Skip to main content

Abstract

The kidney and circulation provide an especially rich source of examples of integrative physiology. The regulation of blood pressure (BP), for example, involves many disparate tissues, ranging from the heart and vasculature to the brain, adrenal gland, and kidney. BP regulation also involves multiple layers of physiological organization—from the biophysics of renal transport to the regulation of flows and resistances to the overall architecture of the fluid volume control system. The value of a truly “integrative” approach is evident from the many properties and features of such systems that could not have been discovered even by the most detailed examination of their individual components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brinson C. and Quinn J (1989) Arthur C. Guyton. His Life, His Family, His Achievements. Oakdale Press, Jackson, MI.

    Google Scholar 

  2. Hall, J.E., Cowley, A.W., Jr., Bishop, V.S., Granger, D.N., Navar, L.G. and Taylor, A.E. (2003) In Memoriam. Arthur C. Guyton (1919–2003). Physiologist 46, 126–128.

    PubMed  Google Scholar 

  3. Quinn, J. (1989) Dr. A.C. Guyton: Builder. J. Miss. State Med. Assoc. 30(8):255–258.

    PubMed  CAS  Google Scholar 

  4. Guyton AC (1980) Circulatory Physiology III. Arterial Pressure and Hypertension. WB Saunders, Toronto.

    Google Scholar 

  5. Guyton, A.C., Coleman, T.G. and Granger, H.J. (1972) Circulation: Overall regulation. Ann. Rev. Physiol. 34:13–46.

    Article  CAS  Google Scholar 

  6. Guyton, A.C., Jones, C.E. and Coleman, T.G. (1973) Circulatory Physiology: Cardiac Output and Its Regulation, 2nd edition. WB Saunders, Philadelphia.

    Google Scholar 

  7. Guyton, A.C., Taylor, A.E. and Granger, H.J. (1975) Circulatory Physiology II: Dynamics and Control of the Body Fluids. WB Saunders, Philadelphia.

    Google Scholar 

  8. Simanonok, K.E., Srinivasan, R.S., Myrick, E.E., Blomkalns, A.L. and Charles, J.B. (1994) A comprehensive Guyton model analysis of physiologic responses to preadapting the blood volume as a countermeasure to fluid shifts. J. Clin. Pharmacol. 34(5):440–453.

    PubMed  CAS  Google Scholar 

  9. Srinivasan, R.S., Simanonok, K.E., Fortney, S.M. and Charles, J.B. (1993) Simulation of the fluid retention effects of a vasopressin analog using the Guyton model of circulation. Physiologist 36(1 Suppl): S114–S115.

    PubMed  CAS  Google Scholar 

  10. Selkurt, E.E. (1951) Effect of pulse pressure and mean arterial pressure on modification on renal haemodynamics and electrolyte water excretion. Circulation 4:541–551.

    PubMed  CAS  Google Scholar 

  11. Starling, E.H. and Verney, E.B. (1924–1925) The excretion of urine as studied in the isolated kidney. Proc. R. Soc. Lond. 97:321–363.

    Google Scholar 

  12. Evans, R.G., Szenasi, G. and Anderson, W.P. (1995) Effects of N-nitro-l-arginine on pressure natriuresis in anesthetized rabbits. Clin. Exp. Pharmacol. Physiol. 22:94–101.

    Article  PubMed  CAS  Google Scholar 

  13. Nafz, B., Ehmke, H., Wagner, C.D., Kirchheim, H.R. and Persson, P.B. (1998) Blood pressure variability and urine flow in the conscious dog. Am. J. Physiol. Renal Physiol. 274:F680–F686.

    CAS  Google Scholar 

  14. Cowley, A.W., Jr. (1992) Long-term control of arterial blood pressure. Physiol. Rev. 72: 231–300.

    PubMed  Google Scholar 

  15. Granger, J.P., Alexander, B.T. and Llinas, M (2002) Mechanisms of pressure natriuresis. Curr. Hypertens. Rep. 4:152–159

    Article  PubMed  Google Scholar 

  16. Hall, J.E. (1991) The renin-angiotensin system: renal actions and blood pressure regulation. Compr. Ther. 17:8–17.

    PubMed  CAS  Google Scholar 

  17. Hall, J.E., Guyton, A.C. and Mizelle, H.L. (1990) Role of the renin-angiotensin system in control of sodium excretion and arterial pressure. Acta Physiol. Scand. Suppl. 1990;591:48–62.

    PubMed  CAS  Google Scholar 

  18. Montani, J.P. and VanVliet, B.N. (2004) General Physiology and Pathophysiology of the Renin-Angiotensin System. In Handbook of Experimental Pharmacology, Volume 163/1: Angiotensin (Thomas Unger and Bernward A. Schölkens, Eds.), Springer Verlag, Berlin, pp. 3–29.

    Google Scholar 

  19. Grisk, O. and Rettig, R. (2001) Renal transplantation studies in genetic hypertension. News Physiol. Sci. 16:262–265.

    PubMed  CAS  Google Scholar 

  20. Rettig, R. (1993) Does the kidney play a role in the aetiology of primary hypertension? Evidence from renal transplantation studies in rats and humans. J. Hum. Hypertens. 7(2):177–180.

    PubMed  CAS  Google Scholar 

  21. Rettig, R., Bandelow, N., Patschan, O., Kuttler, B., Frey, B. and Uber, A. (1996) The importance of the kidney in primary hypertension: insights from cross-transplantation. J. Hum. Hypertens. 10(10): 641–644.

    PubMed  CAS  Google Scholar 

  22. Grisk, O., Klöting, I., Exner, J., et al. (2002) Long-term arterial pressure in spontaneously hypertensive rats is set by the kidney. J. Hypertens. 20:131–138.

    Article  PubMed  CAS  Google Scholar 

  23. Botero-Velez, M., Curtis, J.J. and Warnock, D.G. (1994) Liddle’s syndrome revisited—a disorder of sodium reabsorption in the distal tubule. N. Eng. J. Med. 330:178–181.

    Article  CAS  Google Scholar 

  24. Guidi, E., Menghetti, D., Milani, S., Montagnino, G., Palazzi, P. and Bianchi, G. (1996) Hypertension may be transplanted with the kidney in humans: a long-term historical prospective follow-up of recipients grafted with kidneys coming from donors with or without hypertension in their families. J. Am. Soc. Nephrol. 7(8): 1131–1138.

    PubMed  CAS  Google Scholar 

  25. Churchill, P.C., Churchill, M.C., Bidani, A.K. and Kurtz, T.W. (2001) Kidney-specific chromosome transfer in genetic hypertension: The Dahl hypothesis revisited. Kidney International 60:705–714.

    Article  PubMed  CAS  Google Scholar 

  26. Clemitson, J-R., Pratt, J.R., Frantz, S., Sacks, S. and Samani, N.J. (2002) Kidney specificity of rat chromosome 1 blood pressure quantitative trait locus region. Hypertens. 40:292–297.

    Article  CAS  Google Scholar 

  27. Strazzullo, P., Galletti, F. and Barba, G. (2003) Altered renal handling of sodium in human hypertension. Short review of the evidence. Hypertens. 41:1000–1005.

    Article  CAS  Google Scholar 

  28. Luft, F.C. (2000) Molecular genetics of human hypertension. Curr. Opin. Nephrol. Hypertens. 9: 259–266.

    Article  PubMed  CAS  Google Scholar 

  29. Meneton, P., Oh, Y.S. and Warnock, D.G. (2001) Genetic renal tubular disorders of renal ion channels and transporters. Semin. Nephrol. 21:81–93.

    Article  PubMed  CAS  Google Scholar 

  30. Warnock, D.G. (2001) Genetic forms of human hypertension. Curr. Opin. Nephrol. Hypertens. 10: 493–499.

    Article  PubMed  CAS  Google Scholar 

  31. Reinhart, G.A., Lohmeier, T.E. and Hord, C.E., Jr. (1995) Hypertension induced by chronic renal adrenergic stimulation. Is angiotensin dependent. Hypertens. 25:940–949.

    CAS  Google Scholar 

  32. Mattson, D.L., Lu, S., Nakanishi, K., Papanek, P.E. and Cowley, A.C. (1994) Effect of chronic renal medullary nitric oxide inhibition on blood pressure. Am. J. Physiol. Heart Circ. Physiol. 266:H1918–H1926.

    CAS  Google Scholar 

  33. Smallegange, C., Kline, R.L. and Adams, M.A. (2003) Transplantation of enalapril-treated kidneys confers persistent lowering of arterial pressure in SHR. Hypertens. 42(5):932–936.

    Article  CAS  Google Scholar 

  34. Hall, J.E., Mizelle, H.L., Hildebrandt, D.A. and Brands, M.W. (1990) Abnormal pressure natriuresis. A cause or a consequence of hypertension? Hypertens. 15:547–559.

    CAS  Google Scholar 

  35. Guyton, A.C. (1990) Long-term arterial pressure control: an analysis from animal experiments and computer and graphic models. Am. J. Physiol. 259 (Regulatory Integrative Comp Physiol 28):R865–R877.

    PubMed  CAS  Google Scholar 

  36. Huang, M., Hester, R.L. and Guyton, A.C. (1992) Hemodynamic changes in rats after opening an arteriovenous fistula. Am. J. Physiol. 262:H846–H851.

    PubMed  CAS  Google Scholar 

  37. Huang, M., Hester, R.L., Guyton, A.C. and Norman, R.A., Jr. (1992) Hemodynamic studies in DOCA-salt hypertensive rats after opening of an arteriovenous fistula. Am. J. Physiol. Heart Circ. Physiol. 262: H1802–H1808.

    CAS  Google Scholar 

  38. Guyton, A.C. (1988) Hypertenion. A neural disease? Arch. Neurol. 45:178.

    PubMed  CAS  Google Scholar 

  39. DiBona, G.F. and Kopp, U.C. (1997) Neural control of renal function. Physiol. Rev. 77: 75–197.

    PubMed  CAS  Google Scholar 

  40. DiBona, G.F. (2002) Sympathetic nervous system and the kidney in hypertension. Curr. Opin. Nephrol. Hypertens. 11:197–200.

    Article  PubMed  Google Scholar 

  41. Van Vliet, B.N., Smith, M.J. and Guyton, A.C. (1991) The time course of renal responses to greater splanchnic nerve stimulation. Am. J. Physiol. 260:R894–R905.

    PubMed  Google Scholar 

  42. Ehmke, H., Persson, P.B., Seyfarth, M. and Kirchheim, H.R. (1990) Neurogenic control of pressure natriuresis in conscious dogs. Am. J. Physiol. 259:F466–F473.

    PubMed  CAS  Google Scholar 

  43. Golin, R., Genovesi, S. and Castoldi, G., et al. (1999) Role of the renal nerves and angiotensin II in the renal function curve. Archiv Ital. Biol. 137:289–297.

    CAS  Google Scholar 

  44. Steele, J.E., Koch, L.G. and Brand, P.H. (2000) State-dependent expression of pressure diuresis in conscious rats. PSEBM 224:109–115.

    Article  CAS  Google Scholar 

  45. Brand, P.H., Coyne, K.B., Kostrzewski, K.A., Shier, D., Metting, P.J. and Britton, S.L. (1991) Pressure diuresis and autonomic function in conscious dogs. Am. J. Physiol. 261:R802–R810.

    PubMed  CAS  Google Scholar 

  46. Peterson, T.V., Benjamin, B.A. and Hurst, N.L. (1988) Renal nerves and renal responses to volume expansion in conscious monkeys. Am. J. Physiol. 255:R388–R394.

    PubMed  CAS  Google Scholar 

  47. Peterson, T.V., Benjamin, B.A., Hurst, N.L. and Euler, C.G. (1991) Renal nerves and postprandial renal excretion in the conscious monkey. Am. J. Physiol. 261:R1197–R1203.

    PubMed  CAS  Google Scholar 

  48. Sadowski, J., Kurkus, J. and Gellert, R. (1979) Denervated and intact kidney responses to saline load in awake and anesthetized dogs. Am. J. Physiol. 237:F262–F267.

    PubMed  CAS  Google Scholar 

  49. Smith, F.G., Sato, T., McWeeny, O.L., Torres, L. and Robillard, J.E. (1989) Role of renal nerves in response to volume expansion in conscious newborn lambs. Am. J. Physiol. 257:R1519–R1525.

    PubMed  CAS  Google Scholar 

  50. Lohmeier, T.E., Hildebrandt, D.A. and Hood, W.A. (1999) Renal nerves promote sodium excretion during long-term increases in salt intake. Hypertens. 33:487–492.

    CAS  Google Scholar 

  51. Lohmeier, T.E., Lohmeier, J.R., Reckelhoff, J.F. and Hildebrandt, D.A. (2001) Sustained influence of the renal nerves to attenuate sodium retention in angiotensin hypertension. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 281:R434–R443.

    CAS  Google Scholar 

  52. Mizelle, H.L., Hall, J.E. and Woods, L.L. (1988) Interactions between angiotensin II and renal nerves during chronic sodium deprivation. Am. J. Physiol. 255, F823–F827.

    PubMed  CAS  Google Scholar 

  53. Mizelle, H.L., Hall, J.E., Woods, L.L., Montani, J-.P., Dzielak, D.J. and Pan, Y.-J. (1987) Role of renal nerves in compensatory adaptation to chronic reductions in sodium intake. Am. J. Physiol. 252, F291–F298.

    PubMed  CAS  Google Scholar 

  54. Mizelle, H.L., Hall, J.E. and Montani, J-.P. (1989) Role of renal nerves in control of sodium excretion in chronic congestive heart failure. Am. J. Physiol. 256, F1084–F1093.

    PubMed  CAS  Google Scholar 

  55. Jacob. F., Ariza, P. and Osborn JW (2003) Renal denervation chronically lowers arterial pressure independent of dietary sodium intake in normal rats. Am. J. Physiol. Heart. Circ. Physiol. 284:H2302–H2310.

    PubMed  CAS  Google Scholar 

  56. Janssen, B.J., van Essen, H., Vervoort-Peters, L.H., et al. (1989) Effects of complete renal denervation and selective afferent renal denervation on the hypertension induced by intrarenal norepinephrine infusion in conscious rats. J. Hypertens. 7:447–455.

    Article  PubMed  CAS  Google Scholar 

  57. Norman, R.A. Jr. and Dzielak, D.J. (1982) Role of renal nerves in onset and maintenance of spontaneous hypertension. Am. J. Physiol. 243:H284–H288.

    PubMed  Google Scholar 

  58. Säynävälammi, P., Vaalasti, A., Pyykönen, M.-L., Ylitalo, P. and Vapaatalo, H. (1982) The effect of renal sympathectomy on blood pressure and plasma renin activity in spontaneously hypertensive and normotensive rats. Acta Physiol. Scand. 115:289–293.

    PubMed  Google Scholar 

  59. Kassab, S., Kato, T., Wilkins, F.C., Chen, R., Hall, J.E. and Granger, J.P. (1995) Renal denervation attenuates the sodium retention and hypertension associated with obesity. Hypertens. 25:893–897.

    CAS  Google Scholar 

  60. Ye, S., Gamburd, M., Mozayeni, P., Koss, M. and Campese, V.M. (1998) A limited renal injury may cause a permanent form of neurogenic hypertension. Am. J. Hypertens. 11:723–728.

    Article  PubMed  CAS  Google Scholar 

  61. Ye, S., Ozgur, B. and Campese, V.M. (1997) Renal afferent impulses, the posterior hypothalamus, and hypertension in rats with chronic renal failure. Kidney Int. 51(3):722–727.

    Article  PubMed  CAS  Google Scholar 

  62. Weinstock, M., Gorodetsky, E. and Kalman, R. (1996) Renal denervation prevents sodium retention and hypertension in salt-sensitive rabbits with genetic baroreflex impairment. Clinical Science 90:287–293.

    PubMed  CAS  Google Scholar 

  63. Osborn, J.L. and Camara, A.K.S. (1997) Renal neurogenic mediation of intracerebroventricular angiotensin II hypertension in rats raised on high sodium chloride diet. Hypertens. 30(pt 1):331–336.

    CAS  Google Scholar 

  64. Osborn, J.L., Roman, R.J. and Ewens, J.D. (1988) Renal nerves and the development of Dahl salt-sensitive hypertension. Hypertens. 11:523–528.

    CAS  Google Scholar 

  65. Wyss, J.M., Sripairojthikoon, W. and Oparil, S. (1987) Failure of renal denervation to attenuate hypertension in Dahl NaCl-sensitive rats. Can. J. Physiol. Pharmacol. 65:2428–2432.

    PubMed  CAS  Google Scholar 

  66. Katholi, R.E., Whitlow, P.L., Winternitz, S.R. and Oparil, S. (1982) Importance of the renal nerves in established two-kidney, one clip goldblatt hypertension. Hypertens. 4(Suppl. 2):II-166–II-174.

    Google Scholar 

  67. Katholi, R.E., Winternitz, S.R. and Oparil, S. (1981) Role of the renal nerves in the pathogenesis of one-kidney renal hypertension in the rat. Hypertens. 3:404–409

    CAS  Google Scholar 

  68. Norman, R.A., Jr., Murphy, W.R., Dzielak, D.J., Khraibi, A.A. and Carroll, R.G. (1984) Role of the renal nerves in one-kidney, one clip hypertension in rats. Hypertens. 6:622–626.

    Google Scholar 

  69. Villarreal, D., Freeman, R.H., Davis, J.O., Garoutte, G. and Sweet, W.D. (1984) Pathogenesis of one-kidney, one-clip hypertension in rats after renal denervation. Am. J. Physiol. 247:H61–H66.

    PubMed  CAS  Google Scholar 

  70. Wyss, J.M., Aboukarsh, N. and Oparil, S. (1986) Sensory denervation of the kidney attenuates renovascular hypertension in the rat. Am. J. Physiol. 250:H82–H86.

    PubMed  CAS  Google Scholar 

  71. Smithwick, R.H. (1951) Hypertensive cardiovascular disease: The effect of thoracolumbar splanchnicetomy upon mortality and survival rates. JAMA 147:1611–1615.

    CAS  Google Scholar 

  72. Walker, J.R. and Guyton, A.C. (1967) Influence of blood oxygen saturation on pressure-flow curve of dog hindlimb. Am. J. Physiol. 212:506–509.

    PubMed  CAS  Google Scholar 

  73. Davis, M.J. and Hill, M.A. (1999) Signaling mechanisms underlying the vascular myogenic response. Physiol. Rev. 79:387–423.

    PubMed  CAS  Google Scholar 

  74. Borgstrom, P. and Gestrelius, S. (1987) Integrated myogenic and metabolic control of vascular tone in skeletal muscle during autoregulation of blood flow. Microvasc. Res. 33:353–376.

    Article  PubMed  CAS  Google Scholar 

  75. Borgstrom, P., Grande, P.O. and Mellander, S. (1984) An evaluation of the metabolic interaction with myogenic vascular reactivity during blood flow autoregulation. Acta Physiol. Scand. 122:275–284.

    PubMed  CAS  Google Scholar 

  76. Morff, R.J. and Granger, H.J. (1982) Autoregulation of blood flow within individual arterioles in the rat cremaster muscle. Circ. Res. 51(1):43–55.

    PubMed  CAS  Google Scholar 

  77. Granger, H.J. and Guyton, A.C. (1969) Autoregulation of the total systemic circulation following destruction of the central nervous system. Circ. Res. 25:379–388.

    PubMed  CAS  Google Scholar 

  78. Hinojosa-Laborde, C., Greene, A.S. and Cowley, A.W., Jr. (1988) Autoregulation of the systemic circulation in conscious rats. Hypertens. 11:685–691.

    CAS  Google Scholar 

  79. Liedtke, A.J., Urschel, C.W. and Kirk, E.S. (1973) Total systemic autoregulation in the dog and its inhibition by baroreceptor reflexes. Circ. Res. 32:673–677.

    PubMed  CAS  Google Scholar 

  80. Metting, P.J., Strader, J.R. and Britton, S.L. (1988) Evaluation of whole body autoregulation in conscious dogs. Am. J. Physiol. 255:H44–H52.

    PubMed  CAS  Google Scholar 

  81. Shepherd, A.P., Granger, H.J., