Single-Nucleotide Polymorphisms

Testing DNA Variation for Disease Association
  • Ulrich Broeckel
  • Martin J. Hessner


The identification of DNA variation or gene mutations, which contributes to or determines a disease, has been a major research focus, as it describes the underlying inherited disease components. With the human genome being sequenced, the reference sequence is now at hand, facilitating the systematic identification of DNA variation and its subsequent correlation to health and disease. The most common form of genetic variation in the human genome is a simple change of a basepair, a single-nucleotide polymorphism (SNP). In order to elucidate which SNPs might determine a disease as well as diagnosti-cally type those that already have a disease association, there is a substantial need for genotyping assays that are rapid, reliable, and cost-effective. In this chapter, we describe the various areas in which SNPs will be used as well as an overview of some of the most commonly used SNP genotyping methods.


Polymerase Chain Reaction Human Lipoprotein Lipase Gene Molecular Diagnostic Technology CETP Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nickerson, D. A., Tobe, V. O., and Taylor, S. L. PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Res 25:2745–2751, 1997.CrossRefPubMedGoogle Scholar
  2. 2.
    Sasaki, T., Tahira, T., Suzuki, A., et al. Precise estimation of allele frequencies of single-nucleotide polymorphisms by a quantitative SSCP analysis of pooled DNA. Am. J. Hum. Genet. 68:214–218, 2001.CrossRefPubMedGoogle Scholar
  3. 3.
    Kwok, P. Y., Deng, Q., Zakeri, H., Taylor, S. L., and Nickerson, D. A. Increasing the information content of STS-based genome maps: identifying polymorphisms in mapped STSs. Genomics 31:123–126, 1996.CrossRefPubMedGoogle Scholar
  4. 4.
    Halushka, M. K., Fan, J. B., Bentley, K., et al. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat. Genet. 22:239–47, 1999.CrossRefPubMedGoogle Scholar
  5. 5.
    Lazarus, R., Klimecki, W. T., Palmer, L. J., et al. Single-nucleotide polymorphisms in the interleukin-10 gene: differences in frequencies, linkage disequilibrium patterns, and haplotypes in three United States ethnic groups. Genomics 80:223–228, 2002.CrossRefPubMedGoogle Scholar
  6. 6.
    Nickerson, D. A., Taylor, S. L., Weiss, K. M., et al. DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nat. Genet. 19:233–240, 1998.CrossRefPubMedGoogle Scholar
  7. 7.
    Rieder, M. J., Taylor, S. L., Clark, A. G., and Nickerson, D. A. Sequence variation in the human angiotensin converting enzyme. Nat. Genet. 22:59–62, 1999.CrossRefPubMedGoogle Scholar
  8. 8.
    Bertina, R. M., Koeleman, B. P., Koster, T., et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 369:64–67, 1994.CrossRefPubMedGoogle Scholar
  9. 9.
    Bertina, R. M., Reitsma, P. H., Rosendaal, F. R., and Va n denbroucke, J. P. Resistance to activated protein C and factor V Leiden as risk factors for venous thrombosis. Thromb. Haemost. 74:449–453, 1995.PubMedGoogle Scholar
  10. 10.
    Poort, S. R., Rosendaal, F. R., Reitsma, P. H., and Bertina, R. M. A common genetic variation in the 3'-untranslated region of the pro-thrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 88:3698–3703, 1996.PubMedGoogle Scholar
  11. 11.
    Geller, D. S., Rodriguez-Soriano, J., Vallo Boado, A., et al. Mutations in the mineralocorticoid receptor gene cause autosomal dominant pseudohypoaldosteronism type I. Nat. Genet. 19:279–281, 1998.CrossRefPubMedGoogle Scholar
  12. 12.
    Lifton, R. P. Molecular genetics of human blood pressure variation. Science 272:676–680, 1996.CrossRefPubMedGoogle Scholar
  13. 13.
    Simon, D. B., Bindra, R. S., Mansfield, T. A., et al. Mutations in the chloride channel gene, CLCNKB, cause Bartter’s syndrome type III. Nat. Genet. 17:171–178, 1997.CrossRefPubMedGoogle Scholar
  14. 14.
    Collins, F. S. Cystic fibrosis: molecular biology and therapeutic implications. Science 256:774–779, 1992.CrossRefPubMedGoogle Scholar
  15. 15.
    Hugot, J. P., Chamaillard, M., Zouali, H., et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411:599–603, 2001.CrossRefPubMedGoogle Scholar
  16. 16.
    Ogura, Y., Bonen, D. K., Inohara, N., et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411:603–606, 2001.CrossRefPubMedGoogle Scholar
  17. 17.
    Abreu, M. T., Taylor, K. D., Lin, Y. C., et al. Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn’s disease. Gastroenterology 123:679–688, 2002.CrossRefPubMedGoogle Scholar
  18. 18.
    Helio, T., Halme, L., Lappalainen, M., et al. CARD15/NOD2 gene variants are associated with familially occurring and complicated forms of Crohn’s disease. Gut 52:558–562, 2003.CrossRefPubMedGoogle Scholar
  19. 19.
    Louis, E., Michel, V., Hugot, J. P., et al. Early development of strictur-ing or penetrating pattern in Crohn’s disease is influenced by disease location, number of flares, and smoking but not by NOD2/CARD15 genotype. Gut 52:552–557, 2003.CrossRefPubMedGoogle Scholar
  20. 20.
    Cardon, L. R. and Bell, J. I. Association study designs for complex diseases. Nat. Rev. Genet. 2:91–99, 2001.CrossRefPubMedGoogle Scholar
  21. 21.
    Couzin, J. Human genome. HapMap launched with pledges of $100 million. Science 298:941–942, 2002.CrossRefPubMedGoogle Scholar
  22. 22.
    Korstanje, R. and Paigen, B. From QTL to gene: the harvest begins. Nat. Genet. 31:235–236, 2002.CrossRefPubMedGoogle Scholar
  23. 23.
    Cutting, G. R., Kasch, L. M., Rosenstein, B. J., et al. A cluster of cystic fibrosis mutations in the first nucleotide-binding fold of the cystic fibrosis conductance regulator protein. Nature 346:366–369, 1990.CrossRefPubMedGoogle Scholar
  24. 24.
    Highsmith, W. E., Jr., Burch, L. H., Zhou, Z., et al. Identification of a splice site mutation (2789 + 5 G < A) associated with small amounts of normal CFTR mRNA and mild cystic fibrosis. Hum. Mutat. 9:332–338, 1997.CrossRefPubMedGoogle Scholar
  25. 25.
    Rootwelt, H., Berger, R., Gray, G., et al. Novel splice, missense, and nonsense mutations in the fumarylacetoacetase gene causing tyrosinemia type 1. Am. J. Hum. Genet. 55:653–658, 1994.PubMedGoogle Scholar
  26. 26.
    Vohl, M. C., Couture, P., Moorjani, S., et al. Rapid restriction fragment analysis for screening four point mutations of the low-density lipoprotein receptor gene in French Canadians. Hum. Mutat. 6:243–246, 1995.CrossRefPubMedGoogle Scholar
  27. 27.
    Eiken, H. G., Odland, E., Boman, H., Skjelkvale, L., Engebretsen, L. F., and Apold, J. Application of natural and amplification created restriction sites for the diagnosis of PKU mutations. Nucleic Acids Res. 19:1427–1430, 1991.CrossRefPubMedGoogle Scholar
  28. 28.
    Friedman, K. J., Highsmith, W. E., Jr., and Silverman, L. M. Detecting multiple cystic fibrosis mutations by polymerase chain reaction-mediated site-directed mutagenesis. Clin. Chem. 37:753–755, 1991.PubMedGoogle Scholar
  29. 29.
    Gasparini, P., Bonizzato, A., Dognini, M., and Pignatti, P. F. Restriction site generating-polymerase chain reaction (RG-PCR) for the probeless detection of hidden genetic variation: application to the study of some common cystic fibrosis mutations. Mol. Cell Probes 6:1–7, 1992.CrossRefPubMedGoogle Scholar
  30. 30.
    Haliassos, A., Chomel, J. C., Tesson, L., et al. Modification of enzy-matically amplified DNA for the detection of point mutations. Nucleic Acids Res. 17:3606, 1989.CrossRefPubMedGoogle Scholar
  31. 31.
    Lindeman, R., Hu, S. P., Volpato, F., and Trent, R. J. Polymerase chain reaction (PCR) mutagenesis enabling rapid non-radioactive detection of common beta-thalassaemia mutations in Mediterraneans. B r. J. Haematol. 78:100–104, 1991.CrossRefGoogle Scholar
  32. 32.
    Newton, C. R., Graham, A., Heptinstall, L. E., et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 17:2503–2516, 1989.CrossRefPubMedGoogle Scholar
  33. 33.
    Sarkar, G., Cassady, J., Bottema, C. D., and Sommer, S. S. Characterization of polymerase chain reaction amplification of specific alleles. Anal. Biochem. 186:64–68, 1990.CrossRefPubMedGoogle Scholar
  34. 34.
    Wu, D. Y., Ugozzoli, L., Pal, B. K., and Wallace, R. B. Allele-specific enzymatic amplification of beta-globin genomic DNA for diagnosis of sickle cell anemia. Proc. Natl. Acad. Sci. USA 86:2757–2760, 1989.CrossRefPubMedGoogle Scholar
  35. 35.
    Sommer, S. S., Groszbach, A. R. and Bottema, C. D. PCR amplification of specific alleles (PASA) is a general method for rapidly detecting known single-base changes. Biotechniques 12:82–87, 1992.PubMedGoogle Scholar
  36. 36.
    Ekman, G. C., Billingsly, R., and Hessner, M. J. Rh genotyping: avoiding false-negative and false-positive results among individuals of African ancestry. Am. J. Hematol. 69:34–40, 2002.CrossRefPubMedGoogle Scholar
  37. 37.
    Ekman, G. C., and Hessner, M. J. Screening of six racial groups for the intron 5 G?A 3' splice acceptor mutation responsible for the polynesian kidd (a-b-) phenotype: the null mutation is not always associated with the JKB allele. Transfusion 40:888–889, 2000.CrossRefPubMedGoogle Scholar
  38. 38.
    Hessner, M. J., Luhm, R. A., Pearson, S. L., Endean, D. J., Friedman, K. D., and Montgomery, R. R. Prevalence of prothrom-bin G20210A, factor V G1691A (Leiden), and methylenetetrahy-drofolate reductase (MTHFR) C677T in seven different populations determined by multiplex allele-specific PCR. Thromb. Haemost. 81:733–738, 1999.PubMedGoogle Scholar
  39. 39.
    Hessner, M. J., McFarland, J. G., and Endean, D. J. Genotyping of KEL1 and KEL2 of the human Kell blood group system by the polymerase chain reaction with sequence-specific primers. Transfusion 36:495–499, 1996.CrossRefPubMedGoogle Scholar
  40. 40.
    Hessner, M. J., Pircon, R. A., Johnson, S. T., and Luhm, R. A. Prenatal genotyping of Jk(a) and Jk(b) of the human Kidd blood group system by allele-specific polymerase chain reaction. Prenat. Diagn. 18:1225–1231, 1998.CrossRefPubMedGoogle Scholar
  41. 41.
    Hessner, M. J., Pircon, R. A., Johnson, S. T., and Luhm, R. A. Prenatal genotyping of the Duffy blood group system by allele-specific polymerase chain reaction. Prenat. Diagn. 19:41–45, 1999.CrossRefPubMedGoogle Scholar
  42. 42.
    Hessner, M. J., Shivaram, S. M., Dinauer, D. M., Curtis, B. R., Endean, D. J., and Aster, R. H. Neutrophil antigen (FcgammaRIIIB) SH gene frequencies in six racial groups. Blood 93:1115–1116, 1999.PubMedGoogle Scholar
  43. 43.
    Skogen, B., Bellissimo, D. B., Hessner, M. J., et al. Rapid determination of platelet alloantigen genotypes by polymerase chain reaction using allele-specific primers. Transfusion 34:955–960, 1994.CrossRefPubMedGoogle Scholar
  44. 44.
    Hessner, M. J., Budish, M. A., and Friedman, K. D. Genotyping of factor V G1691A (Leiden) without the use of PCR by invasive cleavage of oligonucleotide probes. Clin. Chem. 46:1051–1056, 2000.PubMedGoogle Scholar
  45. 45.
    Hessner, M. J., Dinauer, D. M., Kwiatkowski, R., Neri, B., and Raife, T. J. Age-dependent prevalence of vascular disease-associated polymorphisms among 2689 volunteer blood donors. Clin. Chem. 47:1879–1884, 2001.PubMedGoogle Scholar
  46. 46.
    Hessner, M. J., Dinauer, D. M., Luhm, R. A., Endres, J. L., Montgomery, R. R., and Friedman, K. D. Contribution of the glyco-protein Ia 807TT, methylene tetrahydrofolate reductase 677TT and prothrombin 20210GA genotypes to prothrombotic risk among factor V 1691GA (Leiden) carriers. Br. J. Haematol. 106:237–239, 1999.CrossRefPubMedGoogle Scholar
  47. 47.
    Hessner, M. J., and Luhm, R. A. The C536T transition in the tissue factor pathway inhibitor (TFPI) gene does not contribute to risk of venous thrombosis among carriers of factor V Leiden. Thromb. Haemost. 84:724–725, 2000.PubMedGoogle Scholar
  48. 48.
    Raife, T. J., Lentz, S. R., Atkinson, B. S., Vesely, S. K., and Hessner, M. J. Factor V Leiden: a genetic risk factor for thrombotic microan-giopathy in patients with normal von Willebrand factor-cleaving protease activity. Blood 99:437–442, 2002.CrossRefPubMedGoogle Scholar
  49. 49.
    Aldener, A. and Olerup, O. Characterization of a novel DQB1 (DQB1*0609) allele by PCR amplification with sequence-specific primers (PCR-SSP) and nucleotide sequencing. Tissue Antigens 42:536–538, 1993.CrossRefPubMedGoogle Scholar
  50. 50.
    Aldener-Cannava, A. and Olerup, O. HLA-DOB1 “low-resolution” typing by PCR amplification with sequence-specific primers (PCR-SSP). Eur. J. Immunogenet. 21:447–55, 1994.CrossRefPubMedGoogle Scholar
  51. 51.
    Olerup, O. HLA-B27 typing by a group-specific PCR amplification. Tissue Antigens 43:253–256, 1994.CrossRefPubMedGoogle Scholar
  52. 52.
    Olerup, O., Aldener, A., and Fogdell, A. HLA-DQB1 and -DQA1 typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours. Tissue Antigens 41:119–134, 1993.CrossRefPubMedGoogle Scholar
  53. 53.
    Olerup, O. and Zetterguist, H. DR “low-resolution” PCR-SSP typing—a correction and an up-date. Tissue Antigens 41:55–6, 1993.CrossRefPubMedGoogle Scholar
  54. 54.
    Olerup, O. and Zetterquist, H. HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens 39:225–235, 1992.CrossRefPubMedGoogle Scholar
  55. 55.
    Wilson, R. C., Wei, J. Q., Cheng, K. C., Mercado, A. B., and New, M. I. Rapid deoxyribonucleic acid analysis by allele-specific poly-merase chain reaction for detection of mutations in the steroid 21-hydroxylase gene. J. Clin. Endocrinol. Metab. 80:1635–1640, 1995.CrossRefPubMedGoogle Scholar
  56. 56.
    Boldt, B., Skogen, B., Agostini, T., Roscetti, D., and McFarland, J. One-tube method for complete HPA-1 genotyping by PCR using sequence-specific primers. Br. J. Haematol. 99:968–973, 1997.CrossRefPubMedGoogle Scholar
  57. 57.
    Dinauer, D. M., Luhm, R. A., Uzgiris, A. J., Eckels, D. D., and Hessner, M. J. Sequence-based typing of HLA class II DQB1. Tissue Antigens 55:364–368, 2000.CrossRefPubMedGoogle Scholar
  58. 58.
    Lyamichev, V., Brow, M. A., and Dahlberg, J. E. Structure-specific endonucleolytic cleavage of nucleic acids by eubacterial DNA poly-merases. Science 260:778–783.Google Scholar
  59. 59.
    Lyamichev, V., Brow, M. A., Varvel, V. E., and Dahlberg, J. E. Comparison of the 5′ nuclease activities of taq DNA polymerase and its isolated nuclease domain. Proc. Natl. Acad. Sci. USA 96:6143–6148, 1999.CrossRefPubMedGoogle Scholar
  60. 60.
    Lyamichev, V., Mast, A., Hall, J., et al. Polymorphism identification and quantitative detection of genomic DNA by invasive clevage of oligonucleotide probes. Nat. Biotechnol. 17:292–296, 1999.CrossRefPubMedGoogle Scholar
  61. 61.
    Lyamichev, V., Mast, A. L., Hall, J. G., et al. Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes. Nat. Biotechnol. 17:292–296, 1999.CrossRefPubMedGoogle Scholar
  62. 62.
    Lyamichev, V. and Neri, B. Invader assay for SNP genotyping. Methods Mol. Biol. 212:229–240, 2003.PubMedGoogle Scholar
  63. 63.
    Hall, J. G., Eis, P. S., Law, S. M., et al. Sensitive detection of DNA polymorphisms by the serial invasive signal amplification reaction. Proc. Natl. Acad. Sci. USA 97:8272–8277, 2000.CrossRefPubMedGoogle Scholar
  64. 64.
    Kaiser, M. W., Lyamicheva, N., Ma, W., et al. A comparison of eubacterial and archaeal structure-specific 5′-exonucleases. J. Biol. Chem. 274:21387–21394, 1999.CrossRefPubMedGoogle Scholar
  65. 65.
    Lyamichev, V. I., Kaiser, M. W., Lyamicheva, N. E., et al. Experimental and theoretical analysis of the invasive signal amplification reaction. Biochemistry 39:9523–9532, 2000.CrossRefPubMedGoogle Scholar
  66. 66.
    Dawson, E., Chen, Y., Hunt, S., et al. A SNP resource for human chromosome 22: extracting dense clusters of SNPs from the genomic sequence. Genome Res. 11:170–178, 2001.CrossRefPubMedGoogle Scholar
  67. 67.
    Mein, C. A., Barratt, B. J., Dunn, M. G., et al. Evaluation of single nucleotide polymorphism typing with invader on PCR amplicons and its automation. Genome Res. 10:330–343, 2000.CrossRefPubMedGoogle Scholar
  68. 68.
    Nagano, M., Yamashita, S., Hirano, K., et al. Two novel missense mutations in the CETP gene in Japanese hyperalphalipoproteinemic subjects: high-throughput assay by Invader assay. J. Lipid Res. 43:1011–1018, 2002.CrossRefPubMedGoogle Scholar
  69. 69.
    Nevilie, M., Selzer, R., Aizenstein, B., et al. Characterization of cytochrome P450 2D6 alleles using the Invader system. Biotechniques (Suppl.) 34–38 and 40–43, 2002.Google Scholar
  70. 70.
    Ohnishi, Y., Tanaka, T., Ozaki, K., Yamada, R., Suzuki, H., and Nakamura, Y. A high-throughput SNP typing system for genome-wide association studies. J. Hum. Genet. 46:471–477, 2001.CrossRefPubMedGoogle Scholar
  71. 71.
    Olivier, M., Chuang, L. M., Chang, M. S., et al. High-throughput genotyping of single nucleotide polymorphisms using new biplex invader technology. Nucleic Acids Res. 30, e53, 2002.CrossRefPubMedGoogle Scholar
  72. 72.
    Hessner, M. J., Friedman, K. D., Voelkerding, K. V., et al. Multisite study for genotyping of the factor II (prothrombin) G20210A mutation by the invader assay. Clin. Chem. 47:2048–2050, 2001.PubMedGoogle Scholar
  73. 73.
    Ledford, M., Friedman, K. D., Hessner, M. J., Moehlenkamp, C., Williams, T. M., and Larson, R. S. A multi-site study for detection of the factor V (Leiden) mutation from genomic DNA using a homogeneous invader microtiter plate fluorescence resonance energy transfer (FRET) assay. J. Mol. Diagn. 2:97–104, 2000.PubMedGoogle Scholar
  74. 74.
    Ryan, D., Nuccie, B., and Arvan, D. Non-PCR-dependent detection of the factor V Leiden mutation from genomic DNA using a homogeneous invader microtiter plate assay. Mol. Diagn. 4:135–144, 1999.CrossRefPubMedGoogle Scholar
  75. 75.
    Tsongalis, G. J., Rainey, B. J., and Hodges, K. A. READIT: a novel technology used in the interrogation of nucleic acid sequences for single-nucleotide polymorphisms. Exp. Mol. Pathol. 71:222–225, 2001.CrossRefGoogle Scholar
  76. 76.
    Bean, P., Ryan, A., and Tsongalis, G. J. Point mutation detection technology for the new-century laboratory. Am. Clin. Lab. 20:13–16, 2001.Google Scholar
  77. 77.
    Iovannisci, D. M. The READIT trade mark Assay as a method for genotyping NAT1*10 polymorphisms. Genet. Test. 6:245–253, 2002.CrossRefPubMedGoogle Scholar
  78. 78.
    Rhodes, R. B., Lewis, K., Shultz, J., et al. Analysis of the factor V Leiden mutation using the READIT Assay. Mol. Diagn. 6:55–61, 2001.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Ulrich Broeckel
    • 1
  • Martin J. Hessner
    • 1
  1. 1.Department of Medicine and Human and Molecular Genetics CenterMedical College of WisconsinMilwaukee

Personalised recommendations