Skip to main content

Immunohistochemistry

  • Chapter
Book cover Molecular Diagnostics

Abstract

Since its introduction as a routine diagnostic procedure over 25 yrs ago, immunohistochemistry (IHC) has revolutionized the field of surgical pathology. This powerful technique allows greater precision in the characterization and diagnosis of solid tumors, hematolymphoid neoplasms, and infections than ever before. An increasing number of antibodies directed against normal and abnormal cellular proteins as well as infectious agents is available to the surgical pathologist to diagnose and subclassify disease entities. These markers can be used in a variety of diagnostic and research settings. We live in a time when a number of diseases can be characterized by a single genetic alteration that is easily assayed in the modern molecular pathology laboratory. Unfortunately, a laboratory with this level of sophistication is not yet readily accessible to the majority of practicing pathologists. Likewise, there are few pathologists that are trained in the performance and evaluation of molecular studies. For surgical pathologists, it is IHC, a test that focuses on recognition of protein products expressed by different cell populations in conjunction with a morphologic examination, that is used as a means to circumvent the need for direct evaluation of nucleic acid alterations. With this method, the products of genes are assayed in tissue sections, often allowing one to characterize a cell population as benign or neoplastic, determine cell lineage, and, in some cases, even determine the nature of the molecular genetic alteration leading to the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coons, A. H., Creech, H. J., and Jones R. N. Immunological properties of an antibody containing a fluorescent group. Proc. Soc. Exp. Biol. 47:200–202, 1941.

    CAS  Google Scholar 

  2. Taylor, C. R., and Burns, J. The demonstration of plasma cells and other immunoglobulin containing cells in formalin-fixed, paraffin-embedded tissues using peroxidase labeled antibody. J. Clin. Pathol. 27:14–20, 1974.

    Article  CAS  PubMed  Google Scholar 

  3. Kohler, G., and Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497, 1975.

    Article  CAS  PubMed  Google Scholar 

  4. Huang, S.-N. Immunohistochemical demonstration of hepatitis B core and surface antigens in paraffin sections. Lab. Invest. 33:88–95, 1975.

    CAS  PubMed  Google Scholar 

  5. Shi, S. R., Key, M. E., and Kalra, K. L. Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections. J. Histochem. Cytochem. 39:741–748, 1991.

    CAS  PubMed  Google Scholar 

  6. Dabbs, D. J. Diagnostic Immunohistochemistry. Churchill, New York, Livingstone, 2002.

    Google Scholar 

  7. Taylor, C. Immunomicroscopy: A Diagnostic Tool for the Surgical Pathologist. Major Problems in Pathology Vol. 19, 1994.

    Google Scholar 

  8. Hsi, E. D. A practical approach for evaluating new antibodies in the clinical immunohistochemistry laboratory. Arch. Pathol. Lab. Med. 125:289–294, 2001.

    CAS  PubMed  Google Scholar 

  9. Werner, M., Chott, A., Fabriano, A., and Battifora, H. Effect of formalin tissue fixation and processing on immunohistochemistry. Am. J. Surg. Pathol. 24:1016–1019, 2000.

    Article  CAS  PubMed  Google Scholar 

  10. Shi, S. R., Cote, R. J., and Taylor, C. R. Antigen retrieval immuno-histochemistry: past, present, and future. J. Histochem. Cytochem. 45:327–343, 1997.

    CAS  PubMed  Google Scholar 

  11. Shi, S. R., Cote, R. J., and Taylor, C. R. Antigen retrieval immuno-histochemistry and molecular morphology in the year 2001. Appl. Immunohistochem. Mol. Morphol. 9:107–116, 2001.

    Article  CAS  PubMed  Google Scholar 

  12. Huang, S.-N. Immunohistochemical demonstration of hepatitis B core and surface antigens in paraffin sections. Lab. Invest. 33:88–95, 1975.

    CAS  PubMed  Google Scholar 

  13. Rodney, M. T., Swanson, P., and Wick, M. R. Fixation and epitope retrieval in diagnostic immunohistochemistry: a concise review with practical considerations. Appl. Immunohistochem. 8:228–235, 2000.

