Lessons From Overexpressed Mouse Models

  • Cinzia Perrino
  • Liza Barki-Harrington
  • Howard A. Rockman
Part of the The Receptors book series (REC)


Adrenergic receptors (ARs) belong to the largest known family of transmembrane receptors, G protein-coupled receptors (GPCRs). Two subtypes, α and β, have been described, and even though they both respond to norepinephrine and epinephrine, the cellular responses they mediate differ significantly. Many human diseases, such as heart failure, are characterized by alterations in adrenergic signaling. The generation of genetically modified mice with altered expression of one of the AR subtypes has been useful for characterization of the mechanisms of receptor activation, as well as the ensuing in vivo phenotype. The availability of numerous genetically targeted mouse models has been an important tool for the study of AR function and the identification of potential novel therapeutic strategies for a wide range of diseases.

Key Words

Adrenergic receptors G protein-coupled receptors gene-targeted mice transgenic mice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rockman HA, Koch WJ, Lefkowitz RJ. Seven-transmembrane-spanning receptors and heart function. Nature 2002;415:206–212.PubMedGoogle Scholar
  2. 2.
    Pitcher JA, Freedman NJ, Lefkowitz RJ. G protein-coupled receptor kinases. Annu Rev Biochem 1998;67:653–692.PubMedGoogle Scholar
  3. 3.
    Lefkowitz RJ. G protein-coupled receptors. III. New roles for receptor kinases and β-arrestins in receptor signaling and desensitization. J Biol Chem 1998;273:18,677–18,680.PubMedGoogle Scholar
  4. 4.
    Prasad SV, Perrino C, Rockman HA. Role of phosphoinositide 3-kinase in cardiac function and heart failure. Trends Cardiovasc Med 2003;13:206–212.Google Scholar
  5. 5.
    Inglese J, Freedman NJ, Koch WJ, Lefkowitz RJ. Structure and mechanism of the G protein-coupled receptor kinases. J Biol Chem 1993;268:23,735–23,738.PubMedGoogle Scholar
  6. 6.
    Iaccarino G, Rockman HA, Shotwell KF, Tomhave ED, Koch WJ. Myocardial overexpression of GRK3 in transgenic mice: evidence for in vivo selectivity of GRKs. Am J Physiol 1998;275:H1298–H1306.PubMedGoogle Scholar
  7. 7.
    Perry SJ, Lefkowitz RJ. Arresting developments in heptahelical receptor signaling and regulation. Trends Cell Biol 2002;12:130–138.PubMedGoogle Scholar
  8. 8.
    Laporte SA, Oakley RH, Holt JA, Barak LS, Caron MG. The interaction of β-arrestin with the AP-2 adaptor is required for the clustering of β2-adrenergic receptor into clathrin-coated pits. J Biol Chem 2000;275:23,120–23,126.PubMedGoogle Scholar
  9. 9.
    Luttrell LM, Ferguson SS, Daaka Y, et al. β-arrestin-dependent formation of β2 adrenergic receptor-Src protein kinase complexes. Science 1999;283:655–661.PubMedGoogle Scholar
  10. 10.
    DeFea KA, Zalevsky J, Thoma MS, Dery O, Mullins RD, Bunnett NW. β-Arrestindependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol 2000;148:1267–1281.PubMedGoogle Scholar
  11. 11.
    Claing A, Laporte SA, Caron MG, Lefkowitz RJ. Endocytosis of G protein-coupled receptors: roles of G protein-coupled receptor kinases and β-arrestin proteins. Prog Neurobiol 2002;66:61–79.PubMedGoogle Scholar
  12. 12.
    Naga Prasad SV, Barak LS, Rapacciuolo A, Caron MG, Rockman HA. Agonistdependent recruitment of phosphoinositide 3-kinase to the membrane by β-adrenergic receptor kinase 1. A role in receptor sequestration. J Biol Chem 2001;276:18,953–18,959.PubMedGoogle Scholar
  13. 13.
    Naga Prasad SV, Laporte SA, Chamberlain D, Caron MG, Barak L, Rockman HA. Phosphoinositide 3-kinase regulates β2-adrenergic receptor endocytosis by AP-2 recruitment to the receptor/beta-arrestin complex. J Cell Biol 2002;158:563–575.PubMedGoogle Scholar
  14. 14.
    Forray C, Bard JA, Wetzel JM, et al. The α1-adrenergic receptor that mediates smooth muscle contraction in human prostate has the pharmacological properties of the cloned human alpha 1c subtype. Mol Pharmacol 1994;45:703–708.PubMedGoogle Scholar
  15. 15.
    Faure C, Pimoule C, Vallancien G, Langer SZ, Graham D. Identification of α1-adrenoceptor subtypes present in the human prostate. Life Sci 1994;54:1595–1605.PubMedGoogle Scholar
  16. 16.
    Garcia-Sainz JA, Romero-Avila MT, Torres-Marquez ME. Characterization of the human liver α1-adrenoceptors: predominance of the α1A subtype. Eur J Pharmacol 1995;289:81–86.PubMedGoogle Scholar
  17. 17.
    Price DT, Lefkowitz RJ, Caron MG, Berkowitz D, Schwinn DA. Localization of mRNA for three distinct α1-adrenergic receptor subtypes in human tissues: implications for human a adrenergic physiology. Mol Pharmacol 1994;45:171–175.PubMedGoogle Scholar
  18. 18.
    Wu D, Katz A, Lee CH, Simon MI. Activation of phospholipase C by α1-adrenergic receptors is mediated by the α subunits of Gq family. J Biol Chem 1992;267:25,798–25,802.PubMedGoogle Scholar
  19. 19.
    Minneman KP. α1-Adrenergic receptor subtypes, inositol phosphates, and sources of cell Ca2+. Pharmacol Rev 1988;40:87–119.PubMedGoogle Scholar
  20. 20.
    Stull JT, Bowman BF, Gallagher PJ, et al. Myosin phosphorylation in smooth and skeletal muscles: regulation and function. Prog Clin Biol Res 1990;327:107–126.PubMedGoogle Scholar
  21. 21.
    Llahi S, Fain JN. α1-Adrenergic receptor-mediated activation of phospholipase D in rat cerebral cortex. J Biol Chem 1992;267:3679–3685.PubMedGoogle Scholar
  22. 22.
    Perez DM, De Young MB, Graham RM. Coupling of expressed α1B-and α1D-adrenergic receptor to multiple signaling pathways is both G protein and cell type specific. Mol Pharmacol 1993;44:784–795.PubMedGoogle Scholar
  23. 23.
    Simpson P. Norepinephrine-stimulated hypertrophy of cultured rat myocardial cells is an α1 adrenergic response. J Clin Invest 1983;72:732–738.PubMedGoogle Scholar
  24. 24.
    Starksen NF, Simpson PC, Bishopric N, et al. Cardiac myocyte hypertrophy is associated with c-myc protooncogene expression. Proc Natl Acad Sci USA 1986;83:8348–8350.PubMedGoogle Scholar
  25. 25.
    Zhong H, Minneman KP. Differential activation of mitogen-activated protein kinase pathways in PC12 cells by closely related α1-adrenergic receptor subtypes. J Neurochem 1999;72:2388–2396.PubMedGoogle Scholar
  26. 26.
    Graham RM, Perez DM, Hwa J, Piascik MT. α1-Adrenergic receptor subtypes. Molecular structure, function, and signaling. Circ Res 1996;78:737–749.PubMedGoogle Scholar
  27. 27.
    Knowlton KU, Michel MC, Itani M, et al. The α1A-adrenergic receptor subtype mediates biochemical, molecular, and morphologic features of cultured myocardial cell hypertrophy. J Biol Chem 1993;268:15,374–15,380.PubMedGoogle Scholar
  28. 28.
    Autelitano DJ, Woodcock EA. Selective activation of α1A-adrenergic receptors in neonatal cardiac myocytes is sufficient to cause hypertrophy and differential regulation of α1-adrenergic receptor subtype mRNAs. J Mol Cell Cardiol 1998;30:1515–1523.PubMedGoogle Scholar
  29. 29.
    Lin F, Owens WA, Chen S, et al. Targeted α1A adrenergic receptor overexpression induces enhanced cardiac contractility but not hypertrophy. Circ Res 2001;89:343–350.PubMedGoogle Scholar
  30. 30.
    D’Angelo DD, Sakata Y, Lorenz JN, et al. Transgenic Gβq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci USA 1997;94:8121–8126.PubMedGoogle Scholar
  31. 31.
    Paradis P, Dali-Youcef N, Paradis FW, Thibault G, Nemer M. Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc Natl Acad Sci USA 2000;97:931–936.PubMedGoogle Scholar
  32. 32.
    Akhter SA, Luttrell LM, Rockman HA, Iaccarino G, Lefkowitz RJ, Koch WJ. Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science 1998;280:574–577.PubMedGoogle Scholar
  33. 33.
    O’Connell TD, Ishizaka S, Nakamura A, et al. The α1A/C-and α1B-adrenergic receptors are required for physiological cardiac hypertrophy in the double-knockout mouse. J Clin Invest 2003;111:1783–1791.PubMedGoogle Scholar
  34. 34.
    Cavalli A, Lattion AL, Hummler E, et al. Decreased blood pressure response in mice deficient of the α1B-adrenergic receptor. Proc Natl Acad Sci USA 1997;94:11,589–11,594.PubMedGoogle Scholar
  35. 35.
    Milano CA, Dolber PC, Rockman HA, et al. Myocardial expression of a constitutively active α1B-adrenergic receptor in transgenic mice induces cardiac hypertrophy. Proc Natl Acad Sci USA 1994;91:10,109–10,113.PubMedGoogle Scholar
  36. 36.
    Wang BH, Du XJ, Autelitano DJ, Milano CA, Woodcock EA. Adverse effects of constitutively active α1B adrenergic receptors after pressure overload in mouse hearts. Am J Physiol Heart Circ Physiol 2000;279:H1079–H1086.PubMedGoogle Scholar
  37. 37.
    Akhter SA, Milano CA, Shotwell KF, et al. Transgenic mice with cardiac overexpression of α1B-adrenergic receptors. In vivo α1-adrenergic receptor-mediated regulation of β-adrenergic signaling. J Biol Chem 1997;272:21,253–21,259.PubMedGoogle Scholar
  38. 38.
    Grupp IL, Lorenz JN, Walsh RA, Boivin GP, Rindt H. Overexpression of α1B-adrenergic receptor induces left ventricular dysfunction in the absence of hypertrophy. Am J Physiol 1998;275:H1338–H1350.PubMedGoogle Scholar
  39. 39.
    Zuscik MJ, Chalothorn D, Hellard D, et al. Hypotension, autonomic failure, and cardiac hypertrophy in transgenic mice overexpressing the α1B-adrenergic receptor. J Biol Chem 2001;276:13,738–13,743.PubMedGoogle Scholar
  40. 40.
    Rudner XL, Berkowitz DE, Booth JV, et al. Subtype specific regulation of human vascular α1 adrenergic receptors by vessel bed and age. Circulation 1999;100:2336–2343.PubMedGoogle Scholar
  41. 41.
    Piascik MT, Hrometz SL, Edelmann SE, Guarino RD, Hadley RW, Brown RD. Immunocytochemical localization of the α1B adrenergic receptor and the contribution of this and the other subtypes to vascular smooth muscle contraction: analysis with selective ligands and antisense oligonucleotides. J Pharmacol Exp Ther 1997;283:854–868.PubMedGoogle Scholar
  42. 42.
    Hrometz SL, Edelmann SE, McCune DF, et al. Expression of multiple α1-adrenoceptors on vascular smooth muscle: correlation with the regulation of contraction. J Pharmacol Exp Ther 1999;290:452–463.PubMedGoogle Scholar
  43. 43.
    Rokosh DG, Simpson PC. Knockout of the α1A/C-adrenergic receptor subtype: the α1A/C is expressed in resistance arteries and is required to maintain arterial blood pressure. Proc Natl Acad Sci USA 2002;99:9474–9479.PubMedGoogle Scholar
  44. 44.
    Tanoue A, Nasa Y, Koshimizu T, et al. The α1D adrenergic receptor directly regulates arterial blood pressure via vasoconstriction. J Clin Invest 2002;109:765–775.PubMedGoogle Scholar
  45. 45.
    Stone EA, Zhang Y, Rosengarten H, Yeretsian J, Quartermain D. Brain α1-adrenergic neurotransmission is necessary for behavioral activation to environmental change in mice. Neuroscience 1999;94:1245–1252.PubMedGoogle Scholar
  46. 46.
    Sirvio J, Lahtinen H, Riekkinen P Jr, Riekkinen PJ. Spatial learning and noradrenaline content in the brain and periphery of young and aged rats. Exp Neurol 1994;125:312–315.PubMedGoogle Scholar
  47. 47.
    Zuscik MJ, Sands S, Ross SA, et al. Overexpression of the α1B-adrenergic receptor causes apoptotic neurodegeneration: multiple system atrophy. Nat Med 2000;6:1388–1394.PubMedGoogle Scholar
  48. 48.
    Guyenet PG, Stornetta RL, Riley T, Norton FR, Rosin DL, Lynch KR. α2A-Adrenergic receptors are present in lower brainstem catecholaminergic and serotonergic neurons innervating spinal cord. Brain Res 1994;638:285–294.PubMedGoogle Scholar
  49. 49.
    Chen DG, Dai XZ, Bache RJ. Postsynaptic adrenoceptor-mediated vasoconstriction in coronary and femoral vascular beds. Am J Physiol 1988;254:H984–H992.PubMedGoogle Scholar
  50. 50.
    Langer SZ. Presynaptic regulation of the release of catecholamines. Pharmacol Rev 1980;32:337–362.PubMedGoogle Scholar
  51. 51.
    MacMillan LB, Hein L, Smith MS, Piascik MT, Limbird LE. Central hypotensive effects of the α2A-adrenergic receptor subtype. Science 1996;273:801–803.PubMedGoogle Scholar
  52. 52.
    Chotani MA, Mitra S, Su BY, et al. Regulation of α2-adrenoceptors in human vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2004;286:H59–H67.PubMedGoogle Scholar
  53. 53.
    Bylund DB. Subtypes of α1-and α2-adrenergic receptors. FASEB J 1992;6:832–839.PubMedGoogle Scholar
  54. 54.
    Arima J, Kubo C, Ishibashi H, Akaike N. α2-Adrenoceptor-mediated potassium currents in acutely dissociated rat locus coeruleus neurones. J Physiol 1998;508(Pt 1):57–66.PubMedGoogle Scholar
  55. 55.
    Caulfield MP, Jones S, Vallis Y, et al. Muscarinic M-current inhibition via Gαq/11 and α-adrenoceptor inhibition of Ca2+ current via G α o in rat sympathetic neurones. J Physiol 1994;477(Pt 3):415–422.PubMedGoogle Scholar
  56. 56.
    Bylund DB. Subtypes of α2-adrenoceptors: pharmacological and molecular biological evidence converge. Trends Pharmacol Sci 1988;9:356–361.PubMedGoogle Scholar
  57. 57.
    Lomasney JW, Cotecchia S, Lefkowitz RJ, Caron MG. Molecular biology of α-adrenergic receptors: implications for receptor classification and for structure-function relationships. Biochim Biophys Acta 1991;1095:127–139.PubMedGoogle Scholar
  58. 58.
    Altman JD, Trendelenburg AU, MacMillan L, et al. Abnormal regulation of the sympathetic nervous system in α2A-adrenergic receptor knockout mice. Mol Pharmacol 1999;56:154–161.PubMedGoogle Scholar
  59. 59.
    Link RE, Stevens MS, Kulatunga M, Scheinin M, Barsh GS, Kobilka BK. Targeted inactivation of the gene encoding the mouse α2C-adrenoceptor homolog. Mol Pharmacol 1995;48:48–55.PubMedGoogle Scholar
  60. 60.
    Link RE, Desai K, Hein L, et al. Cardiovascular regulation in mice lacking α2-adrenergic receptor subtypes b and c. Science 1996;273:803–805.PubMedGoogle Scholar
  61. 61.
    Hein L, Altman JD, Kobilka BK. Two functionally distinct α2-adrenergicreceptors regulate sympathetic neurotransmission. Nature 1999;402:181–184.PubMedGoogle Scholar
  62. 62.
    Makaritsis KP, Handy DE, Johns C, Kobilka B, Gavras I, Gavras H. Role of the α2B-adrenergic receptor in the development of salt-induced hypertension. Hypertension 1999;33:14–17.PubMedGoogle Scholar
  63. 63.
    Nicholas AP, Hokfelt T, Pieribone VA. The distribution and significance of CNS adrenoceptors examined with in situ hybridization. Trends Pharmacol Sci 1996;17:245–255.PubMedGoogle Scholar
  64. 64.
    Eisenach JC, De Kock M, Klimscha W. α2 Adrenergic agonists for regional anesthesia. A clinical review of clonidine (1984–1995). Anesthesiology 1996;85:655–674.PubMedGoogle Scholar
  65. 65.
    Janumpalli S, Butler LS, MacMillan LB, Limbird LE, McNamara JO. A point mutation (D79N) of the α2A adrenergic receptor abolishes the antiepileptogenic action of endogenous norepinephrine. J Neurosci 1998;18:2004–2008.PubMedGoogle Scholar
  66. 66.
    Lakhlani PP, MacMillan LB, Guo TZ, et al. Substitution of a mutant α2A-adrenergic receptor via “hit and run” gene targeting reveals the role of this subtype in sedative, analgesic, and anesthetic-sparing responses in vivo. Proc Natl Acad Sci USA 1997;94:9950–9955.PubMedGoogle Scholar
  67. 67.
    Hunter JC, Fontana DJ, Hedley LR, et al. Assessment of the role of α2-adrenoceptor subtypes in the antinociceptive, sedative and hypothermic action of dexmedetomidine in transgenic mice. Br J Pharmacol 1997;122:1339–1344.PubMedGoogle Scholar
  68. 68.
    Sallinen J, Link RE, Haapalinna A, et al. Genetic alteration of α2C-adrenoceptor expression in mice: influence on locomotor, hypothermic, and neurochemical effects of dexmedetomidine, a subtype-nonselective α2-adrenoceptor agonist. Mol Pharmacol 1997;51:36–46.PubMedGoogle Scholar
  69. 69.
    Sallinen J, Haapalinna A, Viitamaa T, Kobilka BK, Scheinin M. d-Amphetamine and L-5-hydroxytryptophan-induced behaviours in mice with genetically-altered expression of the α2C-adrenergic receptor subtype. Neuroscience 1998;86:959–965.PubMedGoogle Scholar
  70. 70.
    Sallinen J, Haapalinna A, MacDonald E, et al. Genetic alteration of the α2-adrenoceptor subtype c in mice affects the development of behavioral despair and stress-induced increases in plasma corticosterone levels. Mol Psychiatry 1999;4:443–452.PubMedGoogle Scholar
  71. 71.
    Bjorklund M, Sirvio J, Riekkinen M, Sallinen J, Scheinin M, Riekkinen P Jr. Overexpression of α2C-adrenoceptors impairs water maze navigation. Neuroscience 2000;95:481–487.PubMedGoogle Scholar
  72. 72.
    Bjorklund M, Sirvio J, Puolivali J, et al. α2C-Adrenoceptor-overexpressing mice are impaired in executing nonspatial and spatial escape strategies. Mol Pharmacol 1998;54:569–576.PubMedGoogle Scholar
  73. 73.
    Brodde OE, Michel MC. Adrenergic and muscarinic receptors in the human heart. Pharmacol Rev 1999;51:651–690.PubMedGoogle Scholar
  74. 74.
    Xiao RP, Avdonin P, Zhou YY, et al. Coupling of β2-adrenoceptor to Gi proteins and its physiological relevance in murine cardiac myocytes. Circ Res 1999;84:43–52.PubMedGoogle Scholar
  75. 75.
    Rohrer DK, Desai KH, Jasper JR, et al. Targeted disruption of the mouse β1-adrenergic receptor gene: developmental and cardiovascular effects. Proc Natl Acad Sci USA 1996;93:7375–7380.PubMedGoogle Scholar
  76. 76.
    Rohrer DK, Schauble EH, Desai KH, Kobilka BK, Bernstein D. Alterations in dynamic heart rate control in the β1-adrenergic receptor knockout mouse. Am Physiol 1998;274:H1184–H1193.Google Scholar
  77. 77.
    Brodde OE. β1-and β2-adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure. Pharmacol Rev 1991;43:203–242.PubMedGoogle Scholar
  78. 78.
    Chruscinski AJ, Rohrer DK, Schauble E, Desai KH, Bernstein D, Kobilka BK. Targeted disruption of the β2 adrenergic receptor gene. J Biol Chem 1999;274:16,694–16,700.PubMedGoogle Scholar
  79. 79.
    Susulic VS, Frederich RC, Lawitts J, et al. Targeted disruption of the β3-adrenergic receptor gene. J Biol Chem 1995;270:29,483–29,492.PubMedGoogle Scholar
  80. 80.
    Revelli JP, Preitner F, Samec S, et al. Targeted gene disruption reveals a leptin-independent role for the mouse β3-adrenoceptor in the regulation of body composition. J Clin Invest 1997;100:1098–1106.PubMedGoogle Scholar
  81. 81.
    Guimaraes S, Moura D. Vascular adrenoceptors: an update. Pharmacol Rev 2001;53:319–356.PubMedGoogle Scholar
  82. 82.
    Brodde OE, Michel MC, Zerkowski HR. Signal transduction mechanisms controlling cardiac contractility and their alterations in chronic heart failure. Cardiovasc Res 1995;30:570–584.PubMedGoogle Scholar
  83. 83.
    Abramson SN, Martin MW, Hughes AR, et al. Interaction of β-adrenergic receptors with the inhibitory guanine nucleotide-binding protein of adenylate cyclase in membranes prepared from cyc-S49 lymphoma cells. Biochem Pharmacol 1988;37:4289–4297.PubMedGoogle Scholar
  84. 84.
    Xiao RP, Ji X, Lakatta EG. Functional coupling of the β2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes. Mol Pharmacol 1995;47:322–329.PubMedGoogle Scholar
  85. 85.
    Communal C, Singh K, Sawyer DB, Colucci WS. Opposing effects of β1 and β2-adrenergic receptors on cardiac myocyte apoptosis: role of a pertussis toxin-sensitive G protein. Circulation 1999;100:2210–2212.PubMedGoogle Scholar
  86. 86.
    Kilts JD, Gerhardt MA, Richardson MD, et al. β2 Adrenergic and several other G protein-coupled receptors in human atrial membranes activate both G(s) and G(i). Circ Res 2000;87:705–709.PubMedGoogle Scholar
  87. 87.
    Daaka Y, Luttrell LM, Lefkowitz RJ. Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature 1997;390:88–91.PubMedGoogle Scholar
  88. 88.
    Pavoine C, Magne S, Sauvadet A, Pecker F. Evidence for a β2-adrenergic/arachidonic acid pathway in ventricular cardiomyocytes. Regulation by the β1-adrenergic/camp pathway. J Biol Chem 1999;274:628–637.PubMedGoogle Scholar
  89. 89.
    Pavoine C, Behforouz N, Gauthier C, et al. β2-Adrenergic signaling in human heart: shift from the cyclic AMP to the arachidonic acid pathway. Mol Pharmacol 2003;64:1117–1125.PubMedGoogle Scholar
  90. 90.
    Brodde OE. β-Adrenoceptors in cardiac disease. Pharmacol Ther 1993;60:405–430.PubMedGoogle Scholar
  91. 91.
    Bristow MR, Minobe WA, Raynolds MV, et al. Reduced beta 1 receptor messenger RNA abundance in the failing human heart. J Clin Invest 1993;92:2737–2745.PubMedGoogle Scholar
  92. 92.
    Bristow MR. Why does the myocardium fail? Insights from basic science. Lancet 1998;352(Suppl 1):SI8–SI14.PubMedGoogle Scholar
  93. 93.
    Iwase M, Bishop SP, Uechi M, et al. Adverse effects of chronic endogenous sympathetic drive induced by cardiac G overexpression. Circ Res 1996;78:517–524.PubMedGoogle Scholar
  94. 94.
    Engelhardt S, Hein L, Wiesmann F, Lohse MJ. Progressive hypertrophy and heart failure in β1-adrenergic receptor transgenic mice. Proc Natl Acad Sci USA 1999;96:7059–7064.PubMedGoogle Scholar
  95. 95.
    Bisognano JD, Weinberger HD, Bohlmeyer TJ, et al. Myocardial-directed overexpression of the human β1 adrenergic receptor in transgenic mice. J Mol Cell Cardiol 2000;32:817–830.PubMedGoogle Scholar
  96. 96.
    Engelhardt S, Boknik P, Keller U, Neumann J, Lohse MJ, Hein L. Early impairment of calcium handling and altered expression of junction in hearts of mice overexpressing the β1-adrenergic receptor. FASEB J 2001;15:2718–2720.PubMedGoogle Scholar
  97. 97.
    Feldman AM, Cates AE, Veazey WB, et al. Increase of the 40,000-mol wt pertussis toxin substrate (G protein) in the failing human heart. J Clin Invest 1988;82:189–197.PubMedGoogle Scholar
  98. 98.
    Milano CA, Allen LF, Rockman HA, et al. Enhanced myocardial function in transgenic mice overexpressing the β2-adrenergic receptor. Science 1994;264:582–586.PubMedGoogle Scholar
  99. 99.
    Liggett SB, Tepe NM, Lorenz JN, et al. Early and delayed consequences of β2 adrenergic receptor overexpression in mouse hearts: critical role for expression level. Circulation 2000;101:1707–1714.PubMedGoogle Scholar
  100. 100.
    Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK, Xiao RP. Dual modulation of cell survival and cell death by β2 adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci USA 2001;98:1607–1612.PubMedGoogle Scholar
  101. 101.
    Condorelli G, Drusco A, Stassi G, et al. Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc Natl Acad Sci USA 2002;99:12,333–12,338.PubMedGoogle Scholar
  102. 102.
    Singh K, Xiao L, Remondino A, Sawyer DB, Colucci WS. Adrenergic regulation of cardiac myocyte apoptosis. J Cell Physiol 2001;189:257–265.PubMedGoogle Scholar
  103. 103.
    Xiang Y, Devic E, Kobilka B. The PDZ binding motif of the β1 adrenergic receptor modulates receptor trafficking and signaling in cardiac myocytes. J Biol Chem 2002;277:33,783–33,790.PubMedGoogle Scholar
  104. 104.
    Bristow MR, Minobe WA, Raynolds MV, et al. Reduced β1 receptor messenger RNA abundance in the failing human heart. J Clin Invest 1993;92:2737–2745.PubMedGoogle Scholar
  105. 105.
    Ungerer M, Bohm M, Elce JS, Erdmann E, Lohse MJ. Altered expression of β-adrenergic receptor kinase and β1-adrenergic receptors in the failing human heart. Circulation 1993;87:454–463.PubMedGoogle Scholar
  106. 106.
    Iaccarino G, Lefkowitz RJ, Koch WJ. Myocardial G protein-coupled receptor kinases: implications for heart failure therapy. Proc Assoc Am Physicians 1999;111:399–405.PubMedGoogle Scholar
  107. 107.
    Petrofski JA, Koch WJ. The β-adrenergic receptor kinase in heart failure. J Mol Cell Cardiol 2003;35:1167–1174.PubMedGoogle Scholar
  108. 108.
    Naga Prasad SV, Esposito G, Mao L, Koch WJ, Rockman HA. Gβγ-dependent phosphoinositide 3-kinase activation in hearts with in vivo pressure overload hypertrophy. J Biol Chem 2000;275:4693–4698.PubMedGoogle Scholar
  109. 109.
