Skip to main content
  • 576 Accesses

Abstract

Living organisms are not closed systems but are open to the environment. At each instant they receive energy and matter from the environment, and lose to the environment an equal flow of the same. The very process of life entails this exchange with the environment. Without these in-and-out energy and matter flows, life is not possible. The water tank of Fig. 1 represents any of these flows that traverse the living body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brobeck, J.R. (1965) Exchange, control, and regulation. In Physiological Controls and Regulations (Yamamoto, W.S. and Brobeck, J.R., eds.), Saunders, Philadelphia, PA, pp. 1–14.

    Google Scholar 

  2. Berbigier, P. and Christon, R. (1983) Efecto de la sombra y la aspersion sobre las temperaturas rectal y cutanea, fresuencia respiratoria y tasa de crecimiento de cerdos creole jovenes en Guadalupe (Antillas francesas). Rev. Salud. Anim., 785–792.

    Google Scholar 

  3. Mendelsohn, M. (1895) Über den Thermotropismus sinzelliger Organismen. Arch. Gesamte Physiol. 60:14.

    Google Scholar 

  4. Scholander, P.F., Anderson, N., Krog, J., Lorentzen, F.V. and Steen, J. (1957) Critical temperature in Lapps. J. Appl. Physiol. 10:231–234.

    PubMed  CAS  Google Scholar 

  5. Goldsmith, R., Hampton, R. and Hampton, I.F.G. (1968) Nocturnal microclimate of man. J. Physiol. London. 194:32–33.

    Google Scholar 

  6. Candas, V., Libert, J.P., Vogt, J.J., Ehrhart, J. and Muzet, A. (1978) Proc. Internat. Indoor Climate Sympos., København.

    Google Scholar 

  7. Lindauer, M. (1951) Temperaturregulierung der Bienen bei Stocküberhitzung. Naturwissenschaften. 38:308–309.

    Article  Google Scholar 

  8. Hazelhoff, E.H. (1954) Ventilation in a bee-hive during summer. Physiologia Comparata et Œcologia. 3:343–364.

    Google Scholar 

  9. Weiss, B. and Laties, V.G. (1961) Behavioral thermoregulation. Science. 20:1338–1344.

    Article  Google Scholar 

  10. Blix, A.S. and Steen, J.B. (1979) Temperature regulation in newborn polar homeotherms. Physiol. Rev. 59:285–304.

    PubMed  CAS  Google Scholar 

  11. LeMaho, Y. (1977) The emperor penguin: a strategy to live and breed in the cold. Am. Sci. 65:680–693.

    Google Scholar 

  12. Courtenay, S.C. and Keeleyside, M.H.A. (1983) Wriggler-hanging: a response to hypoxia by brood-rearing Herotilapia multispinosa (Teleostei, Cichlidae). Behaviour. 85:183–197.

    Google Scholar 

  13. VanIersel, J.J.A. (1953) An analysis of the parental behavior of the male three-spined stickle-back (Gastrosteus aculeatus L.). Behav. Suppl. 3:1–159.

    Google Scholar 

  14. Evans, R.M. (1990) Vocal regulation of temperature by avian embryos: a laboratory study with pipped eggs of American white pelican. Anim. Behav. 40:968–979.

    Google Scholar 

  15. Brück, K. (1968) Which environmental temperature does the premature infant prefer? Pediatrics. 41:1027–1030.

    PubMed  Google Scholar 

  16. Cabanac, M. and LeBlanc, J. (1983) Physiological conflict in humans: fatigue vs cold discomfort. Am. J. Physiol. 244:R621–R628.

    PubMed  CAS  Google Scholar 

  17. Wood, S.C. (1991) Interactions between hypoxia and hypothermia. Ann. Rev. Physiol. 53:71–85.

    Article  CAS  Google Scholar 

  18. (IUPS), C. f. t. p. (1987) Glossary of terms for thermal physiology. Pflüg. Arch. 410:567–587.

    Article  Google Scholar 

  19. Cabanac, M. (1979) Le comportement thermorégulateur. J. Physiol. Paris 75:115–178.

    PubMed  CAS  Google Scholar 

  20. Corbit, J.D. (1973) Voluntary control of hypothalamic temperature. J. Comp. Physiol. Psychol. 83:394–411.

    Article  PubMed  CAS  Google Scholar 

  21. Hardy, J.D. (1965) The “set-point” concept in physiological temperature regulation. In Physiological Controls and Regulations (Yamamoto, W.S. and Brobeck, J.R., eds.), Saunders, Philadelphia, PA, pp. 98–116..

    Google Scholar 

  22. Frank, S., Raja, S., Bulcao, C. and Goldstein, D. (1999) Relative contribution of core and cutaneous temperatures to thermal comfort and autonomic responses in humans. J. Appl. Physiol. 86:1588–1593.

    PubMed  CAS  Google Scholar 

  23. Cabanac, M. (1969) Plaisir ou déplaisir de la sensation thermique et homéothermie. Physiol. Behav. 4:359–364.

    Article  Google Scholar 

  24. Cabanac, M., Massonnet, B. and Belaiche, R. (1972) Preferred hand temperature as a function of internal and mean skin temperatures. J. Appl. Physiol. 33:699–703.

    PubMed  CAS  Google Scholar 

  25. Bleichert, A., Behling, K., Scarperi, M. and Scarperi, S. (1973) Thermoregulatory behavior of man during rest and exercise. Pflüg. Arch. 338:303–312.

    Article  CAS  Google Scholar 

  26. Attia, M. and Engel, P. (1982) Thermal pleasantness sensation: an indicator of thermal stress. Eur. J. Appl. Physiol. 50:55–70.

    Article  Google Scholar 

  27. Attia, M. and Engel, P. (1981) Thermal alliesthesial response in Man is independent of skin location stimulated. Physiol. Behav. 27:439–444.

    Article  PubMed  CAS  Google Scholar 

  28. Olesen, S., Bassing, J.J. and Fanger, P.O. (1972) Physiological comfort conditions at sixteen combinations of activity, clothing, air velocity, and ambient temperature. ASHRAE Trans. 78:199–206.

    Google Scholar 

  29. Collier, G. and Rovee-Collier, C.K. (1981) A comparative analysis of optimal foraging behavior: laboratory simulations. In Foraging Behavior (Kamil, A.C. and Sargent, T.D., eds.), Garland STPM, New York, NY, pp. 39–76..

    Google Scholar 

  30. Collier, G.H., Johnson, D.F., Naveira, J. and Cybulski, K.A. (1989) Ambient temperature and food costs: effects on behavior patterns in rats. Am. J. Physiol. 257:R1328–R1334.

    PubMed  CAS  Google Scholar 

  31. Hervey, G.R. (1969) Regulation of energy balance. Nature. 223:629–631.

    Article  Google Scholar 

  32. Mrosovsky, N. (1990) Rheostasis, the physiology of change. Oxford University Press, New York, NY.

    Google Scholar 

  33. Mrosovsky, N. and Fisher, K.C. (1970) Sliding set-points for body weight in ground squirrels during the hibernation season. Can. J. Zool. 48:241–247.

    Article  PubMed  CAS  Google Scholar 

  34. Nicolaïdis, S. (1977) Physiologie du comportement alimentaire. In Physiologie humaine (Meyer, P., ed.), Flammarion, Paris, pp. 908–922..

    Google Scholar 

  35. VanderWall, S.B. (1990) Food hoarding in animals. University of Chicago Press, Chicago, IL.

    Google Scholar 

  36. Fantino, M. and Cabanac, M. (1980) Body weight regulation with a proportional hoarding response in the rat. Physiol. Behav. 24:939–942.

    Article  PubMed  CAS  Google Scholar 

  37. Wirtshafter, D. and Davis, J. (1977) Set-points, settling points, and the control of body weight. Physiol. Behav. 19:75–78.

    Article  PubMed  CAS  Google Scholar 

  38. Davis, J. and Wirtshafter, D. (1978) Set-points or settling points for body weight?: A reply to Mrosovsky and Powley. Behav. Biol. 24:405–411.

    Article  PubMed  CAS  Google Scholar 

  39. LeMagnen, J. (1984) Is regulation of body weight elucidated? Neurosci. Biobehav. Rev. 8:515–522.

    Article  CAS  Google Scholar 

  40. Himms-Hagen, J. (1984) Thermogenesis in brown adipose tissue as an energy buffer. N. Engl. J. Med. 311:1549–1558.

    Article  PubMed  CAS  Google Scholar 

  41. Bernstein, I.L. and Borson, S. (1986) Learned food aversion: A component of anorexia syndromes. Psychol. Rev. 93:462–472.

    Article  PubMed  CAS  Google Scholar 

  42. Apfelbaum, M. and Bostsarron, J. (1969) Le bilan d’énergie de l’obèse soumis à un régime restrictif. Presse Med. 77:1941–1943.

    PubMed  CAS  Google Scholar 

  43. Keesey, R.E. and Powley, T.L. (1975) Hypothalamic regulation of body weight. Am. Scientist. 63:558–565.

    CAS  PubMed  Google Scholar 

  44. Keesey, R.E. and Hirvonen, M.D. (1997) Body weight set-points: Determination and adjustment. J. Nutr. 127:S1875–S1883.

    Google Scholar 

  45. Fantino, M. (1984) Role of sensory input in the control of food intake. J. Auton. Nerv. Syst. 10:326–347.

    Article  Google Scholar 

  46. Lavine, J.A., Eberhardt, N.L. and Jensen, M.D. (1999) Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science. 283:212–214.

    Article  Google Scholar 

  47. Pasquet, P. and Apfelbaum, M. (1994) Recovery of initial body weight and composition after long-term massive overfeeding in men. Am. J. Clin. Nutr. 60:861–863.

    PubMed  CAS  Google Scholar 

  48. Cabanac, M. (1991) Open-loop methods for studying the ponderostat. In Appetite and Nutrition (Friedman, M.I., Tordoff, M.G. and Kare, M.R., eds.), Marcel Dekker Inc., New York, NY pp. 149–170.

    Google Scholar 

  49. Fantino, M. and Brinnel, H. (1986) Body weight set-point changes during the ovarian cycle: experimental study of rats during hoarding behavior. Physiol. Behav. 36:991–996.

    Article  PubMed  CAS  Google Scholar 

  50. Cabanac, M., Michel, C. and Gosselin, C. (2000) Corticotropin releasing hormone and body weight regulation: the behavioral approach. Nutrit. Neurosci. 2:385–401.

    Google Scholar 

  51. Cavagnini, F., Invitti, C., Passamonti, M. and Polli, E.E. (1986) Impaired ACTH And cortisol response to CRH in patients with anorexia nervosa. In Disorders of Eating Behaviour, a Psychoneuroendocrine Approach (Ferrari, E. and Brambilla, P., eds.), Pergamon Press, Oxford, pp. 229–233.

    Google Scholar 

  52. York, D.A. (1992) Central regulation of appetite and autonomic activity by CRH, glucocorticoids and stress. Progr. NeuroendocrinImmunol. 5:153–165.

    Google Scholar 

  53. Guillaume-Gentil, C., Rohner-Jeanrenaud, F., Abramo, F., Bestetti, G.E., Rossi, G.L. and Jeanrenaud, B. (1990) Abnormal regulation of the hypothalomo-pituitary-adrenal axis in the genetically 0bese FA FA rat. Endocrinol. 126:1873–1879.

    CAS  Google Scholar 

  54. McGinnis, R., Walker, J., Margules, D., Aird, F. and Redei, E. (1992) Dysregulation of the hypothalamo-pituitary-adrenal axis in male and female genetically obese (ob/ob) mice. J. Neuroendocrinol. 4:765–771.

    Article  CAS  Google Scholar 

  55. Plotsky, P.M., Thrivikraman, K.V., Watts, A.G. and Hauger, R.L. (1992) Hypothalamic-pituitary-adrenal axis function in the Zucker obese rat. Endocrinol. 130:1931–1941.

    Article  CAS  Google Scholar 

  56. Mortola, J.F., Rasmussen, D.D. and Yen, S.S.C. (1989) Alteration of the adrenocorticotropin-cortisol axis in normal weight bulimic women: evidence for a central mechanism. J. Clin Endocrinol. Metab. 68:517–522.

    PubMed  CAS  Google Scholar 

  57. DeVos, P., Saladin, R., Auwerx, J. and Staels, B. (1995) Induction of ob gene expression by corticosteroids is accompanied by body weight loss and reduced food intake. J. Biol. Chem. 270:15958–15961.

    Article  CAS  Google Scholar 

  58. Fukagawa, F., Knight, D.S., Price, H.V., Sakata, T. and Tso, P. (1996) Transplantation of lean fetal hypothalamus restaures hypothalamic function in Zucker rats. Am. J. Physiol. 40:R55–R65.

    Google Scholar 

  59. Costa, A., Poma, A., Martignoni, E., Nappi, G., Ur, E. and Grossman, A. (1997) Stimulation of cortico-releasing hormone release by the obese (ob) gene product, leptin, from hypothalamus explants. Neuroendocrinology. 8:1131–1134.

    CAS  Google Scholar 

  60. Huang, Q.L., Rivest, R. and Richard, D. (1998) Effects of leptin on corticotropin-releasing factor (CRF) synthesis and CRF neuron activation in the paraventricular hypothalamic nucleus of obese (ob/ob) mice. Endocrinology. 139:1524–1532.

    Article  PubMed  CAS  Google Scholar 

  61. Debons, A.F., Zurek, L.D., Tse, C.S. and Abrahamsen, S. (1986) Central nervous system control of hyperphagia in hypothalamic obesity: dependence on adrenal glucocorticoids. Endocrinology. 118:1678–1681.

    Article  PubMed  CAS  Google Scholar 

  62. Shkolnik, A. (1992) The black Bedouin goat. Bielefelder ökol. Beiträge. 6:53–60.

    Google Scholar 

  63. Yagil, R. (1985) The Desert Camel. Comparative Physiology Adaptation. Comparative Animal Nutrition Series No5, Krager.

    Google Scholar 

  64. Arieli, R., Ar, A. and Shkolnik, A. (1977) Metabolic responses of a fossorial rodent (Spalax ehrenbergi) to simulated burrow conditions. Physiol. Zool. 50:61–75.

    Google Scholar 

  65. Yahav, S. and Buffenstein, R. (1991) Huddling behavior facilitates homeothermy in the naked mole rat Heterocephalus glaber. Physiol. Zool. 64:871–884.

    Google Scholar 

  66. Christon, R. (1983) Effet d’un ombrage et du taux protéique de la ration sur la croissance du porc local en Guadeloupe. Revue d’Élevage et Médecine VÉtérinaire en Pays Tropical. 36:191–196.

    Google Scholar 

  67. Mason, J.W., Maher, J.T., Hartley, L.H., Mougey, E.H., Perlow, M.J. and Jones, G.J. (1976) Selectivity of corticosteroid and catecholamine respons to various natural stimuli. In Psychopathology of Human Adaptation (Sarban, G., ed.). Plenum, New York, NY.

    Google Scholar 

  68. Dantzer, R. and Kelley, K.W. (1989) Stress and immunity: an integrated view of relationship between the brain and the immune system. Life Sci. 44:1995–2008.

    Article  PubMed  CAS  Google Scholar 

  69. Ingram, D.L. and Legge, K.F. (1970) The thermoregulatory behavior of young pigs in a natural environment.. 5:981–987.

    CAS  Google Scholar 

  70. Christon, R. (1988) The effect of tropical ambient temperature on growth and metabolism in pigs. Journal of Animal Science. 66:3112–3123.

    PubMed  CAS  Google Scholar 

  71. Christon, R., Saminadin, G., Lionet, H. and Racon, B. (1999) Dietary fat and climate alter food intake, performance of lactating sows and their litters and fatty acid composition of milk. Animal Science. 69:353–365.

    Google Scholar 

  72. Ostheim, J. (1992) Coping with food-limited conditions: feeding behavior, température preference, and nocturnal hypothermia in pigeons. Physiol. Behav. 51:353–361.

    Article  PubMed  CAS  Google Scholar 

  73. LeBlanc, J. (1992) Interactions between adaptation to cold and to altitude. In High Altitude Medicine (Ueda, G., ed.), Shinshu University Press, Matsumoto, pp. 475–481.

    Google Scholar 

  74. Christon, R., LeDividich, J., Seve, B. and Aumaitre, A. (1984) Influence de la température ambiante sur l’utilisation métabolique de l’énergie et de l’azote alimentaire chez le rat en croissance. Reprod. Nutr. Develop. 24:327–341.

    Article  CAS  Google Scholar 

  75. Johnson, K.G. and Cabanac, M. (1982) Homeostatic competition in rats fed at varying distances from a thermoneutral refuge. Physiol. Behav. 29:715–720.

    Article  PubMed  CAS  Google Scholar 

  76. Chen, X.-J., Xu, X.-F. and Ji, X. (2003) Influence of body temperature on food assimilation and locomotor performance in white-striped grass lizards, Takydromus wolteri (Lacertidae). Journal of Thermal Biology. 28:385–391.

    Article  Google Scholar 

  77. Cabanac, M. (1985) Strategies adopted by juvenile lizards foraging in a cold environment. Physiol. Zool. 58:262–271.

    Google Scholar 

  78. Cabanac, M. and Johnson, K.G. (1983) Analysis of a conflict between palatability and cold exposure in rats. Physiol. Behav. 31:249–253.

    Article  PubMed  CAS  Google Scholar 

  79. Stasiak, M. (2002) The development of food preferences in cats: the new direction. Nutritional Neuroscience. 5:221–228.

    Article  PubMed  Google Scholar 

  80. Balaskó, M. and Cabanac, M. (1998) Behavior of juvenile lizards (Iguana iguana) in a conflict between temperature regulation and palatable food. Brain Behavior and Evolution. 52:257–262.

    Article  Google Scholar 

  81. Bunge, M. (1989) From neuron to mind. NIPS. 4:206–209.

    Google Scholar 

  82. Bunge, M. (2003) Emergence and Convergence. University of Toronto Press, Toronto.

    Google Scholar 

  83. McFarland, D.J. and Sibly, R.M. (1975) The behavioural final common path. Philos. Trans. roy. Soc. London. 270:265–293.

    Article  CAS  Google Scholar 

  84. Cabanac, M. and Russek, M. (1982) Régulation et contrôle en biologie. Presses Université Laval, Québec.

    Google Scholar 

  85. Kennedy, G.C. (1950) The hypothalamic control of food intake in rats. Proc. Roy. Soc. London. 140 B:, 535–548.

    Google Scholar 

  86. Cabanac, M. and Lafrance, L. (1990) Postingestive alliesthesia: The rat tells the same story. Physiol. Behav. 47:539–543.

    Article  PubMed  CAS  Google Scholar 

  87. Schmidt, I. (1978) Interaction of behavioral and autonomic thermoregulation in heat-stressed pigeons. Pflügers Arch. 374:47–55.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Cabanac, M. (2005). Physiology and Behavior. In: Walz, W. (eds) Integrative Physiology in the Proteomics and Post-Genomics Age. Humana Press. https://doi.org/10.1385/1-59259-925-7:095

Download citation

Publish with us

Policies and ethics