Skip to main content

The Zebrafish As an Integrative Physiology Model

  • Chapter
  • 572 Accesses

Abstract

The complexity of nervous system structure and function presents considerable challenges for understanding the output of the nervous system (behavior) in terms of the molecular and cellular properties of component parts (neurons). For integrated studies of nervous system physiology, a model system needs to meet several requirements. First, the model system should have a well-defined anatomy that ideally is simple and minimally complex. Furthermore, the ability to identify neurons of interest for physiological analysis and perturbation of known cellular processes augments the power of the system. Finally, the system should allow elimination of the unique functional contribution of specific neurons either by targeted ablation methods or genetic and molecular perturbations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mullins, M.C. and C. Nüsslein-Volhard (dy1993) Mutational approaches to studying embryonic pattern formation in the zebrafish. Curr. Op. Gen. Devel. 3:648–654.

    CAS  Google Scholar 

  2. Kuwada, J.Y. and R.R. Bernhardt (dy1990) Axonal outgrowth by identified neurons in the spinal cord of zebrafish embryos. Exp. Neurol. 109(1):29–34.

    PubMed  CAS  Google Scholar 

  3. Bernhardt, R.R., A.B. Chitnis, L. Lindamer and J.Y. Kuwada. (dy1990) Identification of spinal neurons in the embryonic and larval zebrafish. J. Comp. Neurol. 302(3):603–616.

    PubMed  CAS  Google Scholar 

  4. Kimmel, C.B. (1993) Patterning the brain of the zebrafish embryo. Ann. Rev. Neurosci. 16: 707–732.

    PubMed  CAS  Google Scholar 

  5. Inoue, A., M. Takahashi, K. Hatta, Y. Hotta and H. Okamoto. (dy1994) Developmental regulation of islet-1 mRNA expression during neuronal differentiation in embryonic zebrafish. Devel. Dyn. 199:1–11.

    CAS  Google Scholar 

  6. Martin, S.C., G. Heinrich and J.H. Sandell (dy1998) Sequence and expression of glutamic acid decarboxylase isoforms in the developing zebrafish. J. Comp. Neurol. 396(2):253–66.

    PubMed  CAS  Google Scholar 

  7. Nguyen, V.H., J. Trout, S.A. Connors, P. Andermann and E. Weinberg. (dy2000) Dorsal and intermediate neuronal cell types of the spinal cord are established by a BMP signaling pathway. Devel. 127(6):1209–1220.

    CAS  Google Scholar 

  8. Hivert, B., Z. Liu, C.Y. Chuang, P. Doherty and V. Sundaresan. (dy2002) Robo1 and Robo2 are homophilic binding molecules that promote axonal growth. Mol. Cell. Neurosci. 21(4):534–545.

    PubMed  CAS  Google Scholar 

  9. Kurita, R., H. Sagara, Y. Aoki, B.A. Link, K. Arai and S. Watanabe. (dy2003) Suppression of lens growth by alphaA-crystallin promoter-driven expression of diptheria toxin results in disruption of retinal cell organization in zebrafish. Devel. Biol. 255(1):113–127.

    CAS  Google Scholar 

  10. Legendre, P.A. (1998) A reluctant gating model of glycine receptor channels determines the time course of inhibitory miniature synaptic events in zebrafish hindbrain neurons. J. Neurosci. 18:2856–2870.

    PubMed  CAS  Google Scholar 

  11. Ribera, A.B. and C. Nüsslein-Volhard (dy1998) Zebrafish touch-insensitive mutants reveal an essential role for the developmental regulation of sodium current. J. Neurosci. 18(22):9181–9191.

    PubMed  CAS  Google Scholar 

  12. Drapeau, P., D.W. Ali, R.R. Buss and L. Saint-Amant. (dy1999) In vivo recording from identifiable neurons of the locomotor network in the developing zebrafish. J. Neurosci. Meth. 88:1–13.

    CAS  Google Scholar 

  13. Saint-Amant, L. and P. Drapeau (dy2000) Motoneuron activity patterns related to the earliest behavior of the zebrafish embryo. J. Neurosci. 20(11):3964–3972.

    PubMed  CAS  Google Scholar 

  14. Saint-Amant, L. and P. Drapeau (dy2001) Synchronization of an embryonic network of identified spinal interneurons solely by electric coupling. Neuron 31:1035–1046.

    PubMed  CAS  Google Scholar 

  15. Gnuegge, L., S. Schmid and S.C.F. Neuhauss (dy2001) Analysis of the activity-deprived zebrafish mutant macho reveals an essential requirement of neuronal activity for the development of a fine-grained visuotopic map. J. Neurosci. 21(10):3542–3548.

    PubMed  CAS  Google Scholar 

  16. Spitzer, N.C. and J.E. Lamborghini (dy1976) The development of the action potential mechanism of amphibian neurons isolated in culture. Proc. Natl. Acad. Sci. 73(5):1641–1645.

    PubMed  CAS  Google Scholar 

  17. Mullins, M.C. and C. Nüsslein-Volhard (dy1993) Mutational approaches to studying embryonic pattern formation in the zebrafish. Curr. Op. Genet. Devel. 3:648–654.

