Hypocretin/Orexin and Motor Function

  • Jerome M. Siegel
Part of the Contemporary Clinical Neuroscience book series (CCNE)


As the literature on hypocretin/orexin has grown, so has the list of functions attributed to this system. Recent papers have routinely listed sleep and arousal control, blood pressure regulation, feeding, motor control, and others as functions for the hypocretin system (1, 2, 3, 4). The question I address here is whether such an inclusive listing is an appropriate acknowledgement of the complexity and subtlety of hypocretin’s function or whether a simpler relationship may underlie the multiple correlations that have been seen.


Sleep Deprivation Locus Coeruleus Food Deprivation Amino Acid Release Active Waking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sutcliffe, J.G. and De Lecea, L. (2002) The hypocretins: setting the arousal threshold. Nat. Rev. Neurosci. 3, 339–349.PubMedCrossRefGoogle Scholar
  2. 2.
    Siegel, J.M. (1999) Narcolepsy: a key role for hypocretins (orexins). Cell 98, 409–412.PubMedCrossRefGoogle Scholar
  3. 3.
    Siegel, J.M., Moore, R., Thannickal, T., and Nienhuis, R. (2001) A brief history of hypocretin/orexin and narcolepsy. Neuropsychopharmacology 25, S14–S20PubMedCrossRefGoogle Scholar
  4. 4.
    Kilduff, T.S. and Peyron, C. (2000) The hypocretin/orexin ligand-receptor system: implications for sleep and sleep disorders. Trends Neurosci. 23, 359–365.PubMedCrossRefGoogle Scholar
  5. 5.
    Siegel, J.M. (2004) Hypocretin (orexin): role in normal behavior and neuropathology. Annu. Rev. Psychol. 55, 125–148.PubMedCrossRefGoogle Scholar
  6. 6.
    Wu, M.F., John, J., Maidment, N., Lam, H.A., and Siegel, J.M. Hypocretin release in normal and narcoleptic dogs after food and sleep deprivation, eating, and movement. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R1079–R1086Google Scholar
  7. 7.
    Peyron, C., Faraco, J., Rogers, W., et al. (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat. Med. 6, 991–997.PubMedCrossRefGoogle Scholar
  8. 8.
    Thannickal, T.C., Moore, R.Y., Nienhuis, R., et al. (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27, 469–474.PubMedCrossRefGoogle Scholar
  9. 9.
    Thannickal, T.C., Siegel, J.M., and Moore, R.Y. (2003) Pattern of hypocretin (orexin) soma and axon loss, and gliosis, in human narcolepsy. Brain Pathol. 13, 340–351.PubMedCrossRefGoogle Scholar
  10. 10.
    Kiyashchenko, L.I., Mileykovskiy, B.Y., Maidment, N., et al. (2002) Release of hypocretin (orexin) during waking and sleep states. J. Neurosci. 22, 5282–5286.PubMedGoogle Scholar
  11. 11.
    Torterolo, P., Yamuy, J., Sampogna, S., Morales, F.R., and Chase, M.H. (2003) Hypocretinergic neurons are primarily involved in activation of the somatomotor system. Sleep 26, 25–28.PubMedGoogle Scholar
  12. 12.
    Kodama, T., Lai, Y.Y., and Siegel, J.M. (2003) Changes in inhibitory amino acid release linked to pontine-induced atonia: an in vivo microdialysis study. J. Neurosci. 23, 1548–1554.PubMedGoogle Scholar
  13. 13.
    Lai, Y.Y., Kodama, T., and Siegel, J.M. (2001) Changes in monoamine release in the ventral horn and hypoglossal nucleus linked to pontine inhibition of muscle tone: an in vivo microdialysis study. J. Neurosci. 21, 7384–7391.PubMedGoogle Scholar
  14. 14.
    Peever, J.H., Lai, Y.Y., and Siegel, J.M. (2003) Excitatory effects of hypocretin-1 (orexin-A) in the trigeminal motor nucleus are reversed by NMDA antagonism. J. Neurophysiol. 89, 2591–2600PubMedCrossRefGoogle Scholar
  15. 15.
    Mileykovskiy, B.Y., Kiyashchenko, L.I., and Siegel, J.M. (2000) Muscle tone facilitation and inhibition after orexin-A (hypocretin-1) microinjections into the medial medulla. J. Neurophysiol. 87, 2480–2489.Google Scholar
  16. 16.
    Fenik, V., Marchenko, V., Janssen, P., Davies, R.O., and Kubin, L. (2002) A5 cells are silenced when REM sleep-like signs are elicited by pontine carbachol. J. Appl. Physiol. 93, 1448–1456.PubMedGoogle Scholar
  17. 17.
    Kubin, L., Tojima, H., Davies, R.O., and Pack, A.I. (1992) Serotonergic excitatory drive to hypoglossal motoneurons in the decerebrate cat. Neurosci. Lett. 139, 243–248.PubMedCrossRefGoogle Scholar
  18. 18.
    Valenstein, E.S., Cox, V.C., and Kakolewski, J.W. (1970) Reexamination of the role of the hypothalamus in motivation. Psychol. Rev. 77, 16–31.PubMedCrossRefGoogle Scholar
  19. 19.
    Valenstein, E.S. (1971) Channeling of responses elicited by hypothalamic stimulation. J. Psychiatr. Res. 8, 335–344.PubMedCrossRefGoogle Scholar
  20. 20.
    Ida, T., Nakahara, K., Katayama, T., Murakami, N., and Nakazato, M. (1999) Effect of lateral cerebroventricular injection of the appetite-stimulating neuropeptide, orexin and neuropeptide Y, on the various behavioral activities of rats. Brain Res. 821, 526–529.PubMedCrossRefGoogle Scholar
  21. 21.
    Schuld, A., Hebebrand, J., Geller, F., and Pollmacher, T. (2000) Increased body-mass index in patients with narcolepsy. Lancet 355, 1274–1275.PubMedCrossRefGoogle Scholar
  22. 22.
    John, J., Wu, M.F., Kodama, T., and Siegel, J.M. (2003) Intravenously administered hypocretin-1 alters brain amino acid release: an in vivo microdialysis study in rats. J. Physiol. (Lond.) 2, 557–562.CrossRefGoogle Scholar
  23. 23.
    Kiyashchenko, L.I., Mileykovskiy, B.Y., Lai, Y.Y., and Siegel, J.M. (2001) Increased and decreased muscle tone with orexin (hypocretin) microinjections in the locus coeruleus and pontine inhibitory area. J. Neurophysiol. 85, 2008–2016.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • Jerome M. Siegel
    • 1
  1. 1.Neurobiology Research, GLAHS Sepulveda, Department of PsychiatryUCLA David Geffen School of MedicineLos Angeles

Personalised recommendations