    Nienaber JJ, Tachibana H, Naga Prasad SV, et al. Inhibition of receptor-localized PI3K preserves cardiac β-adrenergic receptor function and ameliorates pressure overload heart failure. J Clin Invest 2003;112:1067–1079.PubMedGoogle Scholar
  110. 110.
    Mialet Perez J, Rathz DA, Petrashevskaya NN, et al. β1-Adrenergic receptor polymorphisms confer differential function and predisposition to heart failure. Nat Med 2003;9:1300–1305.PubMedGoogle Scholar
  111. 111.
    Strosberg AD. Structure and function of the β3-adrenergic receptor. Annu Rev Pharmacol Toxicol 1997;37:421–450.PubMedGoogle Scholar
  112. 112.
    Soeder KJ, Snedden SK, Cao W, et al. The β3-adrenergic receptor activates mitogen-activated protein kinase in adipocytes through a Gi-dependent mechanism. J Biol Chem 1999;274:12,017–12,022.PubMedGoogle Scholar
  113. 113.
    Walston J, Silver K, Bogardus C, et al. Time of onset of non-insulin-dependent diabetes mellitus and genetic variation in the β3-adrenergic-receptor gene. N Engl J Med 1995;333:343–347.PubMedGoogle Scholar
  114. 114.
    Widen E, Lehto M, Kanninen T, Walston J, Shuldiner AR, Groop LC. Association of a polymorphism in the β3-adrenergic-receptor gene with features of the insulin resistance syndrome in Finns. N Engl J Med 1995;333:348–351.PubMedGoogle Scholar
  115. 115.
    Clement K, Vaisse C, Manning BS, et al. Genetic variation in the β3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. N Engl J Med 1995;333:352–354.PubMedGoogle Scholar
  116. 116.
    Gauthier C, Tavernier G, Charpentier F, Langin D, Le Marec H. Functional β3-adrenoceptor in the human heart. J Clin Invest 1996;98:556–562.PubMedGoogle Scholar
  117. 117.
    Varghese P, Harrison RW, Lofthouse RA, Georgakopoulos D, Berkowitz DE, Hare JM. β3 Adrenoceptor deficiency blocks nitric oxide-dependent inhibition of myocardial contractility. J Clin Invest 2000;106:697–703.PubMedGoogle Scholar
  118. 118.
    Kohout TA, Takaoka H, McDonald PH, et al. Augmentation of cardiac contractility mediated by the human β3 adrenergic receptor overexpressed in the hearts of transgenic mice. Circulation 2001;104:2485–2491.PubMedGoogle Scholar
  119. 119.
    Moniotte S, Kobzik L, Feron O, Trochu JN, Gauthier C, Balligand JL. Upregulation of β3 adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation 2001;103:1649–1655.PubMedGoogle Scholar
  120. 120.
    Knauber J, Muller WE. Decreased exploratory activity and impaired passive avoidance behaviour in mice deficient for the α1B. Eur Neuropsychopharmacol 2000;10:423–427.PubMedGoogle Scholar
  121. 121.
    Tanoue A, Koba M, Miyawaki S, et al. Role of the α1D-adrenergic receptor in the development of salt-induced hypertension. Hypertension 2002;40:101–106.PubMedGoogle Scholar
  122. 122.
    Harasawa I, Honda K, Tanoue A, et al. Responses to noxious stimuli in mice lacking α1D adrenergic receptors. Neuroreport 2003;14:1857–1860.PubMedGoogle Scholar
  123. 123.
    Rohrer DK, Chruscinski A, Schauble EH, Bernstein D, Kobilka BK. Cardiovascular and metabolic alterations in mice lacking both β1-and β2-adrenergic receptors. J Biol Chem 1999;274:16,701–16,708.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • Cinzia Perrino
    • 1
  • Liza Barki-Harrington
    • 1
  • Howard A. Rockman
    • 1
  1. 1.Division of CardiologyDuke University Medical CenterDurham

Personalised recommendations