    CAS  Google Scholar 

  18. Currie, P.D. (1996) Zebrafish genetics:mutant cornucopia. Curr. Biol. 6(12):1548–1552.

    PubMed  CAS  Google Scholar 

  19. Haffter, P., M. Granato, M. Brand, et al. (dy1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Devel. 123:1–36.

    CAS  Google Scholar 

  20. Golling, G., A. Amsterdam, Z. Sun, et al. (dy2002) Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nature Genet. 31:135–140.

    PubMed  CAS  Google Scholar 

  21. Driever, W., L. Solnica-Krezel, A.F. Schier, et al. (dy1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Devel. 123:37–46.

    CAS  Google Scholar 

  22. Linares, A.E. (2002) Characterization of voltage-gated sodium channel genes expressed in zebrafish embryos. Ph.D. thesis in Neuroscience. University of Colorado Health Sciences Center: Denver.

    Google Scholar 

  23. Callahan, P. (2003) Building a better lab mouse-The zebrafish. In Wall Street J.

    Google Scholar 

  24. Roush, W. (1997) A Zebrafish Genome Project? Science 275:923.

    PubMed  CAS  Google Scholar 

  25. Amemiya, C.T., T.P. Zhong, G.A. Silverman, M.C. Fishman and L.I. Zon. (dy1999) Zebrafish YAC, BAC and PAC genomic libraries. Methods Cell Biol. 60:235–258.

    PubMed  CAS  Google Scholar 

  26. Lo, J., S. Lee, M. Xu, F, et al. (dy2003) 15000 unique zebrafish EST clusters and their future use in microarray for profiling gene expression patterns during embryogenesis. Genome Res. 13(3):455–466.

    PubMed  Google Scholar 

  27. Endo, A. and T.H. Ingalls (dy1968) Chromosomes of the zebrafish. A model for cytogenetic, embryologic and ecologic study. J. Hered. 59:382–384.

    PubMed  CAS  Google Scholar 

  28. Daga, R.R., G. Thode and A. Amores (dy1996) Chromosome complement C-banding, Ag-NOR and replication banding in the zebrafish Danio rerio. Chrom. Res. 6(1):29–32.

    Google Scholar 

  29. Knapik, E.W., A. Goodman, M. Ekker, et al. (dy1998) A microsatellite genetic linkage map for zebrafish (Danio rerio). Nature Gen. 18(4):338–343.

    CAS  Google Scholar 

  30. Shimoda, N., E.W. Knapik, J. Ziniti, et al. (dy1999) Zebrafish genetic map and 2000 microsatellite markers. Genomics 58(3):219–232.

    PubMed  CAS  Google Scholar 

  31. Barbazuk, W.B., I. Korf, C. Kadavi, et al. (dy2000) The syntenic relationship of the zebrafish and human genomes. Gen. Res. 10:1351–1358.

    CAS  Google Scholar 

  32. Postlethwait, J., M. Ekker, K. Frazer, M. Mullins and M. Westerfield. (dy2000) To orthologue or not to orthologue, that is the question. Zebrafish Sci. Monitor 7(1).

    Google Scholar 

  33. Svoboda, K.R., A.E. Linares and A.B. Ribera (dy2001) Activity regulates programmed cell death of zebrafish Rohon-Beard neurons. Devel. 128:3511–3520.

    CAS  Google Scholar 

  34. Svoboda, K.R., S. Vijayaraghavan and R.L. Tanguay (dy2002) Nicotinic receptors mediate changes in spinal motoneuron development and axonal pathfinding in embryonic zebrafish exposed to nicotine. J. Neurosci. 22(24):10731–10741.

    PubMed  CAS  Google Scholar 

  35. Liu, Y.-W. and W.-K. Chan (dy2002) Thyroid hormones are important for embryonic to larval transitory phase in zebrafish. Diff. 70:36–45.

    CAS  Google Scholar 

  36. Wittbrodt, J., A. Meyer and M. Schartl (dy1998) More genes in fish? Bioessays 20:511–515.

    Google Scholar 

  37. Holland, P.W. and N.A. Williams (dy1990) Conservation of engrailed-like homeobox sequences during vertebrate evolution. FEBS Letts. 277(1):250–252.

    CAS  Google Scholar 

  38. Ekker, S.C., A.R. Ungar, P. Greenstein, et al. (dy1995) Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Curr. Biol. 5(8):944–955.

    PubMed  CAS  Google Scholar 

  39. Stock, D.W., D.L. Ellies, Z. Zhao, M. Ekker, F.H. Ruddle and K.M. Weiss. (dy1996) The evolution of the vertebrate Dlx family. Proc. Natl. Acad. Sci. 93:10858–10863.

    PubMed  CAS  Google Scholar 

  40. Amores, A., Force, Y.-L. Yan, L. (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711–1714.

    PubMed  CAS  Google Scholar 

  41. Myer, A. and E. Malaga-Trillo (dy1999) Vertebrate genomics: more fishy tales about Hox genes. Curr. Biol. 9:R210–R213.

    Google Scholar 

  42. Jaillon, O., J.-M. Aury, F. Brunet, et al. (dy2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957.

    PubMed  Google Scholar 

  43. Ruddle, F.H., J.L. Bartels, K.L. Bentley, C. Kappen, M.T. Murtha and J.W. Pendleton. (dy1994) Evolution of Hox genes. Annu. Rev. Genet. 28:423–442.

    PubMed  CAS  Google Scholar 

  44. Skrabanek, L. and K.H. Wolfe (dy1998) Eukaryote genome duplication-where’s the evidence? Curr. Op. Gen. Devl. 8:694–700.

    CAS  Google Scholar 

  45. Hughes, M.K. and A.L. Hughes (dy1993) Evolution of duplicate genes in a tetraploid animal, Xenopus laevis. Mol. Biol. Evol. 10:1360–1369.

    PubMed  CAS  Google Scholar 

  46. Robinson-Rechavi, M., O. Marchand, H. Escriva, P.-L. Bardet, S. Hughes and V. Laudet. (dy2001) Euteleost fish genomes are characterized by expansion of gene families. Genome Res. 11:781–788.

    PubMed  CAS  Google Scholar 

  47. Van de Peer, Y., J.S. Taylor, J. Joseph and A. Myer. (dy2002) Wanda:a database of duplicated fish genes. Nuc. Acids Res. 30(1):109–112.

    Google Scholar 

  48. Saint-Amant, L. and P. Drapeau (dy1998) Time course of the development of motor behaviors in the zebrafish embryo. J. Neurobiol. 37:622–632.

    PubMed  CAS  Google Scholar 

  49. Bate, M. (1999) Development of motor behavior. Curr. Opin. Neurobiol. 9:670–675.

    PubMed  CAS  Google Scholar 

  50. Budick, S.A. and D.M. O’Malley (dy2000) Locomotor repertoire of the larval zebrafish: Swimming, turning and prey capture. J. Exp. Biol. 203:2565–2579.

    PubMed  CAS  Google Scholar 

  51. Drapeau, P., L. Saint-Amant, R.R. Buss, M. Chong, J.R. McDearmid and E. Brustein. (dy2002) Development of the locomotor network in zebrafish. Prog. Neurobiol. 68:85–111.

    PubMed  CAS  Google Scholar 

  52. Lewis, K.E. and J.S. Eisen (dy2003) From cells to circuits:development of the zebrafish spinal cord. Prog. Neurobiol. 69(6):419–449.

    PubMed  CAS  Google Scholar 

  53. Metcalfe, W.K., B. Mendelson and C.B. Kimmel (dy1986) Segmental homologies among reticulospinal neurons in the hindbrain of the zebrafish larva. J. Comp. Neurol. 251:147–159.

    PubMed  CAS  Google Scholar 

  54. Kimmel, C.B. (1982) Reticulospinal and vestibulospinal neurons in the young larva of a teleost fish, Brachydanio rerio. Prog. Brain. Res. 57:1–23.

    PubMed  CAS  Google Scholar 

  55. Kimmel, C.B., K. Hatta and J.S. Eisen (dy1991) Genetic control of primary neuronal development in zebrafish. Devel. Suppl(2):47–57.

    Google Scholar 

  56. Gahtan, E. and D.M. O’Malley (dy2003) Visually guided injection of identified reticulospinal neurons in zebrafish:a survey of spinal arborization patterns. J. Comp. Neurol. 459:186–200.

    PubMed  Google Scholar 

  57. Mendelson, B. (1986) Development of reticulospinal neurons of the zebrafish. I. Time of origin. J. Comp. Neurol. 251:160–171.

    PubMed  CAS  Google Scholar 

  58. Mendelson, B. (1985) Soma position is correlated with time of development in three types of identified reticulospinal neurons. Devel. Biol. 112:489–493.

    CAS  Google Scholar 

  59. Mendelson, B. and C.B. Kimmel (dy1986) Identified vertebrate neurons that differ in axonal projection develop together. Devl. Biol. 118(1):309–313.

    CAS  Google Scholar 

  60. Liu, K. and J.R. Fetcho (dy1999) Laser ablation reveals functional relationships of segmental hindbrain neurons in zebrafish. Neuron 23:325–335.

    PubMed  CAS  Google Scholar 

  61. Myers, P.Z., J.S. Eisen and M. Westerfield (dy1986) Development and axonal outgrowth of identified motoneurons in the zebrafish. J. Neurosci. 6(8):2278–2289.

    PubMed  CAS  Google Scholar 

  62. Hale, M.E., D.A. Ritter and J.R. Fetcho (dy2001) A confocal study of spinal interneurons in living larval zebrafish. J. Comp. Neurol. 437:1–16.

    PubMed  CAS  Google Scholar 

  63. Eisen, J.S. (1991) Motoneuronal development in the embryonic zebrafish. Devel. Suppl(2): 141–147.

    Google Scholar 

  64. Eisen, J.S., S.H. Pike and B. Romancier (dy1990) An identified motoneuron with variable fates in embryonic zebrafish. J. Neurosci. 10(1):34–43.

    PubMed  CAS  Google Scholar 

  65. Bernhardt, R.R. (1999) Cellular and Molecular bases of axonal pathfinding during embryogenesis of the fish central nervous system. J. Neurobiol. 38:137–160.

    PubMed  CAS  Google Scholar 

  66. Granato, M., F.J. van Eeden, U. Schach, T., et al. (dy1996) Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Devel. 123:399–413.

    CAS  Google Scholar 

  67. Beattie, C.E. (2000) Control of motor axon guidance in the zebrafish embryo. Brain Res. Bull. 53(5):489–500.

    PubMed  CAS  Google Scholar 

  68. Zeller, J. and M. Granato (dy1999) The zebrafish diwanka gene controls an early step of motor growth cone migration. Devel. 126:3461–3472.

    CAS  Google Scholar 

  69. Zhang, J. and M. Granato (dy2000) The zebrafish unplugged gene controls motor axon pathfinding selection. Devel. 127:2099–2111.

    CAS  Google Scholar 

  70. Zhang, J., S. Malayaman, C. Davis and M. Granato. (dy2001) A dual role for the zebrafish unplugged gene in motor axon pathfinding and pharyngeal development. Devel. Biol. 240:560–573.

    CAS  Google Scholar 

  71. McWhorter, M.L., U.R. Monani, A.H. Burghes and C.E. Beattie. (dy2003) Knockdown of the survival motor neuron (Smn) protein in zebrafish causes defects in motor axon outgrowth and patterning. J. Cell Biol. 162(5): 919–931.

    PubMed  CAS  Google Scholar 

  72. Roberts, D.F., J. Chavez and S.D.M. Court (dy1970) The genetic component in child mortality. Arch. Dis. Child 45:33–38.

    PubMed  CAS  Google Scholar 

  73. Crawford, T.O. and C.A. Pardo (dy1996) The neurobiology of childhood spinal muscular atrophy. Neurobiol. 3:97–110.

    CAS  Google Scholar 

  74. Melki, J. (1997) Spinal muscular atrophy. Curr. Opin. Neurol. 10(381–385).

    PubMed  CAS  Google Scholar 

  75. Terns, M.P. and R.M. Terns (dy2001) Macromolecular complexes:SMN-the master assembler. Curr. Biol. 11:R862–R864.

    PubMed  CAS  Google Scholar 

  76. Rossoll, W., A.K. Kroning, U.M. Ohndorf, C. Steegborn, S. Jablonka and M. Sendtner. (dy2002) Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q:a role for Smn in RNA processing in motor axons? Hum. Mol. Genet. 11:93–105.

    PubMed  CAS  Google Scholar 

  77. Buss, R.R., C.W. Bourque and P. Drapeau (dy2003) Membrane properties related to the firing behavior of zebrafish motoneurons. J. Neurophysiol. 89:657–664.

    PubMed  CAS  Google Scholar 

  78. Grinnell, A.D. (1995) Dynamics of nerve-muscle interaction in developing and mature neuromuscular junctions. Physiol. Rev. 75(4):789–834.

    PubMed  CAS  Google Scholar 

  79. Cohen-Cory, S. (2002) The developing synapse:construction and modulation of synaptic structures and circuits. Science 298(5594):770–776.

    PubMed  CAS  Google Scholar 

  80. Hoch, W. (2003) Molecular dissection of neuromuscular junction formation. Trends Neurosci. 26(7):67–77.

    Google Scholar 

  81. Chakkalakal, J.V. and B.J. Jasmin (dy2003) Localizing synaptic mRNAs at the neuromuscular junction:it takes more than transcription. Bioess. 25(1):25–31.

    Google Scholar 

  82. Westerfield, M., D.W. Liu, C.B. Kimmel and C. Walker. (dy1990) Pathfinding and synapse formation in a zebrafish mutant lacking functional acetylcholine receptors. Neuron 4(6):867–874.

    PubMed  CAS  Google Scholar 

  83. Sepich, D.S., J. Wegner, S. O’Shea and M. Westerfield. (dy1998) An altered intron inhibits synthesis of the acetylcholine receptor alpha subunit in the paralyzed zebrafish mutant nic1. Genetics 148: 361–372.

    PubMed  CAS  Google Scholar 

  84. Ono, F., S. Higashijima, A. Shcherbatko, J.R. Fetcho and P. Brehm. (dy2001) Paralytic zebrafish lacking acetylcholine receptors fail to localize rapsyn clusters to the synapse. J. Neurosci. 21(15): 5439–5448.

    PubMed  CAS  Google Scholar 

  85. Sepich, D.S., R.K. Ho and M. Westerfield (dy1994) Autonomous expression of the nic1 acetylcholine receptor mutation in zebrafish muscle cells. Devl. Biol. 161:84–90.

    Google Scholar 

  86. Brent, L.J. and P. Drapeau (dy2002) Targeted ‘knockdown’ of channel expression in vivo with an antisense morpholino oligonucleotide. Neurosci. 114(2):275–278.

    CAS  Google Scholar 

  87. Burden, S.J., R.L. DePalma and G.S. Gottesman (dy1983) Crosslinking of proteins in acetylcholine receptor-rich membranes:association between the beta-subunit and the 43 kd subsynaptic protein. Cell 35:687–692.

    PubMed  CAS  Google Scholar 

  88. Froehner, S.C., C.W. Luetje, P.B. Scotland and J. Patrick. (dy1990) The postsynaptic 43K protein clusters muscle nicotinic acetylcholine receptors in Xenopus oocytes. Neuron 5:403–410.

    PubMed  CAS  Google Scholar 

  89. Gautam, M., P.G. Noakes, J. Mudd, et al. (dy1995) Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice. Nature 377:232–236.

    PubMed  CAS  Google Scholar 

  90. Ono, F., A. Shcherbatko, S. Higashijima, G. Mandel and P. Brehm. (dy2002) The zebrafish motility mutant twitch once reveals new roles for rapsyn in synaptic function. J. Neurosci. 22(15):6491–6498.

    PubMed  CAS  Google Scholar 

  91. Grunwald, D.J., C.B. Kimmel, M. Westerfield, C. Walker and G. Streisinger. (dy1988) A neural degeneration mutation that spares primary neurons in the zebrafish. Devl. Biol. 126(1):115–128.

    CAS  Google Scholar 

  92. O’Malley, D.M., Y.-H. Kao and J.R. Fetcho (dy1996) Imaging the functional organization of zebrafish hindbrain segments during escape behaviors. Neuron 17:1145–1155.

    PubMed  CAS  Google Scholar 

  93. Kimmel, C.B., R.C. Eaton and S.L. Powell (dy1980) Decreased fast-start performance of zebrafish larvae lacking Mauthner neurons. J. Comp. Physiol. 140:343–350.

    Google Scholar 

  94. Gahtan, E., N. Sankrithi, J.B. Campos and D.M. O’Malley. (dy2002) Evidence for a widespread brain stem escape network in larval zebrafish. J. Neurophysiol. 87:608–614.

    PubMed  Google Scholar 

  95. Borla, M.A., B. Palecek, S. Budick and D.M. O’Malley. (dy2002) Prey capture by larval zebrafish: Evidence for fine axial motor control. Brain Behav. Evol. 60:207–229.

    PubMed  Google Scholar 

  96. Ritter, D.A., D.H. Bhatt and J.R. Fetcho (dy2001) In vivo imaging of zebrafish reveals differences in the spinal networks for escape and swimming movements. J. Neurosci. 21(22):8956–8965.

    PubMed  CAS  Google Scholar 

  97. Moorman, S.J. (2001) Development of sensory systems in zebrafish (Danio rerio). ILAR 42(4): 292–298.

    CAS  Google Scholar 

  98. Bryant, J., R.J. Goodyear and G.P. Richarson (dy2002) Sensory organ development in the inner ear: molecular and cellular mechanisms. Brit. Med. Bull. 63:39–57.

    PubMed  CAS  Google Scholar 

  99. Bever, M.M. and D.M. Fekete (dy2002) Atlas of the developing inner ear in zebrafish. Devl. Dyn. 223(4):536–543.

    Google Scholar 

  100. Whitfield, T.T., B.B. Riley, M.Y. Chiang and B. Phillips. (dy2002) Development of the zebrafish inner ear. Devl. Dyn. 223(4):427–458.

    Google Scholar 

  101. Whitfield, T. (2002) Zebrafish as a model for hearing and deafness. J. Neurobiol. 53: 157–171.

    PubMed  Google Scholar 

  102. Metcalfe, W.K., C.B. Kimmel and E. Schabtach (dy1985) Anatomy of the posterior lateral line system in young larvae of the zebrafish. J. Comp. Neurol. 233(3):377–389.

    PubMed  CAS  Google Scholar 

  103. Trevarrow, B., D.L. Marks and C.B. Kimmel (dy1990) Organization of hindbrain segments in the zebrafish embryo. Neuron 4(5):669–679.

    PubMed  CAS  Google Scholar 

  104. Kornblum, H.I., J.T. Corwin and B. Trevarrow (dy1990) Selective labeling of sensory hair cells and neurons in auditory, vestibular and lateral line systems by a monoclonal antibody. J. Comp. Neurol. 301: 162–170.

    PubMed  CAS  Google Scholar 

  105. Gompel, N., N. Cubedo, C. Thisse, B. Thisse, C. Dambly-Chaudiere and A. Ghysen. (dy2001) Pattern formation in the lateral line of zebrafish. Mech. Devl. 105(1–2):69–77.

    CAS  Google Scholar 

  106. Haddon, C. and J. Lewis (dy1996) Early ear development in the embryo of the zebrafish, Danio rerio. J. Comp. Neurol. 365(1):113–128.

    PubMed  CAS  Google Scholar 

  107. Gompel, N., C. Dambly-Chaudiere and A. Ghysen (dy2001) Neuronal differences prefigure somatotopy in the zebrafish lateral line. Devl. 128:387–393.

    CAS  Google Scholar 

  108. Riley, B.B. and J. Moorman (dy2000) Development of utricular otoliths, but not saccular otoliths, is necessary for vestibular function and survival in zebrafish. J. Neurobiol. 43:329–337.

    PubMed  CAS  Google Scholar 

  109. Malicki, J., A.F. Schier, L. Solnica-Krezel S, et al. (dy1996) Mutations affecting development of the zebrafish ear. Development 123:275–83.

    PubMed  CAS  Google Scholar 

  110. Whitfield, T.T., M. Granato, F.J.M. van Eeden., et al. (dy1996) Mutations affecting development of the inner ear and lateral line. Development 123:241–54.

    PubMed  CAS  Google Scholar 

  111. Price, E.R. and D.E. Fisher (dy2001) Sensorineural deafness and pigmentation genes:melanocytes and the Mitf transcriptional network. Neuron 30:15–18.

    PubMed  CAS  Google Scholar 

  112. Nicolson, T., A. Rusch, R.W. Friedrich, M. Granato, J.P. Ruppersberg and C. Nüsslein-Volhard. (dy1998) Genetic analysis of vertebrate sensory hair cell mechanosensation: the zebrafish circler mutants. Neuron 20:271–283.

    PubMed  CAS  Google Scholar 

  113. Ernest, S., G.J. Rauch, P. Haffter, R. Geisler, C. Petit and T. Nicolson. (dy2000) Mariner is defective in myosin VIIA:a zebrafish model for human hereditary deafness. Hum. Mol. Genet. 9(14):2189–2196.

    PubMed  CAS  Google Scholar 

  114. Sollner, C., G.J. Rauch, J. Sieman, et al. Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells. Nature 428:955–959.

    Google Scholar 

  115. Riley, B.B. and D.J. Grunwald (dy1996) A mutation in zebrafish affecting a localized cellular function required for normal ear development. Devl. Biol. 179:427–435.

    CAS  Google Scholar 

  116. Sidi, S., R.W. Friedrich and T. Nicolson (dy2003) NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 301(5629):96–99.

    PubMed  CAS  Google Scholar 

  117. Easter, S.S. and G.N. Nicola (dy1996) The development of vision in the Zebrafish (Danio rerio). Devel. Biol. 180:646–663.

    CAS  Google Scholar 

  118. Schmitt, E.A. and J.E. Dowling (dy1999) Early retinal development in the zebrafish danio rerio:Light and electron microscopic analyses. J. Comp. Neurol. 404:515–536.

    PubMed  CAS  Google Scholar 

  119. Malicki, J. (1999) Development of the retina. Methods Cell Biol. 59:273–299.

    PubMed  CAS  Google Scholar 

  120. Hu, M. and S.S. Easter (dy1999) Retinal neurogenesis:the formation of the initial central patch of postmitotic cells. Dev Biol 207(2):309–321.

    PubMed  CAS  Google Scholar 

  121. Marc, R.E. and D. Cameron (dy2001) A molecular phenotype atlas of the zebrafish retina. J. Neuorcytol. 30:593–654.

    CAS  Google Scholar 

  122. Vihtelic, T.S. and D.R. Hyde (dy2002) Zebrafish mutagenesis yields eye morphological mutants with retinal and lens defects. Vision Res. 42:535–540.

    PubMed  CAS  Google Scholar 

  123. Brockerhoff, S.E., J.B. Hurley, U. Janssen-Bienhold, S.C. Neuhauss, W. Deriever and J.E. Dowling. (dy1995) A behavioral screen for isolating zebrafish mutants with visual system defects. Proc. Natl. Acad. Sci. 92: 10545–10549.

    PubMed  CAS  Google Scholar 

  124. Li, L. and J.E. Dowling (dy1997) A dominant form of inherited retinal degeneration caused by a non-photoreceptor cell-specific mutation. Proc. Natl. Acad. Sci. 94:11645–11650.

    PubMed  CAS  Google Scholar 

  125. Neuhauss, S.C.F., O. Biehlmaier, M.W. Seeliger, et al. (dy1999) Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. J. Neurosci. 19(19):8603–8615.

    PubMed  CAS  Google Scholar 

  126. Nawrocki, L.W. (1985) Development of the neural retina in the zebrafish, Brachydanio rerio. Ph.D. Thesis-University of Oregon: Eugene.

    Google Scholar 

  127. Biehlmaier, O., S.C.F. Neuhauss and K. Kohler (dy2003) Synaptic plasticity and functionality at the cone terminal of the developing zebrafish retina. J. Neurobiol. 56(3):222–236.

    PubMed  CAS  Google Scholar 

  128. Kay, J.N., K.C. Finger-Baier, T. Roeser, W. Staub and H. Baier. (dy2001) Retinal ganglion cell genesis requires lakritz, a zebrafish atonal homologue. Neuron 30:725–736.

    PubMed  CAS  Google Scholar 

  129. Schauerte, H.E., F.J. van Eeden, C. Fricke, J. Odenthal, U. Strahle and P. Haffter. (dy1998) Sonic hedgehog is not required for the induction of medial floor plate cells in the zebrafish. Development 125(15):2983–2993.

    PubMed  CAS  Google Scholar 

  130. Stenkamp, D.L., R.A. Frey, D.E. Mallory and E.E. Shupe. (dy2002) Embryonic retinal gene expression in sonic-you mutant zebrafish. Devl. Dyn. 225:344–350.

    CAS  Google Scholar 

  131. Kelsh, R.N., M. Brand, Y.J. Jiang, et al. (dy1996) Zebrafish pigmentation mutations and the processes of neural crest development. Development 123:369–389.

    PubMed  CAS  Google Scholar 

  132. Neumann, C.J. and C. Nüsslein-Volhard (dy2000) Patterning of the zebrafish retina by a wave of sonic hedgehog activity. Science 289:2137–2139.

    PubMed  CAS  Google Scholar 

  133. Stuermer, C.A.O. (1988) Retinotopic organization of the developing retinotectal projection in the zebrafish embryo. J. Neurosci. 8:4513–4530.

    PubMed  CAS  Google Scholar 

  134. Burrill, J.D. and S.S. Easter (dy1994) Development of the retinofugal projections in the embryonic and larval zebrafish (Brachydanio rerio). J. Comp. Neurol. 346:583–600.

    PubMed  CAS  Google Scholar 

  135. Baier, H., S. Klostermann, T. Trowe, R.O. Karlstrom, C. Nüsslein-Volhard and F. Bonhoeffer. (dy1996) Genetic dissection of the retinotectal projection. Devel. 123:415–425.

    CAS  Google Scholar 

  136. Karlstrom, R.O., T. Trowe, S. Klostermann, et al. (dy1996) Zebrafish mutations affecting retinotectal axon pathfinding. Devel. 123:427–438.

    CAS  Google Scholar 

  137. Trowe, T., S.. Klostermann, H. Baier, et al. (dy1996) Mutations disrupting the ordering and topographic mapping of axons in the retinotectal projection of the zebrafish, Danio rerio. Development 123: 439–450.

    PubMed  CAS  Google Scholar 

  138. Fricke, C., J.S. Lee, S. Geiger-Rudolph, F. Bonhoeffer and C.B. Chien. (dy2001) astray, a zebrafish roundabout homologue required for retinal axon guidance. Science 292(5516):507–510.

    PubMed  CAS  Google Scholar 

  139. Hutson, L.D. and C.B. Chien (dy2002) Pathfinding and error correction by retinal axons:the role of astray robo2. Neuron 33(2):205–217.

    PubMed  CAS  Google Scholar 

  140. Stuermer, C.A.O., B. Rohrer and H. Münz (dy1990) Development of the retinotectal projection in zebrafish embryos under TTX-induced neural impulse blockade. J. Neurosci. 10(11):3615–3626.

    PubMed  CAS  Google Scholar 

  141. Malicki, J. (2000) Harnessing the power of forward genetics-analysis of neuronal diversity and patterning in the zebrafish retina. Trends Neurosci. 23:531–541.

    PubMed  CAS  Google Scholar 

  142. Baier, H., S. Rotter and S. Korsching (dy1994) Connectional topography in the zebrafish olfactory system: Random positions but regular spacing of sensory neurons projecting to an individual glomerulus. Proc. Natl. Acad. Sci. 91:11646–11650.

    PubMed  CAS  Google Scholar 

  143. Byrd, C.A. and P.C. Brunjes (dy1995) Organization of the olfactory system in the adult zebrafish:histological, immunohistochemical and quantitative analysis. J. Comp. Neurol. 358(2):247–259.

    PubMed  CAS  Google Scholar 

  144. Friedrich, R.W. and S.I. Korsching (dy1997) Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. 18 (737–752).

    CAS  Google Scholar 

  145. Vogt, R.G., S.M. Lindsay, C.A. Byrd and M. Sun. (dy1997) Spatial patterns of olfactory neurons expressing specific odor receptor genes in 48-hour old embryos of zebrafish Danio Rerio. J. Exp. Biol. 200: 433–443.

    PubMed  CAS  Google Scholar 

  146. Yoshihara, Y., H. Nagao and K. Mori (dy2001) Sniffing out odors with multiple dendrites. Science 291(5505):835–837.

    PubMed  CAS  Google Scholar 

  147. Hansen, A., K. Reutter and E. Zeiske (dy2002) Taste bud development in the zebrafish, danio rerio. Devl. Dyn. 223:483–496.

    Google Scholar 

  148. Yoshida, T., A. Ito, N. Matsuda and M. Mishina. (dy2002) Regulation by protein kinase A switching of axonal pathfinding of zebrafish olfactory sensory neurons through the olfactory-placode bulb boundary. J. Neurosci. 22(12):4964–4972.

    PubMed  CAS  Google Scholar 

  149. Corotto, F.S., D.R. Piper, N. Chen and W.C. Michel. (dy1996) Voltage and Ca2+-gated currents in zebrafish olfactory receptor neurons. J. Exp. Biol. 199:1115–1126.

    PubMed  CAS  Google Scholar 

  150. Fuss, S.H. and S.I. Korsching (dy2001) Odarant feature detection:activity mapping of structure response relationships in the zebrafish olfactory bulb. J. Neurosci. 21(21):8396–8407.

    PubMed  CAS  Google Scholar 

  151. Friedrich, R.W. and G. Laurent (dy2001) Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science 291:889–894.

    PubMed  CAS  Google Scholar 

  152. Li, L. and J.E. Dowling (dy2000) Disruption of the olfactoretinal centrifugal pathway may relate to the visual system defect in night blindness b mutant zebrafish. J. Neurosci. 20(5):1883–1892.

    PubMed  CAS  Google Scholar 

  153. Sanders, L.H. and K.E. Whitlock (dy2003) Phenotype of the zebrafish masterblind (mbl) mutant is dependent on genetic background. Devl. Dyn. 227:291–300.

    CAS  Google Scholar 

  154. Ngai, J., M.M. Dowling, L. Buck, R. Axel and A. Chess. (dy1993) The family of genes encoding odorant receptors in the channel catfish. Cell 72:657–666.

    PubMed  CAS  Google Scholar 

  155. Barth, A.L., N.J. Justice and J. Ngai (dy1996) Asynchronous onset of odorant receptor expression in the developing zebrafish olfactory system. Neuron 16:23–34.

    PubMed  CAS  Google Scholar 

  156. Korsching, S.I., S. Argo, H. Campenhausen, R.W. Friedrich, A. Rummrich and F. Weth. (dy1997) Olfaction in zebrafish:what does a tiny teleost tell us. Sem. Cell Devel. Biol. 8:181–187.

    CAS  Google Scholar 

  157. Nicholls, J.G., A.R. Martin and B.G. Wallace (dy1992)From Neuron to Brain. (3 ed., Sunderland, MA: Sinauer Associates, Inc.

    Google Scholar 

  158. Kimmel, C.B. and M. Westerfield, Primary neurons of the zebrafish., in Signals and Sense:Local and Global Order in Perceptual Maps, G.M. Edelman, W.E. Gall and W.H. Cowan, Editors. 1990, John Wiley and Sons: New York. p. 561–588.

    Google Scholar 

  159. Metcalfe, W.K., P.Z. Myers, B. Trevarrow, M.B. Bass and C.B. Kimmel. (dy1990) Primary neurons that express the L2/HNK-1 carbohydrate during early development in the zebrafish. Development 110:491–504.

    PubMed  CAS  Google Scholar 

  160. Kimmel, C.B., W.W. Ballard, S.R. Kimmel, B. Ullamann and T.F. Schilling. (dy1995) Stages of embryonic development of the zebrafish. Devel. Dyn. 203:253–310.

    CAS  Google Scholar 

  161. Cole, L.K. and L.S. Ross (dy2001) Apoptosis in the developing zebrafish embryo. Devel. Biol. 240:123–142.

    CAS  Google Scholar 

  162. Williams, J.A., A. Barrios, C. Gatchalian, L. Rubin, S.W. Wilson and N. Holder. (dy2000) Programmed cell death in zebrafish Rohon Beard neurons is influenced by TrkC1/NT-3 signaling. Devl. Biol. 226: 220–230.

    CAS  Google Scholar 

  163. An, M., R. Luo and P.D. Henion (dy2002) Differentiation and maturation of zebrafish dorsal root and sympathetic ganglion neurons. J. Comp. Neurol. 446:267–275.

    PubMed  Google Scholar 

  164. Artinger, K.B., A.B. Chitnis, M. Mercola and W. Driver. (dy1999) Zebrafish narrowminded suggests a genetic link between formation of neural crest and primary sensory neurons. Devl. 126(18): 3969–3979.

    CAS  Google Scholar 

  165. Lazarov, N.E. (2002) Comparative analysis of the chemical neuroanatomy of the mammalian trigeminal ganglion and mesencephalic trigeminal nucleus. Prog. Neurobiol. 66:19–59.

    PubMed  CAS  Google Scholar 

  166. Nasevicius, A. and S.C. Ekker (dy2000) Effective targeted gene ‘knockdown’ in zebrafish. Nature Genetics 26(2):216–220.

    PubMed  CAS  Google Scholar 

  167. Park, H.-C., C.-H. Kim, Y.-K. Bae, et al. (dy2000) Analysis of upstream elements in the HuC promoter leads to establishment of transgenic zebrafish with fluorescent neurons. Devl. Biol. 227:279–293.

    CAS  Google Scholar 

  168. Higashijima, S.-I., M.A. Masino, G. Mandel and J.R. Fetcho. (dy2003) Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. J. Neurophysiol. 90(6):3986–3997.

    PubMed  Google Scholar 

  169. O’Malley, D.M., Q. Zhou and E. Gahtan (dy2003) Probing neural circuits in the zebrafish:a suite of optical techniques. Methods 30:49–63.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Novak, A.E., Ribera, A.B. (2005). The Zebrafish As an Integrative Physiology Model. In: Walz, W. (eds) Integrative Physiology in the Proteomics and Post-Genomics Age. Humana Press. https://doi.org/10.1385/1-59259-925-7:215

Download citation

Publish with us

Policies and ethics