, 855–861.

    PubMed  CAS  Google Scholar 

  54. Overeem, S., Kok, S.W., Lammers, G.J., et al. (2003) Somatotropic axis in hypocretin-deficient narcoleptic humans: altered circadian distribution of GH-secretory events. Am. J. Physiol. Endocrinol. Metab. 284, E641–E647.

    PubMed  CAS  Google Scholar 

  55. Willie, J.T., Sakurai, T., Hara, J., Takahira, H., Gershenfeld, H.K., and Yanagisawa, M. (2002) Ectopic expression of orexin transgene alters body weight and energy metabolism in mice. Society for Neuroscience Meeting, Orlando, FL, abstract 320.8.

    Google Scholar 

  56. Date, Y., Mondal, M.S., Matsukura, S., et al. (2000) Distribution of orexin/hypocretin in the rat median eminence and pituitary. Brain Res. Mol. Brain Res. 76, 1–6.

    Article  PubMed  CAS  Google Scholar 

  57. Blanco, M., Lopez, M., Garcia-Caballero, T., et al. (2001) Cellular localization of orexin receptors in human pituitary. J. Clin. Endocrinol. Metab. 86, 1616–1619.

    Article  CAS  Google Scholar 

  58. Samson, W.K. and Taylor, M.M. (2001) Hypocretin/orexin suppresses corticotroph responsiveness in vitro. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R1140–R1145.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Taheri, S. (2006). Neuroendocrine Role of the Orexins (Hypocretins). In: Nishino, S., Sakurai, T. (eds) The Orexin/Hypocretin System. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1385/1-59259-950-8:119

Download citation

Publish with us

Policies and ethics