Skip to main content

The Ischemic Penumbra and Neuronal Salvage

  • Chapter

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

The majority of focal cerebral ischemic events result from arterial occlusion caused by embolism or in situ thrombosis. This interruption in blood flow, if severe and prolonged, leads to cerebral infarction. Brain infarction results from a disruption in blood flow, which causes a reduction in oxygen and glucose supplied to the tissue. Glucose and oxygen deprivation causes a metabolic shift toward the production of lactic acidic. Coincident with this impairment of the Na+/Ca++ exchange pump, excessive glutamate release causes an unregulated amount of calcium to enter the cells. Intracellular calcium increases trigger a variety of processes that result in the breakdown of membranes and nucleic acids. In addition, the release of free radicals, the breakdown of the blood-brain barrier and development of the inflammatory response all work together to promote further cellular injury.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia: The ischemic penumbra. Stroke 1981; 12:723–725.

    PubMed  CAS  Google Scholar 

  2. Astrup J, Symon L, Branston NM, Lassen NA. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 1977;8:51–57.

    PubMed  CAS  Google Scholar 

  3. Garcia JH, Liu K-F, Ye Z-R, Gutierrez JA. Incomplete infarct and delayed neuronal death after transient middle cerebral artery occlusion in rats. Stroke 1997;28:2303–2310.

    PubMed  CAS  Google Scholar 

  4. Heiss W-D. Experimental evidence of ischemic thresholds and functional recovery. Stroke 1992;23:1668–1672.

    PubMed  CAS  Google Scholar 

  5. Heiss W-D. Progress in cerebrovascular disease: flow thresholds of functional and morphological damage of brain tissue. Stroke 1983;14:329–331.

    PubMed  CAS  Google Scholar 

  6. Hossmann K-A. Viability thresholds and the penumbra of focal ischemia. Ann Neurol 1994;36:557–565.

    Article  PubMed  CAS  Google Scholar 

  7. Kaplan B, Brint S, Tanabe J, Jacewicz M, Wang X-J, Pulsinelli W. Temporal thresholds for neocortical infarction in rats subjected to reversible focal cerebral ischemia. Stroke 1991;22:1032–1039.

    PubMed  CAS  Google Scholar 

  8. Jones TH, Morawetz RB, Crowell RM, et al. Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg 1981;54:773–782.

    PubMed  CAS  Google Scholar 

  9. Heiss WD, Rosner G. Functional recovery of cortical neurons as related to degree and duration of ischemia. Ann Neurol 1983;14:294–301.

    Article  PubMed  CAS  Google Scholar 

  10. Memezawa H, Smith M-L, Siesjo BK. Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats. Stroke 1992;23:559.

    Google Scholar 

  11. Nedergaard M. Neuronal injury in the infarct border: a neuropathologicsl study in the rat. Acta Neuropathol 1987;73:267–274.

    Article  PubMed  CAS  Google Scholar 

  12. Mies G, Auer LM, Ebhardt G, Traupe H, Heiss W-D. Flow and neuronal density in tissue surrounding chronic infarction. Stroke 1983;14:22–27.

    PubMed  CAS  Google Scholar 

  13. Baron JC. Mapping the Ischaemic Penumbra with PET: implications for acute stroke treatment. Cerebrovasc Dis 1999;9:193–201.

    Article  PubMed  CAS  Google Scholar 

  14. Heiss W-D, Huber M, Fink GR, et al. Progressive derangement of periinfarct viable tissue in ischemic stroke. J Cereb Blood Flow Metab 1992;12:193–203.

    PubMed  CAS  Google Scholar 

  15. Minematsu K, Li L, Sotak CH, Davis MA, Fisher M. Reversible focal ischemic injury demonstrated by diffusion-weighted magnetic resonance imaging in rats. Stroke 1992; 23:1311.

    Google Scholar 

  16. Clark WM, Madden KP, Rothlein R, Zivin JA. Reduction of central nervous system ischemic injury in rabbits using leukocyte adhesion antibody treatment. Stroke 1991;22:877–883.

    PubMed  CAS  Google Scholar 

  17. Busto R, Dietrich W, Mordecai G. Small differences in intraischemic brain temperature critically determines the extent of neuronal injury. J Cereb Blood Flow Metab 1987;7: 729–738.

    PubMed  CAS  Google Scholar 

  18. Bruno A, Biller J, Adams HP, Clarke WR, Woolson RF, Williams LS, Hansen MD, TOAST Investigators. Acute blood glucose level and outcome from ischemic stroke. Neurology 999;52:280–284.

    Google Scholar 

  19. Strijbos PJLM, Leach MJ, Garthwaite J. Vicious cycle involving Na+ channels, glutamate release, and NMDA receptors mediates delayed neurodegeneration through nitric oxide formation. J Neurosci 1996;16:5004–5013.

    PubMed  CAS  Google Scholar 

  20. Pellegrini-Giampietro DE, Cherici G, Alesiani M, Carla V, Moroni F. Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage. J Neurosci 1990;10:1035–1041.

    PubMed  CAS  Google Scholar 

  21. Lu YM, Yin HZ, Chiang J, Weiss JH. Ca2+-permeable AMPA/kainate and NMDA channels: High rate of Ca2+ influx underlies potent induction of injury. J Neurosci 1996;16:5457–5465.

    PubMed  CAS  Google Scholar 

  22. Choi DW, Maulucci-Gedde M, Kriegstein AR. Glutamate neurotoxicity in cortical cell culture. J.Neurosci. 1987;7:357–368.

    PubMed  CAS  Google Scholar 

  23. Rothman SM. Synaptic activity mediates death of hypoxic neurons. Science 1983;220:536–537.

    Article  PubMed  CAS  Google Scholar 

  24. Rothman SM, Thurston JH, Hauhart RE. Delayed neurotoxicity of excitatory amino acids in vitro. Neuroscience 1987;22:471–480.

    Article  PubMed  CAS  Google Scholar 

  25. Rothman SM, Olney JW. Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 1986;19:105–111.

    Article  PubMed  CAS  Google Scholar 

  26. Weiss J, Goldberg MP, Choi DW. Ketamine protects cultured neocortical neurons from hypoxic injury. Brain Res 1986;380:186–190.

    Article  PubMed  CAS  Google Scholar 

  27. Hartley DM, Kurth MC, Bjerkness L, Weiss JH, Choi DW. Glutamate receptor-induced 45Ca2+ accumulation in cortical cell culture correlates with subsequent neuronal degeneration. J Neurosci 1993;13:1993–2000.

    PubMed  CAS  Google Scholar 

  28. Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function. Science 1992;258:597–603.

    Article  PubMed  CAS  Google Scholar 

  29. Carriedo SG, Yin HZ, Weiss JH. Motor neurons are selectively vulnerable to AMPA/kainate receptor-mediated injury in vitro. J Neurosci 1996;16:4069–4079.

    PubMed  CAS  Google Scholar 

  30. Choi S, Lovinger DM. Metabotropic glutamate receptor modulation of voltage-gated Ca2+ channels involves multiple receptor subtypes in cortical neurons. J Neurosci 1996;16:36–45.

    PubMed  CAS  Google Scholar 

  31. Choi DW. Glutamate neurotoxicity in cortical cell culture is calcium-dependent. Neurosci Lett 1985; 58:293–297.

    Article  PubMed  CAS  Google Scholar 

  32. Choi DW. Ionic dependence of glutamate neurotoxicity. J Neurosci 1987;7:369–379.

    PubMed  CAS  Google Scholar 

  33. Goldberg MP, Choi DW. Combined oxygen and glucose deprivation in cortical cell culture: Calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci 1993;13:3510–3524.

    PubMed  CAS  Google Scholar 

  34. Bhat RV, DiRocco R, Marcy VR, et al. Increased expression of IL-1β converting enzyme in hippocampus after ischemia: Selective localization in microglia. J Neurosci 1996;16: 4146–4154.

    PubMed  CAS  Google Scholar 

  35. Schulz JB, Weller M, Klockgether T. Potassium deprivation-induced apoptosis of cerebellar granule neurons: A sequential requirement for new mRNA and protein synthesis, ICE-like protease activity, and reactive oxygen species. J Neurosci 1996;16:4696–4706.

    PubMed  CAS  Google Scholar 

  36. MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature (Lond) 1986;321:519–522.

    Article  PubMed  CAS  Google Scholar 

  37. Riveros N, Orrego F. N-Methylaspartate-activated calcium channels in rat brain cortex slices. Effect of calcium channel blockers and of inhibitory and depressant substances. Neuroscience 1986;17:541–546.

    Article  PubMed  CAS  Google Scholar 

  38. Hirayama T, Ono H, Fukuda H. Effects of excitatory and inhibitory amino acid agonists and antagonists on ventral horn cells in slices of spinal cord isolated from adult rats. Neuropharmacology 1990;29:1117–1122.

    Article  PubMed  CAS  Google Scholar 

  39. Frandsen A, Schousboe A. Mobilization of dantrolene-sensitive intracellular calcium pools is involved in the cytotoxicity induced by quisqualate and N-methyl-D-aspartate but not by 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionate and kainate in cultured cerebral cortical neurons. Proc Natl Acad Sci USA 1992;89:2590–2594.

    Article  PubMed  CAS  Google Scholar 

  40. Katchman AN, Hershkowitz N. Early anoxia-induced vesicular glutamate release results from mobilization of calcium from intracellular stores. J Neurophysiol 1993;70:1–7.

    PubMed  CAS  Google Scholar 

  41. Bickler PE, Hansen BM. Causes of calcium accumulation in rat cortical brain slices during hypoxia and ischemia: Role of ion channels and membrane damage. Brain Res 1994;664:269–276.

    Article  Google Scholar 

  42. O’Regan MH, Smith-Barbour M, Perkins LM, Phillis JW. A possible role for phospholipases in the release of neurotransmitter amino acids from ischemic rat cerebral cortex. Neurosci Lett 1995;185:191–194.

    Article  PubMed  CAS  Google Scholar 

  43. Ozyurt E, Graham D, Woodruff G, McCullogh J. Protective effect of the glutamate antagonist MK-801 in focal cerebral ischemia in the cat. J Cereb Blood Flow Metab 1988;8: 138–143.

    PubMed  CAS  Google Scholar 

  44. Yum SW, Faden AI. Comparison of the neuroprotective effects of the N-methyl-D-aspartate antagonist MK-801 and the opiate-receptor antagonist nalmefene in experimental spinal cord ischemia. Arch Neurol 1990; 47:277–281.

    PubMed  CAS  Google Scholar 

  45. Park CK, Nehls DG, Graham DI, Teasdale GM, McCulloch J. The glutamate antagonist MK-801 reduces focal ischemic brain damage in the rat. Ann Neurol 1988;24:543–551.

    Article  PubMed  CAS  Google Scholar 

  46. Boast CS, Gerhardt B, Pastor G, Lehmann J, Etienne PE, Liebman JM. The N-methyl-D-aspartate antagonist CGS19755 and CPP reduce ischemic brain damage in gerbils. Brain Res 1988;442:345–348.

    Article  PubMed  CAS  Google Scholar 

  47. George CP, Goldberg MP, Choi DW, Steinberg GK. Dextromethorphan reduces neocortical ischemic neuronal damage in vivo. Brain Res 1988;440:375–379.

    Article  PubMed  CAS  Google Scholar 

  48. Prince DA, Feeser HR. Dextromethorphan protects against cerebral infarction in a rat model of hypoxia-ischemia. Neurosci Lett 1988;85:291–296.

    Article  PubMed  CAS  Google Scholar 

  49. Steinberg GK, Saleh J, Kunis D. Delayed treatment with dextromethorphan and dextrophan reduces cerebral damage after transient focal ischemia. Neurosci Lett 1988;89:193–197.

    Article  PubMed  CAS  Google Scholar 

  50. Newell DW, Barth A, Malouf AT. Glycine site NMDA receptor antagonists provide protection against ischemia-induced neuronal damage in hippocampal slice cultures. Brain Res 1995;675:38–44.

    Article  PubMed  CAS  Google Scholar 

  51. Tsuchida E, Bullock R. The effect of the glycine site-specific N-Methyl-D-Aspartate antagonist ACEA1021 on ischemic brain damage caused by acute subdural hematoma in the rat. J Neurotrauma 1995;12:279–288.

    PubMed  CAS  Google Scholar 

  52. Roberts E. γ-Aminobutyric acid and nervous system function—a perspective. Biochem Pharmacol 1974;23:2637–2649.

    Article  PubMed  CAS  Google Scholar 

  53. Bachelard HS. Biochemistry of centrally active amino acids. In: Mandel P, DeFeudis FV, eds. Advances in Biochemical Psychopharmacology. New York: Raven Press, 1981: 475–498.

    Google Scholar 

  54. Albin RL, Sakurai SY, Makowiec RL, Higgins DS, Young AB, Penney JB. Excitatory amino acid, GABAA, and GABAB binding sites in human striate cortex. Cerebral Cortex. 1991;1:499–509.

    Article  PubMed  CAS  Google Scholar 

  55. Jansen KLR, Faull RLM, Dragunow M, Leslie RA. Distribution of excitatory and inhibitory amino acid, sigma, monoamine, catecholamine, acetylcholine, opioid, neurotensin, substance P, adenosine and neuropeptide Y receptors in human motor and somatosensory cortex. Brain Res 1991;566:225–238.

    Article  PubMed  CAS  Google Scholar 

  56. Karlsson G, Olpe H-R. Late inhibitory postsynaptic potentials in rat prefrontal cortex may be mediated by GABA-B receptors. Experientia 1989;45:157–148.

    Article  PubMed  CAS  Google Scholar 

  57. Scharfman HE, Sarvey JM. Responses to γ-aminobutric acid applied cell bodies and dendrites of rat visual cortical neurons. Brain Res 1985;358:385–389.

    Article  PubMed  CAS  Google Scholar 

  58. Kelly PAT, McCulloch J. Effects of the putative GABAergic agonists, muscimol and THIP, upon local cerebral glucose utilisation. J Neurochem 1982;39:613–624.

    Article  PubMed  CAS  Google Scholar 

  59. Kelly PAT, McCulloch J. The effects of the GABAergic agonist muscimol upon the relationship between local cerebral blood flow and glucose utilization. Brain Res 1983;258:338–342.

    Article  PubMed  CAS  Google Scholar 

  60. Edvinsson L, Krause DN. Pharmacological characterization of GABA receptors mediating vasodilation of cerebral arteries in vitro. Brain Res 1979;173:89–97.

    Article  PubMed  CAS  Google Scholar 

  61. Erdo SL, Michler A, Wolff JR. GABA accelerates excitotoxic cell death in cortical cultures: Protection by blockers of GABA-gated chloride channels. Brain Res 1991;542:254–258.

    Article  PubMed  CAS  Google Scholar 

  62. van den Pol AN, Obrietan K, Chen G. Excitatory actions of GABA after neuronal trauma. J Neurosci 1996;16:4283–4292.

    PubMed  Google Scholar 

  63. Akhondzadeh S, Stone TW. Potentiation by neurosteroids of muscimol/adenosine interactions in rat hippocampus. Brain Res 1995;677:311–318.

    Article  PubMed  CAS  Google Scholar 

  64. Frye CA. The neurosteroid 3α,5α-THP has antiseizure and possible neuroprotective effects in an animal model of epilepsy. Brain Res 1995;696:113–120.

    Article  PubMed  CAS  Google Scholar 

  65. Gee KW, McCauley LD, Lan NC. A putative receptor for neurosteroids on the GABAA receptor complex: The pharmacological properties and therapeutic potential of epalons. Crit Revs Neurobiology 1995;9:207–227.

    CAS  Google Scholar 

  66. Lambert JJ, Belelli D, Hill-Venning C, Peters JA. Neurosteroids and GABAA receptor function. Trends Pharmacol Sci 1995;16:295–303.

    Article  PubMed  CAS  Google Scholar 

  67. Devaud LL, Purdy RH, Morrow AL. The Neurosteroid, 3α-hydroxy-5α-pregnan-20-one, protects against bicuculline-induced seizures during ethanol withdrawal in rats. Alcohol Clin Exp Resp 1995;19:350–355.

    Article  CAS  Google Scholar 

  68. Hauser CAE, Wetzel CHR, Rupprecht R, Holsboer F. Allopregnanoline acts as an inhibitory modulator on α1-and α6-containing GABAA receptors. Biochem Biophys Res Commun 1996;219:531–536.

    Article  PubMed  CAS  Google Scholar 

  69. Brown AW, Brierley JB. The nature, distribution, and earliest stages of anoxic-ischemic nerve cell damage in the rat brain as defined by the optical microscope. Br J Exp Pathol 1968;49:87–106.

    PubMed  CAS  Google Scholar 

  70. Linnik MD, Zobrist RH, Hatfield MD. Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats. Stroke 1993;24:2002–2009.

    PubMed  CAS  Google Scholar 

  71. Wyllie AH, Kerr JFR, Currie AR. Cell Death: The Significance of Apoptosis. Int Rev Cytol 1980; 68:251–305.

    Article  PubMed  CAS  Google Scholar 

  72. Oppenheim RW. Cell death during development of the nervous system. Annu Rev Neurosci 1991;14:453–501.

    Article  PubMed  CAS  Google Scholar 

  73. Clarke PGH. Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol 1990;181:195–213.

    Article  PubMed  CAS  Google Scholar 

  74. Pulsinelli WA, Brierley JB, Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 1982;11:491–498.

    Article  PubMed  CAS  Google Scholar 

  75. Cohen GM, Sun X-M, Snowden RT, Dinsdale D, Skilleter DN. Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation. Biochem J 1992;286:331–334.

    PubMed  CAS  Google Scholar 

  76. Charriaut-Marlangue C, Margaill I, Represa A, Popovici T, Plotkine M, Ben-Ari Y. Apoptosis and necrosis after reversible focal ischemia: an in situ DNA fragmentation analysis. J Cereb Blood Flow Metab 1996;16:186–194.

    Article  PubMed  CAS  Google Scholar 

  77. Tominaga T, Kure S, Narisawa K, Yoshimoto T. Endonuclease activation following focal ischemic injury in the rat brain. Brain Res 1993;608:21–26.

    Article  PubMed  CAS  Google Scholar 

  78. Li Y, Sharov VG, Jiang N, Zaloga C, Sabbah HN, Chopp M. Ultrastructural and light microscopic evidence of apoptosis after middle cerebral artery occlusion in the rat. Am J Pathol 1995;146:1045–1051.

    PubMed  CAS  Google Scholar 

  79. MacManus JP, Hill IE, Huang Z-G, Rasquinha I, Xue D, Buchan AM. DNA damage consistent with apoptosis in transient focal ischaemic neocortex. NeuroReport 1994;5:493–496.

    Article  PubMed  CAS  Google Scholar 

  80. van Lookeren Campagne M, Gill R. Ultrastructural morphological changes are not characteristic of apoptotic cell death following focal cerebral ischaemia in the rat. Neurosci Lett 1996;213:111–114.

    Article  PubMed  Google Scholar 

  81. Zhongting H, Kazunari Y, Hitoshi O, Haiping L, Mitsuhiro K. The in vivo time course for elimination of adrenalectomy-induced apoptotic profiles from the granule cell layer of the rat hippocampus. J Neurosci 1997; 17:3981–3989.

    Google Scholar 

  82. Liu XZ, Xu XM, Hu R, et al. Neuronal and glial apoptosis after traumatic spinal cord injury. J Neurosci 1997;17:5395–5406.

    PubMed  CAS  Google Scholar 

  83. Goto K, Ishige A, Sekigushi K et al. Effects of cycloheximide on delayed neuronal death in rat hippocampus. Brain Research 1990;534:299–302.

    Article  PubMed  CAS  Google Scholar 

  84. Ames AI, Wright LW, Kowada M, Thurston JM, Majno G. Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol 1968;52:437–447.

    PubMed  Google Scholar 

  85. Schmid-Schönbein GW. Capillary plugging by granulocytes and the no-reflow phenomenon in the microcirculation. Proc Fed Amer Soc Exp Biol 1987;46:2397–2401.

    Google Scholar 

  86. Harlan JM, Vedder NB, Winn RK, Rice CL. Mechanisms and consequences of leukocyte-endothelial interaction. West J Med 1991;155:365–369.

    PubMed  CAS  Google Scholar 

  87. Hallenbeck JM, Dutka AJ, Tanishima T, et al. Polymorphonuclear leukocyte accumulation in brain regions with low blood flow during the early postischemic period. Stroke 1986;17:246–253.

    PubMed  CAS  Google Scholar 

  88. Menger MD, Lehr H-A, Messmer K. Role of oxygen radicals in the microcirculatory manifestations of postischemic injury. Klin Wochenschr 1991;69:1050–1055.

    Article  PubMed  CAS  Google Scholar 

  89. del Zoppo G, Schmid-Schönbein GW, Mori E, Copeland BR, Chang C-M. Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke 1991; 22: 1276–1283.

    PubMed  Google Scholar 

  90. Zhang RL, Chopp M, Li Y, et al. Anti-ICAM-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in the rat. Neurology 1994;44:1747–1751.

    PubMed  CAS  Google Scholar 

  91. Bowes MP, Zivin JA, Rothlein R. Monoclonal antibody to the ICAM-1 adhesion site reduces neurological damage in a rabbit cerebral embolism stroke model. Exp Neurol 1993; 119:215–219.

    Article  PubMed  CAS  Google Scholar 

  92. Clark WM, Madden KP, Rothlein R, Zivin JA. Reduction of central nervous system ischemic injury by monoclonal antibody to intercellular adhesion molecule. J Neurosurg 1991; 75:623–627.

    PubMed  CAS  Google Scholar 

  93. Rod MR, Auer RN. Combination therapy with nimodipine and dizocilpine in a rat model of transient forebrain ischemia. Stroke 1992;23:725–732.

    PubMed  CAS  Google Scholar 

  94. Uematsu D, Araki N, Greenberg JH, Sladky J, Reivich M. Combined therapy with MK-801 and nimodipine for protection of ischemic brain damage. Neurology 1991;41:88–94.

    PubMed  CAS  Google Scholar 

  95. Zivin JA, Mazzarella V. Tissue plasminogen activator plus glutamate antagonist improves outcome after embolic stroke. Arch Neurol 1991;48:1235–1238.

    PubMed  CAS  Google Scholar 

  96. Auer RN. Combination therapy with U74006F (tirilazad mesylate), MK-801, insulin and diazepam in transient forebrain ischaemia. Neurol Res 1995;17:132–136.

    PubMed  CAS  Google Scholar 

  97. Bowes MP, Rothlein R, Fagan SC, Zivin JA. Monoclonal antibodies preventing leukocyte activation reduce experimental neurologic injury and enhance efficacy of thrombolytic therapy. Neurology 1995;45:815–819.

    PubMed  CAS  Google Scholar 

  98. American Heart Association. Heart and Stroke Facts and Figures. Dallas: American Heart Association, 1992.

    Google Scholar 

  99. Lyden PD, Rapp K, Babcock T, Rothrock J. Ultra-rapid identification, triage, and enrollment of stroke patients into clinical trials. J Stroke Cerebrovasc Dis 1994;4:106–113.

    Article  Google Scholar 

  100. Lyden PD, Zivin JA. Hemorrhagic transformation after cerebral ischemia: Mechanisms and incidence. Cerebrovasc Brain Met Rev 1993;5:1–16.

    CAS  Google Scholar 

  101. Kaufman HH. Intracerebral Hematomas. New York: Raven Press, 1992:1–240.

    Google Scholar 

  102. Kanno T, Sano H, Shinomiyo Y, Katada K, Nagata J, Hoshino M, Mitsuyama F. Role of surgery in hypertensive intracerebral hematoma. J Neurosurg 1985;61:1091–1099.

    Google Scholar 

  103. Broderick J, Brott T, Tomsick T, Tew J, Duldner J, Huster G. Management of intracerebral hemorrhage in a large metropolitan population. Neurosurgery 1994;34:882–887.

    Article  PubMed  CAS  Google Scholar 

  104. Lisk DR, Pasteur W, Rhoades H, Putnam RD, Grotta JC. Early presentation of hemispheric intracerebral hemorrhage: prediction of outcome and guidelines for treatment allocation. Neurology 1994;44:133–139.

    PubMed  CAS  Google Scholar 

  105. Yang G-Y, Betz AL, Chenevert TL, Brunberg JA, Hoff JT. Experimental intracerebral hemorrhage: relationship between brain edema. blood flow, and blood-brain barrier permeability in rats. J Neurosurg 1994;81:93–102.

    PubMed  CAS  Google Scholar 

  106. Brott TG, Haley EC, Jr, Levy DE et al. Urgent therapy for stroke: Part 1. Pilot study of tissue plasminogen activator administered within 90 minutes. Stroke 1992;23:632–640.

    PubMed  CAS  Google Scholar 

  107. Hommel M, Boissel JP, Cornu C, et al. Termination of streptokinase in severe acute ischaemic stroke. Lancet 1995;345:57–57.

    Article  PubMed  CAS  Google Scholar 

  108. NINDS rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 1995;333:1581–1587.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Lyden, P. (2005). The Ischemic Penumbra and Neuronal Salvage. In: Lyden, P.D. (eds) Thrombolytic Therapy for Acute Stroke. Current Clinical Neurology. Humana Press. https://doi.org/10.1385/1-59259-933-8:43

Download citation

  • DOI: https://doi.org/10.1385/1-59259-933-8:43

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-398-5

  • Online ISBN: 978-1-59259-933-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics