Skip to main content

Use of Fluorescent Ligands and Receptors to Visualize Adrenergic Receptors

  • Chapter
The Adrenergic Receptors

Part of the book series: The Receptors ((REC))

  • 1211 Accesses

Abstract

This chapter reviews and compares the strengths, limitations, and potential for development of the two major methodologies employed to visualize the locations and properties of adrenergic receptors: fusion proteins of receptors with fluorescent protein tags and fluorescent ligands. In each case, the three subfamilies of adrenergic receptors (β, α1, and α2) are considered. Emphasis is placed on time sequence imaging in live cells, providing insights to receptor mobilization and regulation. The use of recombinant fusion proteins such as green fluorescent protein has been mainly confined to cell culture; fluorescent ligands can also be utilized in native tissues. It is shown how the two approaches can validate each other and provide complementary information. The importance of appropriate image acquisition and quantitative image analysis is stressed if meaningful data are to be acquired. These approaches have resulted in the recent discovery of more diverse adrenergic receptor locations in both unexpected tissue types and subcellular locations. Finally, the ability to exploit the changing fluorescent properties of interacting fluorophores to elucidate interactions between receptor molecules, such as dimerization or chaperoning, are considered. It is concluded that we have entered a new phase in which visualization of adrenergic receptors in multidimensional analysis is providing new insights to receptor biology, and that visualization in live heterogeneous organs and tissues is bringing this to the physiological level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barak LS, Ferguson SSG, Zhang J, Martenson C, Meyer T, Caron MG. Internal trafficking and surface mobility of a functionally intact β2-adrenergic receptorgreen fluorescent protein conjugate. Mol Pharmacol 1997;51:177–184.

    PubMed  CAS  Google Scholar 

  2. Milligan G. The use of receptor G-protein fusion proteins for the study of ligand activity. Receptors Channels 2002;8:309–317.

    Article  PubMed  CAS  Google Scholar 

  3. Kallal L, Gagnon AW, Penn RB, Benovic JL. Visualization of agonist-induced sequestration and down-regulation of a green fluorescent protein-tagged β2-adrenergic receptor. J Biol Chem 1998;273:322–328.

    Article  PubMed  CAS  Google Scholar 

  4. McLean A, Milligan G. Ligand regulation of green fluorescent protein-tagged forms of the human α1-and β2-adrenoceptors;comparisons with the unmodified receptors. Br J Pharmacol 2000;130:1825–1832.

    Article  PubMed  CAS  Google Scholar 

  5. Shiina T, Kawasaki A, Nagao T, Kuros H. Interaction with β-arrestin determines the difference in internalization behavior between β1-and β2-adrenergic receptors. J Biol Chem 2000;275:29,082–29,090.

    Article  PubMed  CAS  Google Scholar 

  6. Kallal L, Benovic JL. Using green fluorescent proteins to study G-proteincoupled receptor localisation and trafficking. Trends Pharmacol Sci 2000;21:175–180.

    Article  PubMed  CAS  Google Scholar 

  7. Burgi S, Baltensperger K, Honegger UE. Antidepressant-induced switch of β1-adrenoceptor trafficking as a mechanism for drug action. J Biol Chem 2003;278:1044–1052.

    Article  PubMed  Google Scholar 

  8. Chalothorn D, McCune DF, Edelmann SE, Garcia-Cazarin ML, Tsujimoto G, Piascik MT. Differences in the cellular localization and agonist-mediated internalization properties of the β1-adrenoceptor subtypes. Mol Pharmacol 2002;61:1008–1016.

    Article  PubMed  CAS  Google Scholar 

  9. Hirasawa A, Awaji T, Xu Z, Shinoura H, Tsujimoto G. Subtype-specific differences in subcellular localization and chlorethylclonidine inactivation of α1-adrenoceptors. Mol Pharmacol 1997;52:764–770.

    PubMed  CAS  Google Scholar 

  10. Awaji T, Hirasawa A, Kataoka M, et al. Real-time optical monitoring of ligandmediated internalization of α1b-adrenoceptor with green fluorescent protein. Mol Endocrinol 1998;12:1099–1111.

    Article  PubMed  CAS  Google Scholar 

  11. Oakley RH, Laporte SA, Holt JA., Caron M, Barak L. Differential affinities of visual arrestin, βarrestin1, and arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J Biol Chem 2000;275:17,201–17,210.

    Article  PubMed  CAS  Google Scholar 

  12. Yang M, Ruan J, Voller M, Schalke J, Michel MC. Differential regulation of human α1-adrenoceptor subtypes. Naunyn Schmiedebergs Arch Pharmacol 1999;359:439–446.

    Article  PubMed  CAS  Google Scholar 

  13. Chalothorn D, McCune DF, Edelmann SE, et al. Differential cardiovascular regulatory activities of the α1B-and α1D-adrenoceptor subtypes. J Pharmacol Exp Ther 2003;305:1045–1053.

    Article  PubMed  CAS  Google Scholar 

  14. Stanasila L, Perez JB, Vogel H, Cotecchia S. Oligomerization of the α1a-and α1b-adrenergic receptor subtypes. Potential implications in receptor internalization. J Biol Chem. 2003;278:40,239–40,251.

    Article  PubMed  CAS  Google Scholar 

  15. Hague C, Uberti MA, Chen Z, Hall RA, Minneman KP. Cell surface expression of α1d-adrenergic receptors is controlled by heterodimerization with α1b-adrenergic receptors. J Biol Chem 2004;279:15,541–15,549.

    Article  PubMed  CAS  Google Scholar 

  16. Daly CJ, Deighan C, McGee A, et al. A knockout approach indicates a minor vasoconstrictor role for vascular α1B-adrenoceptors in mouse. Physiol Genomics 2002;9:85–91.

    PubMed  CAS  Google Scholar 

  17. Uhlen S, Axelrod D, Keefer JR, Limbird L, Neubig RR. Membrane organisation and mobility of α2-adrenoceptors in MDCK cells. Pharmacol Commun 1995;6:155–167.

    CAS  Google Scholar 

  18. Daly CJ, McGrath JC. Fluorescent ligands, antibodies and proteins for the study of receptors. Pharmacol Ther 2003;100:101–118.

    Article  PubMed  CAS  Google Scholar 

  19. McGrath JC, Pediani JD, Macmillan J, et al. Adventitial cells are identified as the major location of vascular α1B-adrenoceptors and may drive vascular remodelling. Br J Pharmacol 2002;137:21P.

    Google Scholar 

  20. Zuscik MJ, Piascik MT, Perez DM. Cloning, cell-type specificity, and regulatory function of the mouse α1b-adrenergic receptor promoter. Mol Pharmacol 1999;56:1288–1297.

    PubMed  CAS  Google Scholar 

  21. Mu HM, Zhu ZM, Wang HY, Wang LJ. Effect of removal of the adventitia on vascular remodeling and vasoconstriction in rabbits. Acta Physiol Sin 2003;55:290–295.

    CAS  Google Scholar 

  22. McGrath JC, Arribas SM, Daly CJ. Fluorescent ligands for the study of receptors. Trends Pharmacol Sci 1996;17:393–399.

    Article  PubMed  CAS  Google Scholar 

  23. Pick H, Preuss A, Mayer M, Wohland T, Hovius R, Vogel H. Monitoring expression and clustering of the ionotropic 5HT3 receptor in plasma membranes of live biological cells. Biochemistry 2003;42:877–884.

    Article  PubMed  CAS  Google Scholar 

  24. Akaaboune M, Grady RM, Turney S, Sanes JR, Lichtman JW. Neurotransmitter receptor dynamics studied in vivo by reversible photo-unbinding of fluorescent ligands. Neuron 2002;34:865–876

    Article  PubMed  CAS  Google Scholar 

  25. Arttamangkul S, Alvarez-maubecin, Thomas G, Williams JT, Grandy DK. Binding and internalization of fluorescent opioid peptide conjugates in living cells. Mol Pharmacol 2000;58:1570–1580.

    PubMed  CAS  Google Scholar 

  26. Beaudet A, Nouel D, Stroh T, Vandenbulcke F, Dal-Farra C, Vincent JP. Fluorescent ligands for studying neuropeptide receptors by confocal microscopy. Braz J Med Biol Res 1998;31:1479–1489.

    PubMed  CAS  Google Scholar 

  27. Patel RC, Kumar U, Lamb DC, et al. Ligand binding to stomatostatin receptors induces receptor-specific oligomer formation in live cells. Proc Natl Acad Sci USA 2002;99:3294–3299.

    Article  PubMed  CAS  Google Scholar 

  28. Atlas D, Melamed E, Lahav M. Direct localisation of β adrenoceptor sites in rat cerebellum by a new fluorescent analogue of propranolol. Nature 1976;261:420–421.

    Article  PubMed  Google Scholar 

  29. Atlas D, Melamed, E. Direct mapping of β-adrenergic receptors in the rat central nervous system by a novel fluorescent β-blocker. Brain Res 1978;150:377–385.

    Article  PubMed  CAS  Google Scholar 

  30. Henis YI, Hekman M, Elson EL, Helmreich EJ. Lateral motion of β receptors in membranes of cultured liver cells. Proc Nat Acad Sci USA 1982;79:2907–2911.

    Article  PubMed  CAS  Google Scholar 

  31. Rademaker B, Kramer K, Bast A, Timmerman H. Irreversible binding of the fluorescent β-adrenoceptor probes alprenolol-NBD and pindolol-NBD to specific and non-specific binding sites. Res Commun Chem Pathol Pharmacol 1988;60:147–159.

    PubMed  CAS  Google Scholar 

  32. Heithier H, Hallmann, D, Boege F, et al. Synthesis and properties of fluorescent β-adrenoceptor ligands. Biochemistry 1994;33:9126–9134.

    Article  PubMed  CAS  Google Scholar 

  33. Baker JG, Hall I, Hill SJ. Pharmacology and direct visualisation of BODIPY TMRCGP: a long acting fluorescent β2-adrenoceptor agonist. Br J Pharmacol 2003;139:232–242.

    Article  PubMed  CAS  Google Scholar 

  34. McGrath JC, Daly CJ. Viewing adrenoceptors;past, present, and future; commentary and a new technique. Pharmacol Commun 1995;6:269–279.

    CAS  Google Scholar 

  35. Daly CJ, Milligan CM, Milligan G, Mackenzie JF, McGrath JC. Cellular localisation and pharmacological characterisation of functioning α1-adrenoceptors by fluorescent ligand binding and image analysis reveals identical binding properties of clustered and diffuse populations of receptors. J Pharmacol Exp Ther 1998;286:984–990.

    PubMed  CAS  Google Scholar 

  36. McGrath JC, Mackenzie JF, Daly CJ. Pharmacological implications of cellular localisation of α1-adrenoceptors in native smooth muscle cells. J Autonom Pharmacol 1999;19:303–310.

    Article  CAS  Google Scholar 

  37. Mackenzie JF, Daly CJ, Pediani JD, McGrath JC. Quantitative imaging in live human cells reveals intracellular α1-adrenoceptor ligand-binding sites. J Pharmacol Exp Ther 2000;294:434–443.

    PubMed  CAS  Google Scholar 

  38. Guimaraes S, Moura D. Vascular adrenoceptors: an update. Pharmacol Rev 2001;53:319–356.

    PubMed  CAS  Google Scholar 

  39. Jarajapu YPR, Coats P, McGrath JC, Hillier C, MacDonald A. Functional characterization of α1-adrenoceptor subtypes in human skeletal muscle resistance arteries. Br J Pharmacol 2001;133:679–686.

    Article  PubMed  CAS  Google Scholar 

  40. Jarajapu YPR, Macdonald A, Hillier C, McGrath JC, Mackenzie JF, Daly CJ. Quantitative imaging of QAPB-associated fluorescence in smooth muscle cells from human skeletal muscle resistance arteries. Br J Pharmacol 2002;135:303P.

    Article  Google Scholar 

  41. Daunt DA, Hurt C, Hein L, Kallio J, Feng F, Kobilka BK. Subtype-specific intracellular trafficking of α2-adrenergic receptors. Mol Pharmacol 1997;51:711–720.

    PubMed  CAS  Google Scholar 

  42. Olli-Lahdesmaki T, Kallio J, Scheinin M. Receptor subtype-induced targeting and subtype-specific internalization of human α2-adrenoceptors in PC12 cells. J Neurosci 1999;19:9281–9288.

    PubMed  CAS  Google Scholar 

  43. Cocks TM, Angus JA. Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature 1983;305:627–630.

    Article  PubMed  CAS  Google Scholar 

  44. Vanhoutte PM, Miller VM. α2-Adrenoceptors and endothelium-derived relaxant factor. Am J Med 1989;87:1S–5S.

    Article  PubMed  CAS  Google Scholar 

  45. Vanhoutte PM. Endothelial adrenoceptors. J Cardiovasc Pharmacol 2001;38:796–808.

    Article  PubMed  CAS  Google Scholar 

  46. Filippi S, Parenti A, Donnini S, Granger HJ, Fazzini A, Ledda F. α1D-Adrenoceptors cause endothelium-dependent vasodilatation in the rat mesenteric vascular bed. J Pharmacol Exp Ther 2001;296:869–875.

    PubMed  CAS  Google Scholar 

  47. Dunkle R. Role of image informatics in accelerating drug discovery. Drug Discov World Winter 2004:75–82.

    Google Scholar 

  48. Sinskey AJ, Finkelstein SN, Cooper SM. Medical imaging in drug discovery. PharmaGenomics 2004;4:20–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

McGrath, J.C., Daly, C.J. (2006). Use of Fluorescent Ligands and Receptors to Visualize Adrenergic Receptors. In: Perez, D.M. (eds) The Adrenergic Receptors. The Receptors. Humana Press. https://doi.org/10.1385/1-59259-931-1:151

Download citation

Publish with us

Policies and ethics