Skip to main content

Adrenergic Receptors

Historical Perspectives From the 20th Century

  • Chapter
Book cover The Adrenergic Receptors

Part of the book series: The Receptors ((REC))

Abstract

During the 20th century, extraordinary progress was made in our understanding of adrenergic receptors. This progress was the result of the hard work and insightful thinking of a remarkable cadre of investigators throughout the world. A summary of some of the more important developments is presented two ways: as a summary listing by decade and as four major, overlapping eras—biochemical, physiological, pharmacological, and molecular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davenport HW. Epinephrin(e). Physiologist 1982;25:76–82.

    PubMed  CAS  Google Scholar 

  2. Cannon WB, Rosenbueth A. Studies on the conditions of activity in endocrine organs: 24. Sympathin E and sympathin I. Am J Physiol 1933;104:557–574.

    CAS  Google Scholar 

  3. von Euler US. The nature of adrenergic nerve mediators. Pharmacol Rev 1951;3:247–277.

    Google Scholar 

  4. Langley JN. On the reaction of cells and of nerve-endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curari. J Physiol (Lond) 1905;33:374–413.

    Google Scholar 

  5. Dale HH. On some physiological actions of ergot. J Physiol (Lond) 1906;34:163–206.

    Google Scholar 

  6. Ahlquist RP. A study of adrenotropic receptors. Am J Physiol 1948;153:586–600.

    CAS  PubMed  Google Scholar 

  7. de Jongh DK. Some introductory remarks on the conception of receptors. In: Ariens EJ, editor. Molecular Pharmacology. New York: Academic Press, 1964:xiii–xvi.

    Google Scholar 

  8. Kobinger W. Rudolf Buchheim lecture. Drugs as tools in research on adrenoceptors. Naunyn Schmiedebergs Arch Pharmacol 1986;332:113–123.

    Article  PubMed  CAS  Google Scholar 

  9. Sutherland EW, Rall TW. Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J Biol Chem 1958;232:1077–1091.

    PubMed  CAS  Google Scholar 

  10. Sutherland EW, Robison GA. The role of cyclic-3’,5’-AMP in responses to catecholamines and other hormones. Pharmacol Rev 1966;18:145–161.

    PubMed  CAS  Google Scholar 

  11. Black JW, Crowther AF, Shanks RG, Smith LH, Dornhorst AC. A new adrenergic β-receptor antagonist. Lancet 1964;283:1080–1081.

    Article  Google Scholar 

  12. Lands AM, Arnold A, McAuliff JP, Luduena FP, Brown TG. Differentiation of receptor systems activated by sympathomimetic amines. Nature 1967;214:597–598.

    Article  PubMed  CAS  Google Scholar 

  13. Furchgott RF. The pharmacological differentiation of adrenergic receptors. Ann N Y Acad Sci 1967;139:553–570.

    Article  PubMed  CAS  Google Scholar 

  14. Brown GL, Gillespie JE. The output of sympathetic transmitter from the spleen of the cat. J Physiol 1957;138:81–102.

    PubMed  CAS  Google Scholar 

  15. Langer SZ. The metabolism of [3H]noradrenaline released by electrical stimulation from the isolated nictitating membrane of the cat and from the vas deferens of the rat. J Physiol 1970;208:515–546.

    PubMed  CAS  Google Scholar 

  16. Starke K, Montel H, Schumann HJ. Influence of cocaine and phenoxybenzamine on noradrenaline uptake and release. Naunyn Schmiedebergs Arch Pharmakol 1971;270:210–214.

    Article  PubMed  CAS  Google Scholar 

  17. Starke K. Influence of α-receptor stimulants on noradrenaline release. Naturwissenschaften 1971;58:420.

    Article  PubMed  CAS  Google Scholar 

  18. Enero MA, Langer SZ, Rothlin RP, Stefano FJ. Role of the α-adrenoceptor in regulating noradrenaline overflow by nerve stimulation. Br J Pharmacol 1972;44:672–688.

    PubMed  CAS  Google Scholar 

  19. Langer SZ. Presynaptic regulation of catecholamine release. Biochem Pharmacol 1974;23:1793–1800.

    Article  PubMed  CAS  Google Scholar 

  20. Berthelsen S, Pettinger WA. A functional basis for classification of α-adrenergic receptors. Life Sci 1977;21:595–606.

    Article  PubMed  CAS  Google Scholar 

  21. Arch JRS, Ainsworth MA, Cawthorne MA, et al. Atypical β-adrenoceptors on brown adipocytes as a target for anti-obesity drugs. Nature 1984;309:163–165.

    Article  PubMed  CAS  Google Scholar 

  22. De Robertis E. Molecular biology of synaptic receptors. Science 1971;171:963–971.

    Article  PubMed  Google Scholar 

  23. Miledi R, Molinoff P, Potter LT. Isolation of the cholinergic receptor protein of Torpedo electric tissue. Nature 1971;229:554–557.

    Article  PubMed  CAS  Google Scholar 

  24. Goldstein A, Lowney LI, Pal BK. Stereospecific and nonspecific interactions of the morphine congener levorphanol in subcellular fractions of mouse brain. Proc Natl Acad Sci USA 1971;68:1742–1747.

    Article  PubMed  CAS  Google Scholar 

  25. Aurbach GD, Fedak SA, Woodard CJ, Palmer JS, Hauser D, Troxler F. β-adrenergic receptor: stereospecific interaction of iodinated β-blocking agent with high affinity site. Science 1974;186:1223–1224.

    Article  PubMed  CAS  Google Scholar 

  26. Alexander RW, Davis JN, Lefkowitz RJ. Direct identification and characterisation of β-adrenergic receptors in rat brain. Nature 1975;258:437–440.

    Article  PubMed  CAS  Google Scholar 

  27. Bylund DB, Snyder SH. β-Adrenergic receptor binding in membrane preparations from mammalian brain. Mol Pharmacol 1976;12:568–580.

    PubMed  CAS  Google Scholar 

  28. Greenberg DA, U’Prichard DC, Snyder SH. α-Noradrenergic receptor binding in mammalian brain: differential labeling of agonist and antagonist states. Life Sci 1976;19:69–76.

    Article  PubMed  CAS  Google Scholar 

  29. Williams LT, Lefkowitz RJ. α-Adrenergic receptor identification by [3H]dihydroergocryptine binding. Science 1976;192:791–793.

    Article  PubMed  CAS  Google Scholar 

  30. Minneman KP, Hegstrand LR, Molinoff PB. Simultaneous determination of β1 and β2 adrenergic receptors in tissues containing both receptor subtypes. Mol Pharmacol 1979;16:34–46.

    PubMed  CAS  Google Scholar 

  31. Bylund DB, U’Prichard DC. Characterization of α1 and α2 adrenergic receptors. Int Rev Neurobiol 1983;24:343–431.

    Article  PubMed  CAS  Google Scholar 

  32. Morrow AL, Creese I. Characterization of α1 adrenergic receptor subtypes in rat brain: A reevaluation of [3H]WB4101 and [3H]prazosin binding. Mol Pharmacol 1986;29:321–330.

    PubMed  CAS  Google Scholar 

  33. Minneman KP, Han C, Abel PW. Comparison of α1-adrenergic receptor subtypes distinguished by chloroethylclonidine and WB4101. Mol Pharmacol 1988;33:509–514.

    PubMed  CAS  Google Scholar 

  34. Bylund DB. Heterogeneity of α2-adrenergic receptors. Pharmacol Biochem Behav 1985;22:835–843.

    Article  PubMed  CAS  Google Scholar 

  35. Bylund DB, Ray-Prenger C, Murphy TJ. α2A and α2B adrenergic receptor subtypes: antagonist binding in tissues and cell lines containing only one subtype. J Pharmacol Exp Ther 1988;245:600–607.

    PubMed  CAS  Google Scholar 

  36. Bylund DB, Ray-Prenger C. α2A and α2B adrenergic receptor subtypes: attenuation of cyclic AMP production in cell lines containing only one receptor subtype. J Pharmacol Exp Ther 1989;251:640–644.

    PubMed  CAS  Google Scholar 

  37. Murphy TJ, Bylund DB. Characterization of α2 adrenergic receptors in the OK cell, an opossum kidney cell line. J Pharmacol Exp Ther 1988;244:571–578.

    PubMed  CAS  Google Scholar 

  38. Michel AD, Loury DN, Whiting RL. Differences between α2 adrenoceptor in rat submaxillary gland and the α2A and α2B adrenoceptor subtypes. Br J Pharmacol 1989;98:890–897.

    PubMed  CAS  Google Scholar 

  39. Simonneaux V, Ebadi M, Bylund DB. Identification and characterization of α2Dadrenergic receptors in bovine pineal gland. Mol Pharmacol 1991;40:235–241.

    PubMed  CAS  Google Scholar 

  40. Bylund DB. Subtypes of α2-adrenoceptors: Pharmacological and molecular biological evidence converge. Trends Pharmacol Sci 1988;9:356–361.

    Article  PubMed  CAS  Google Scholar 

  41. Rodbell M, Krans HM, Pohl SL, Birnbaumer L. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Effects of guanylnucleotides on binding of 125I-glucagon. J Biol Chem 1971;246:1872–1876.

    PubMed  CAS  Google Scholar 

  42. Lefkowitz RJ, Mullikin D, Caron MG. Regulation of β-adrenergic receptors by guanyl-5’-yl imidodiphosphate and other purine nucleotides. J Biol Chem 1976;251:4686–4692.

    PubMed  CAS  Google Scholar 

  43. Maguire ME, Van Arsdale PM, Gilman AG. An agonist-specific effect of guanine nucleotides on binding to the β-adrenergic receptor. Mol Pharmacol 1976;12:335–339.

    PubMed  CAS  Google Scholar 

  44. De Lean A, Stadel JM, Lefkowitz RJ. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled β-adrenergic receptor. J Biol Chem 1980;255:7108–7117.

    PubMed  Google Scholar 

  45. Dunn R, McCoy J, Simsek M, et al. The bacteriorhodopsin gene. Proc Natl Acad Sci USA 1981;78:6744–6748.

    Article  PubMed  CAS  Google Scholar 

  46. Engelman DM, Goldman A, Steitz TA. The identification of helical segments in the polypeptide chain of bacteriorhodopsin. Meth Enzym 1982;88:81–88.

    Article  CAS  Google Scholar 

  47. Nathans J, Hogness DS. Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell 1983;34:807–814.

    Article  PubMed  CAS  Google Scholar 

  48. Dixon RAF, Kobilka BK, Strader DJ, et al. Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 1986;321:75–79.

    Article  PubMed  CAS  Google Scholar 

  49. Kobilka BK, Frielle T, Collins S, et al. An intronless gene encodes a potential member of a family of receptors coupled to guanine nucleotide regulatory protein. Nature 1987;329:75–79.

    Article  PubMed  CAS  Google Scholar 

  50. Fargin A, Raymond SR, Lohse MJ, Kobilka BK, Caron MG, Lefkowitz RJ. The genomic clone G-21 which resembles α β-adrenergic receptor sequence encodes the 5-HT1A receptor. Nature 1988;335:358–360.

    Article  PubMed  CAS  Google Scholar 

  51. Frielle T, Collins S, Daniel KW, Caron MG, Lefkowitz RJ, Kobilka BK. Cloning of the cDNA for the human β1-adrenergic receptor. Proc Natl Acad Sci USA 1987;84:7920–7924.

    Article  PubMed  CAS  Google Scholar 

  52. Emorine LJ, Marullo S, Briend-Sutren MM, et al. Molecular characterization of the human β3-adrenergic receptor. Science 1989;245:1118–1121.

    Article  PubMed  CAS  Google Scholar 

  53. Bylund DB, Bond RA, Clarke DE, et al. Adrenoceptors. In: Vanhoutte PM, et al., editors. The IUPHAR Compendium of Receptor Characterization and Classification. London: IUPHAR Media, 1998:58–74.

    Google Scholar 

  54. Granneman JG. The putative β4 adrenergic receptor is a novel state of the β1 adrenergic receptor. Am J Physiol Endocrinol Metab 2001;280:E199–E202.

    PubMed  CAS  Google Scholar 

  55. Kobilka BK, Matsui H, Kobilka TS, et al. Cloning, sequencing, and expression of the gene encoding for the human platelet α2-adrenergic receptor subtype. Science 1987;238:650–656.

    Article  PubMed  CAS  Google Scholar 

  56. Regan JW, Kobilka TS, Yang-Feng TL, Caron MG, Lefkowitz RJ, Kobilka BK. Cloning and expression of a human kidney cDNA for an α2-adrenergic receptor subtype. Proc Natl Acad Sci USA 1988;85:6301–6305.

    Article  PubMed  CAS  Google Scholar 

  57. Zeng D, Harrison JK, D’Angelo DD, et al. Molecular characterization of a rat β2B-adrenergic receptor. Proc Natl Acad Sci USA 1990;87:3102–3106.

    Article  PubMed  CAS  Google Scholar 

  58. Weinshank RL, Zgombick JM, Macchi M, et al. Cloning, expression, and pharmacological characterization of a human β2B-adrenergic receptor. Mol Pharmacol 1990;35:681–688.

    Google Scholar 

  59. Bylund DB, Blaxall HS, Iversen LJ, Caron MG, Lefkowitz RJ, Lomasney JW. Pharmacological characteristics of α2-adrenergic receptors: comparison of pharmacologically defined subtypes with subtypes identified by molecular cloning. Mol Pharmacol 1992;42:1–5.

    PubMed  CAS  Google Scholar 

  60. Cotecchia S, Schwinn DA, Randall RR, Lefkowitz RJ, Caron MG, Kobilka BK. Molecular cloning and expression of the cDNA for the hamster α1-adrenergic receptor. Proc Natl Acad Sci USA 1988;85:7159–7163.

    Article  PubMed  CAS  Google Scholar 

  61. Schwinn DA, Lomasney JW, Lorenz W, et al. Molecular cloning and expression of the cDNA for a novel α1 adrenergic receptor subtype. J Biol Chem 1990;265:8183–8189.

    PubMed  CAS  Google Scholar 

  62. Lomasney J, Cotecchia S, Lorenz W, et al. Molecular cloning and expression of the cDNA for the α1A-adrenergic receptor: the gene for which is located on human chromosome 5. J Biol Chem 1991;266:6365–6369.

    PubMed  CAS  Google Scholar 

  63. Perez DM, Piascik MT, Graham RM. Solution-phase library screening for the identification of rare clones: isolation of an α1D adrenergic receptor cDNA. Mol Pharmacol 1991;40:876–883.

    PubMed  CAS  Google Scholar 

  64. Ford APDW, Williams TJ, Blue DR, Clarke DE. α1-Adrenoceptor classification: sharpening Occam’s razor. Trends Pharmacol Sci 1994;15:167–170.

    Article  PubMed  CAS  Google Scholar 

  65. Perez DM, Piascik MT, Malik N, Gaivin R, Graham RM. Cloning, expression, and tissue distribution of the rat homolog of the bovine α1C-adrenergic receptor provide evidence for its classification as the α1A subtype. Mol Pharmacol 1994;46:823–831.

    PubMed  CAS  Google Scholar 

  66. Hieble JP, Bylund DB, Clarke DE, et al. International Union of Pharmacology. 10. Recommendation for nomenclature of α1-adrenoceptors: consensus update. Pharmacol Rev 1995;47:267–270.

    PubMed  CAS  Google Scholar 

  67. Muramatsu I, Murata S, Isaka M, et al. α1 Adrenoceptor subtypes and two receptor systems in vascular tissues. Life Sci 1998;62:1461–1465.

    Article  PubMed  CAS  Google Scholar 

  68. Daniels DV, Gever JR, Jasper JR, et al. Human cloned α1A-adrenoceptor isoforms display α1L-adrenoceptor pharmacology in functional studies. Eur J Pharmacol 1999;370:337–343.

    Article  PubMed  CAS  Google Scholar 

  69. Dixon RA, Sigal IS, Rands E, et al. Ligand binding to the β-adrenergic receptor involves its rhodopsin-like core. Nature 1987;326:73–77.

    Article  PubMed  CAS  Google Scholar 

  70. Strader CD, Sigal IS, Candelore MR, Rands E, Hill WS, Dixon RA. Conserved aspartic acid residues 79 and 113 of the β-adrenergic receptor have different roles in receptor function. J Biol Chem 1988;263:10,267–10,271.

    PubMed  CAS  Google Scholar 

  71. Strader CD, Candelore MR, Hill WS, Sigal IS, Dixon RA. Identification of two serine residues involved in agonist activation of the β-adrenergic receptor. J Biol Chem 1989;264:13,572–13,578.

    PubMed  CAS  Google Scholar 

  72. Susulic VS, Frederich RC, Lawitts J, et al. Targeted disruption of the β3 adrenergic receptor gene. J Biol Chem 1995;270:29,483–29,492.

    Article  PubMed  CAS  Google Scholar 

  73. Rohrer DK, Desai KH, Jasper JR, et al. Targeted disruption of the mouse β1-adrenergic receptor gene: Developmental and cardiovascular effects. Proc Natl Acad Sci U S A 1996;93:7375–7380.

    Article  PubMed  CAS  Google Scholar 

  74. Chruscinski AJ, Rohrer DK, Schauble E, Desai KH, Bernstein D, Kobilka BK. Targeted disruption of the β2 adrenergic receptor gene. J Biol Chem 1999;274:16,694–16,700.

    Article  PubMed  CAS  Google Scholar 

  75. Bachman ES, Dhillon H, Zhang CY, et al. β-AR Signaling required for dietinduced thermogenesis and obesity resistance. Science 2002;297:843–845.

    Article  PubMed  CAS  Google Scholar 

  76. Cavalli A, Lattion AL, Hummler E, et al. Decreased blood pressure response in mice deficient of the α1B adrenergic receptor. Proc Natl Acad Sci USA 1997;94:11,589–11,594.

    Article  PubMed  CAS  Google Scholar 

  77. Rokosh DG, Simpson PC. Knockout of the α1A/C-adrenergic receptor subtype: The α1A/C is expressed in resistance arteries and is required to maintain arterial blood pressure. Proc Natl Acad Sci USA 2002;99:9474–9479.

    Article  PubMed  CAS  Google Scholar 

  78. Tanoue A, Nasa Y, Koshimizu T, et al. The α1D-adrenergic receptor directly regulates arterial blood pressure via vasoconstriction. J Clin Invest 2002;109:765–775.

    Article  PubMed  CAS  Google Scholar 

  79. Tanoue A, Koshimizu T, Shibata K, Nasa Y, Takeo S, Tsujimoto G. Insights into α1 adrenoceptor function in health and disease from transgenic animal studies. Trends Endocrinol Metab 2003;14:107–113.

    Article  PubMed  CAS  Google Scholar 

  80. Macmillan LB, Hein L, Smith MS, Piascik MT, Limbird LE. Central hypotensive effects of the α2a-adrenergic receptor subtype. Science 1996;273:801–803.

    Article  PubMed  CAS  Google Scholar 

  81. Link RE, Desai K, Hein L, et al. Cardiovascular regulation in mice lacking α2-adrenergic receptor subtypes b and c. Science 1996;273:803–805.

    Article  PubMed  CAS  Google Scholar 

  82. Altman JD, Trendelenburg AU, Macmillan L, et al. Abnormal regulation of the sympathetic nervous system in α2A-adrenergic receptor knockout mice. Mol Pharmacol 1999;56:154–161.

    PubMed  CAS  Google Scholar 

  83. Kable JW, Murrin LC, Bylund DB. in vivo gene modification elucidates subtype-specific functions of α2-adrenergic receptors. J Pharmacol Exp Ther 2000;293:1–7.

    PubMed  CAS  Google Scholar 

  84. Reihsaus E, Innis M, MacIntyre N, Liggett SB. Mutations in the gene encoding for the β2 adrenergic receptor in normal and asthmatic subjects. Am J Respir Cell Mol Biol 1993;8:334–339.

    PubMed  CAS  Google Scholar 

  85. Small KM, McGraw DW, Liggett SB. Pharmacology and physiology of human adrenergic receptor polymorphisms. Annu Rev Pharmacol Toxicol 2003;43:381–411.

    Article  PubMed  CAS  Google Scholar 

  86. Palczewski K, Kumasaka T, Hori T, et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 2000;289:739–745.

    Article  PubMed  CAS  Google Scholar 

  87. Kohout TA, Lefkowitz RJ. Regulation of G protein-coupled receptor kinases and arrestins during receptor desensitization. Mol Pharmacol 2003;63:9–18.

    Article  PubMed  CAS  Google Scholar 

  88. Ahn S, Nelson CD, Garrison TR, Miller WE, Lefkowitz RJ. Desensitization, internalization, and signaling functions of β-arrestins demonstrated by RNA interference. Proc Natl Acad Sci U S A 2003;100:1740–1744.

    Article  PubMed  CAS  Google Scholar 

  89. Bond RA, Leff P, Johnson TD, et al. Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the β2-adrenoceptor. Nature 1995;374:272–276.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Bylund, D.B. (2006). Adrenergic Receptors. In: Perez, D.M. (eds) The Adrenergic Receptors. The Receptors. Humana Press. https://doi.org/10.1385/1-59259-931-1:003

Download citation

Publish with us

Policies and ethics