    Article  Google Scholar 

  14. Cattoretti, G. and Suurmeijer, A. J. H. Antigen unmasking on formalin-fixed paraffin-embedded tissue using microwaves: a review. Adv. Anat. Pathol. 2:2–9, 1995.

    Article  Google Scholar 

  15. Cuevas, E. C., Bateman, A. C., Wilkins, B. S., et al. Microwave antigen retrieval in immunohistochemistry: a study of 80 antibodies. J. Clin. Pathol. 47:448–452, 1994.

    Article  CAS  PubMed  Google Scholar 

  16. Taylor, C. R., Shi, S. R., Chaiwun, B., Young, L., Imam, A., and Cote, R. J. Strategies for improving the immunohistochemical staining of various intranuclear prognostic markers in formalin-paraffin sections: androgen receptor, estrogen receptor, progesteron receptor, p53, PCNA, and Ki-67 antigen revealed by antigen retrieval technique. Hum. Pathol. 25:1107–1109, 1994.

    Article  Google Scholar 

  17. Linden, M. D., Nathanson, S. D., and Zarbo, R. J. Evaluation of p53 antibody staining immunoreactivity in benign tumors and nonneo-plastic tissues. Appl. Immunohistochem. 3:232–238, 1995.

    Google Scholar 

  18. Hsu, S. M., Raine, L., and Fanger, H. Use of avidin–biotin peroxi-dase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J. Histochem. Cytochem. 29:577–580, 1981.

    CAS  PubMed  Google Scholar 

  19. Bisgaard, K. and Pluzek, K. Use of polymer conjugates in immuno-histochemistry: a comparative study of a traditional staining method to a staining method using polymer conjugates. Pathol. Int. 46(Suppl. 1):577, 1996.

    Google Scholar 

  20. Vyberg, M. and Nielsen, S. Dextran: polymer conjugate two-step visualization system for immunohistochemistry. Appl. Immuno-histochem. 6:3–10, 1998.

    CAS  Google Scholar 

  21. Sabattini, E., Bisgaard, K., Ascani, S., et al. The Envision++ system: a new immunohistochemical method for diagnostic and research; critical comparison with APAAP, ChemMate, CSA, LABC, SABC techniques. J. Clin. Pathol. 51:506–511, 1998.

    Article  CAS  PubMed  Google Scholar 

  22. Shi, S., Guo, J., Cote, R. J., et al. Sensitivity and detection efficiency of a novel two-step detection system (PowerVision) for immunohistochemistry Appl. Immunohistochem. Mol. Morphol. 7:201–208, 1999.

    Article  CAS  Google Scholar 

  23. Richter, T., Nahrig, J., Komminoth, P., Kowolik, J., and Werner, M. Protocol for ultrarapid immunostaining of frozen sections. J. Clin. Pathol. 52:461–463. 1999.

    Article  CAS  PubMed  Google Scholar 

  24. Bobrow, M. N., Harris, T. D., Shaughnessy, K. J., and Litt, G. J. Catalyzed reporter deposition, a novel method of signal amplification; application to immunoassays. J. Immunol. Methods. 125:279–289, 1989.

    Article  CAS  PubMed  Google Scholar 

  25. Adams, J. C. Biotin amplification of biotin and horseradish peroxi-dase signals in histochemical stains. J. Histochem. Cytochem. 40: 457–1463, 1992.

    Google Scholar 

  26. Grogan, T. M. Automated immunohistochemical analysis. Am. J. Clin. Pathol. 98(Suppl. 1):S35–S38, 1992.

    CAS  PubMed  Google Scholar 

  27. Le Neel, T., Moreau, A., Laboisse, C., and Truchaud, A. Comparative evaluation of automated systems in immunohisto-chemistry. Clin. Chim. Acta. 278:185–192, 1998.

    Article  PubMed  Google Scholar 

  28. Seidal, T., Balaton, A., and Battifora, H. Interpretation and quantification of immunostains. Am. J. Surg. Pathol. 25:1204–1207, 2001.

    Article  CAS  PubMed  Google Scholar 

  29. Van Wasielewski, R., Mengel, M., Wiese, B., Rüdiger, T., Müller-Hermelink, H. K., and Kreipe, H. Tissue array technology for testing interlaboratory and interobserver reproducibility of immuno-histochemical estrogen receptor analysis in a large multicenter trial. Am. J. Clin. Pathol. 118:675–682, 2002.

    Article  Google Scholar 

  30. Cartun, R. W. Immunohistochemistry in infectious diseases. J. Histotechnol. 18:195–202, 1995.

    Google Scholar 

  31. Cohen, J. Epstein–Barr virus infection. N. Engl. J. Med. 343: 481–492, 2000.

    Article  CAS  PubMed  Google Scholar 

  32. Hsu, J. L., and Glaser, S. L. Epstein–Barr virus-associated malignancies: epidemiologic patterns and etiologic implications. Crit. Rev. Oncol. Hematol. 34:27–53, 2000.

    Article  CAS  PubMed  Google Scholar 

  33. Herrmann, K., and Niedobitek, G. Epstein–Barr virus-associated carcinomas: facts and fiction. J. Pathol. 199:140–145, 2003.

    Article  PubMed  Google Scholar 

  34. Swaminathan, S. Molecular biology of Epstein–Barr virus and Kaposi’s sarcoma-associated herpesvirus. Semin. Hematol. 40:107–115, 2003.

    Article  CAS  PubMed  Google Scholar 

  35. Gulley, M. L. Molecular diagnosis of Epstein–Barr virus-related diseases. J. Mol. Diagn. 3:1–19, 2001.

    CAS  PubMed  Google Scholar 

  36. Courville, P., Simon, F., Le Pessot, F., Tallet, Y., Debab, Y., and Metayer, J. Detection of HHV8 latent nuclear antigen by immuno-histochemistry: a new tool for differentiating Kaposi’s sarcoma from its mimics. Ann. Pathol. 22:264–276, 2002.

    Google Scholar 

  37. Negri, G., Egarter-Vigl, E., Kasal, A., Romano, F., Haitel, A., and Mian, C. p16INK4a is a useful marker for the diagnosis of adeno-carcinoma of the cervix uteri and its precursors: an immunohisto-chemical study with immunocytochemical correlations. Am. J. Surg. Pathol. 27:187–193, 2003.

    Article  PubMed  Google Scholar 

  38. Riethdorf, L., Riethdorf, S., Lee, K. R., Cviko, A., Loning, T., and Crum, C. P. Human papillomaviruses, expression of p16, and early endocervical glandular neoplasia. Hum. Pathol. 33:899–904, 2002.

    Article  CAS  PubMed  Google Scholar 

  39. Chan, J. K. Advances in immunohistochemistry: impact on surgical pathology practice. Semin. Diagn. Pathol. 17:170–177, 2000.

    CAS  PubMed  Google Scholar 

  40. Kaufmann, O., Fietze, E., and Dietel, M. Immunohistochemical diagnosis in cancer metastasis of unknown primary tumor. Pathologie 23:183–197, 2002.

    Article  CAS  Google Scholar 

  41. Chu, P., Wu, E., and Weiss, L. M. Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: a survey of 435 cases. Mod. Pathol. 13:962–972, 2000.

    Article  CAS  PubMed  Google Scholar 

  42. Harris, N. L., Jaffe, E. S., Stein, H., et al. A revised European–American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 84:1361–1392, 1994.

    CAS  PubMed  Google Scholar 

  43. Harris, N. L., Jaffe, E. S., Diebold, J., et al. World Health Organization classification of neoplastic diseases of the hematopoietic and lym-phoid tissues: report of the Clinical Advisory Committee meeting–Airlie House, Virginia, November 1997. J. Clin. Oncol. 17:3835–3849, 1999.

    CAS  PubMed  Google Scholar 

  44. Torlakovic, E., Torlakovic, G., Nguyen, P. L., Brunning, R. D., and Delabie, J. The value of anti-pax-5 immunostaining in routinely fixed and paraffin-embedded sections: a novel pan pre-B and B-cell marker. Am. J. Surg. Pathol. 26:1343–1350, 2002.

    Article  PubMed  Google Scholar 

  45. Wang, T., Lasota, J., Hanau, C. A., and Miettinen, M. Bcl-2 onco-protein is widespread in lymphoid tissue and lymphomas but its differential expression in benign versus malignant follicles and monocytoid B-cell proliferations is of diagnostic value. APMIS 103:655–662, 1995.

    Article  CAS  PubMed  Google Scholar 

  46. Kurtin, P. J., Hobday, K. S., Ziesmer, S., and Caron, B. L. Demonstration of distinct antigenic profiles of small B-cell lym-phoma by paraffin section immunohistochemistry. Am. J. Clin. Pathol. 112:319–329, 1999.

    CAS  PubMed  Google Scholar 

  47. Zukerberg, L. R., Yang, W. I., Arnold, A., and Harris, N. L. Cyclin D1 expression in non-Hodgkin’s lymphomas. Detection by immunohistochemistry. Am. J. Clin. Pathol. 103:756–760, 1995.

    CAS  PubMed  Google Scholar 

  48. 48. Xu, Y., McKenna, R. W., Molberg, K. H., and Kroft, S. H. Clinicopathologic analysis of CD10+ and CD10- diffuse large B-cell lymphomas. Identification of a high-risk subset with coexpres-sion of CD10 and bcl-2. Am. J. Clin. Pathol. 116:183–190, 2001.

    Article  CAS  PubMed  Google Scholar 

  49. Lossos, I. S., Jones, C. D., Warnke, R., et al. Expression of a single gene, bcl-6, strongly predicts survival in patients with diffuse large B-cell lymphoma. Blood 98:945–951, 2001.

    Article  CAS  PubMed  Google Scholar 

  50. Marshall-Taylor, C. E., Cartun, R. W., Mandich, D., and DiGiuseppe, J. A. Immunohistochemical detection of immunoglob-ulin light chain expression in B-cell non-Hodgkin lymphomas using paraffin-fixed, paraffin-embeded tissues and a heat-induced epitope retrieval technique. Appl. Immunohistochem. Mol. Morphol. 10:258–262, 2002.

    Article  CAS  PubMed  Google Scholar 

  51. Leong, A. S.-Y., Yin, H., and Hafajee, Z. Patterns of immunoglobu-lin staining in paraffin-embedded malignant lymphomas. Appl. Immunohistochem. Mol. Morphol. 10:110–114, 2002.

    Article  PubMed  Google Scholar 

  52. Kinney, M. C. The role of morphologic features, phenotype, genotype and anatomic site in defining extranodal T-cell or NK-cell neoplasms. Am. J. Clin. Pathol. 111(1 Suppl 1):S104–S118, 1999.

    CAS  PubMed  Google Scholar 

  53. Ohno, T., Stribley, J. A., Wu, G., Hinrichs, S. H., Weisenburger, D. D., and Chan, W. C. Conality in nodular lymphocyte-predominant Hodgkin’s disease. N. Engl. J. Med. 14:459–465, 1997.

    Article  Google Scholar 

  54. Stein, H., Marafioti, T., Foss, H. D., et al. Down-regulation of BOB.1/OBF.1 and Oct2 in classical Hodgkin disease but not in lymphocyte predominant Hodgkin disease correlates with immunoglob-ulin transcription. Blood 97:496–501, 2001.

    Article  CAS  PubMed  Google Scholar 

  55. Vasef, M. A., Alsabeh, R., Madeiros, L. J., and Weiss, L. M. Immuno-phenotype of Reed–Sternberg and Hodgkin’s cells in sequential specimens of Hodgkin’s disease: a paraffin section immunohisto-chemical study using heat-induced epitope retrieval method. Am. J. Clin. Pathol. 108:54–59, 1997.

    CAS  PubMed  Google Scholar 

  56. 56. Kelly, K. M., Womer, R. B., Sorensen, P. H., Xiong, Q. B., and Barr, F. G. Common and variant gene fusions predict distinct clinical phe-notypes in rhabdomyosarcomas. J. Clin. Oncol. 15:1831–1836, 1997.

    CAS  PubMed  Google Scholar 

  57. Delattre, O., Zucman, J., Melot, T., et.al. The Ewing family of tumors––a subgroup of small round cell tumors defined by specific chimeric transcripts. N. Engl. J. Med. 331:294–299, 1994.

    Article  CAS  PubMed  Google Scholar 

  58. Gerald, W. L., Ladanyi, M., de Alava, E., Cuatrecasas, M., Kushner, B. H., and LaQuaglia, M. P. Clinical pathologic and molecular spectrum of tumors associated with t(11;22)(p13;q12): desmoplastic small round-cell tumor and its variants. J. Clin. Oncol. 6:3028–3036, 1998.

    Google Scholar 

  59. Adams, V., Hany, M. A., Schmidt, M., Hassam, S., Briner, J., and Niggli, F. K. Detection of t(11;22)(q24;q12) translocation breakpoint in paraffin embedded tissue of the Ewing’s sarcoma family by nested reverse transcription-polymerase chain reaction. Diagn. Mol. Pathol. 5:107–113, 1996.

    Article  CAS  PubMed  Google Scholar 

  60. 60. Parham, D. M., Webber, B., Holt, H., William, W. K., and Maurer, H. Immunohistochemical studies of childhood rhabdomyosarcomas and related neoplasms. Result of an intergroup rhabdomyosarcoma study project. Cancer 67:3072–3080, 1991.

    Article  CAS  PubMed  Google Scholar 

  61. Wang, N. P., Marx, J., McNutt, M. A., Rutledge, J. C., and Gown, A. M. Expression of myogenic regulatory proteins (myogenin and Myo D1) in small blue cell tumors of childhood. Am. J. Pathol. 147:1799–1810, 1995.

    CAS  PubMed  Google Scholar 

  62. Cessna, M. H., Zhou, H., Perkins, S. L., et al. Are myogenin and myoD1 expression specific for rhabdomyosarcoma? A study of 150 cases with emphasis on spindle cell mimics. Am. J. Surg. Pathol. 25:1150–1157, 2001.

    Article  CAS  PubMed  Google Scholar 

  63. Perlman, E. J., Dickman, P. S., Askin, F. B., Grier, H. E., Miser, J. S., and Link, M. P. Ewing’s sarcoma––routine diagnostic utilization of MIC2 analysis ––a Pediatric Oncology Group/Children’s Cancer Group Intergroup Study. Hum. Pathol. 25:304–307, 1994.

    Article  CAS  PubMed  Google Scholar 

  64. Folpe, A. L., Hill, C. E., Parham, D. M., O’Shea, P. A., Weiss, S. W. Immunohistochemical detection of FLI-1 protein expression: a study of 132 round cell tumors with emphasis on CD99-positive mimics of Ewing’s sarcoma/primitive neuroectodermal tumor. Am. J. Surg. Pathol. 25:1–12, 2001.

    Article  CAS  PubMed  Google Scholar 

  65. Ordonez, N. G. Desmoplastic small round cell tumor II: an ultrastruc-tural and immunohistochemical study with emphasis on new immuno-histochemical markers. Am. J. Surg.Pathol. 22:1314–1327, 1998.

    Article  CAS  PubMed  Google Scholar 

  66. Charles, A. K., Moore, I. E., and Berry, P. J. Immunohistochemical detection of Wilms’ tumor gene WT1 in desmoplastic small round cell tumor. Histopathology 30:312–314, 1997.

    Article  CAS  PubMed  Google Scholar 

  67. Taylor, C. R. and Cote, R. J. Immunohistochemical markers of prognostic value in surgical pathology. Histol. Histopathol. 12:1039–1055, 1997.

    CAS  PubMed  Google Scholar 

  68. Harris, C. C. and Hollstein, M. Clinical implications of the p53 tumor-suppressor gene. N. Engl. J. Med. 329:1318–1327, 1993.

    Article  CAS  PubMed  Google Scholar 

  69. Harris, C. C. Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J. Natl. Cancer. Inst. 88:1442–1455, 1996.

    Article  CAS  PubMed  Google Scholar 

  70. Hsu, F. D., Nielsen, T. O., Alkushi, A., et al.Tissue microarrays are an effective quality assurance tool for diagnostic immunohisto-chemistry. Mod. Pathol. 15:1374–1380, 2002.

    Article  PubMed  Google Scholar 

  71. Falini, B. and Mason, D. Y. Proteins encoded by genes involved in chromosomal alterations in lymphoma and leukemia: clinical value of their detection by immunocytochemistry. Blood 99:409–426, 2002.

    Article  CAS  PubMed  Google Scholar 

  72. Campbell, R. J. and Pignatelli, M. Molecular histology in the study of solid tumours.Mol. Pathol. 55:80–82, 2002.

    Article  CAS  PubMed  Google Scholar 

  73. Gown, A. M. Geneogenic immunohistochemistry: a new era in diagnostic immunohistochemistry. Curr. Diagn. Pathol. 8:193–200, 2002.

    Article  Google Scholar 

  74. Paik, S., Hazan, R., Fisher, E. R., et al. Pathologic findings from the National Surgical Adjuvant Breast and Bowel Project: prognostic significance of erbB-2 protein overexpression in primary breast cancer. J. Clin. Oncol. 8:103–112, 1990.

    CAS  PubMed  Google Scholar 

  75. Pauletti, G., Dandekar, S., Rong, H., et al. Assessment of methods for tissue-based detection of the HER-2/neu alteration in human breast cancer: a direct comparison of fluorescence in situ hybridization and immunohistochemistry. J. Clin. Oncol. 18:3651–3664, 2000.

    CAS  PubMed  Google Scholar 

  76. Jacobs, T. W., Gown, A. M., Yaziji, H., Barnes, M. J., and Schnitt, S. J. Specificity of HercepTest in determining HER-2/neu status of breast cancers using the United States Food and Drug Administration-approved scoring system. J. Clin. Oncol. 17:1983–1987, 1999.

    CAS  PubMed  Google Scholar 

  77. 77. Wang, S., Saboorian, M. H., Frenkel, E., Hynan, L., Gokaslan, S. T., and Ashfaq, R. Laboratory assessment of the status of Her-2/neu protein and oncogene in breast cancer specimens: comparison of immunohistochemistry assay with fluorescence in situ hybridisation assays. J. Clin. Pathol. 53:374–381, 2000.

    Article  CAS  PubMed  Google Scholar 

  78. Zarbo, R. J. and Hammond, M. E. Conference summary, Strategic Science symposium. Her-2/neu testing of breast cancer patients in clinical practice. Arch. Pathol. Lab. Med. 127:549–553, 2003.

    PubMed  Google Scholar 

  79. Fletcher, C. D., Berman, J. J., Corless, C., et al. Diagnosis of gastrointestinal stromal tumors: a consensus approach. Hum. Pathol. 33:459–465, 2002.

    Article  PubMed  Google Scholar 

  80. Hirota, S., Isozaki, K., Moriyama, Y., et al. Gain-of-function mutation of c-kit in human gastrointestinal stromal tumors. Science 279:577–580, 1998.

    Article  CAS  PubMed  Google Scholar 

  81. Dematteo, R. P., Heinrich, M. C., El-Rifai, W. M., and Demetri, G. Clinical management of gastrointestinal stromal tumors: before and after STI-571. Hum. Pathol. 33:466–477, 2002.

    Article  CAS  PubMed  Google Scholar 

  82. Greenson, J. K. Gastrointestinal stromal tumors and other mes-enchymal lesions of the gut. Mod. Pathol. 16:366–375, 2003.

    Article  PubMed  Google Scholar 

  83. Smith, M. E. F. and Pignatelli, M. The molecular histology of neo-plasia: the role of the cadherin/catenin complex. Histopathology. 31:107–111, 1997.

    Article  CAS  PubMed  Google Scholar 

  84. Droufakou, S., Deshmane, V., Roylance, R., Hanby, A., Tomlison, I., and Hart, I. R. Multiple ways of silencing E-cadherin gene expression in lobular carcinoma of the breast. Int. J. Cancer 92:404–408, 2001.

    Article  CAS  PubMed  Google Scholar 

  85. Chan, J. K. and Wong, C. S. Loss of E-cadherin is the fundamental defect in diffuse-type gastric carcinoma and infiltrating lobular carcinoma of the breast. Adv. Anat. Pathol. 8:165–172, 2001.

    Article  CAS  PubMed  Google Scholar 

  86. Marra, G. and Boland, C. R. Hereditary nonpolyposis colorectal cancer: the syndrome, the genes, and historical perspectives. J. Natl. Cancer Inst. 87:1114–1125, 1995.

    Article  CAS  PubMed  Google Scholar 

  87. Lindor, N. M., Burgart, L. J., Leontovich, O., et al. Immunohisto-chemistry versus microsatellite instability testing in phenotyping colorectal tumors. J. Clin. Oncol. 20:1043–1048, 2002.

    Article  CAS  PubMed  Google Scholar 

  88. Rigau, V., Sebbagh, N., Olschwang, S. et al. Microsatellite instability in colorectal carcinoma. The comparison of immunohistochem-istry and molecular biology suggests a role for hMLH6 immunostaining. Arch. Pathol. Lab. Med. 127:694–700, 2003.

    CAS  PubMed  Google Scholar 

  89. Stein, H., Mason, D. Y., Gerdes, J., et al. The expression of the Hodgkin’s disease associated antigen Ki-1 in reactive and neoplas-tic lymphoid tissue: evidence that Reed–Sternberg cells and histio-cytic malignancies are derived from activated lymphoid cells. Blood. 66:848–858, 1985.

    CAS  PubMed  Google Scholar 

  90. Morris, S. W., Kirstein, M. N., Va lentine, M. B., et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263:1281–1284, 1994.

    Article  CAS  PubMed  Google Scholar 

  91. Shiota, M., Fujimoto, J., Takenaga, M., et al. Diagnosis of t(2;5)(p23;q35)-associated Ki-1 lymphoma with immunohisto-chemistry. Blood 84:3648–3652, 1994.

    CAS  PubMed  Google Scholar 

  92. Falini, B., Pulford, K., Pucciarini, A., et al. Lymphomas expressing ALK fusion protein(s) other than NPM–ALK. Blood 94:3509–3515, 1999.

    CAS  PubMed  Google Scholar 

  93. Sen, F., Vega, F., and Medeiros L.J. Molecular genetic methods in the diagnosis of hematologic neoplasms. Semin. Diagn. Pathol. 19:72–93, 2002.

    PubMed  Google Scholar 

  94. Chan, J. K., Miller, K. D., Munson, P., and Isaacson, P. G. Immunostaining for cyclin D1 and the diagnosis of mantle cell lym-phoma: is there a reliable method? Histopathology. 34:266–270, 1999.

    Article  CAS  PubMed  Google Scholar 

  95. Leong, A. S. Y., Lee, E. S., and Yin, H. Superheating antigen retrieval. Appl. Immunohistochem. Mol. Morphol. 10:263–268, 2002.

    Article  CAS  PubMed  Google Scholar 

  96. Kodet, R., Mrhalova, M., Krskova, L., et al. Mantle cell lymphoma: improved diagnostics using a combined approach of immunohisto-chemistry and identification of t(11;14)(q13;q32) by polymerase chain reaction and fluorescence in situ hybridization. Virchow’s. Arch. 442:538–547, 2003.

    CAS  Google Scholar 

  97. Belaud-Rotureau, M. A., Parrens, M., Dubus, P., Garroste, J. C., de Mascarel, A., and Merlio, J. P. A comparative analysis of FISH, RT-PCR, PCR and immunohistochemistry for the diagnosis of mantle cell lymphomas. Mod. Pathol. 15:517–525, 2002.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hunt, J., Davydova, L., Cartun, R.W., Baiulescu, M. (2006). Immunohistochemistry. In: Coleman, W.B., Tsongalis, G.J. (eds) Molecular Diagnostics. Humana Press. https://doi.org/10.1385/1-59259-928-1:203

Download citation

  • DOI: https://doi.org/10.1385/1-59259-928-1:203

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-356-5

  • Online ISBN: 978-1-59259-928-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics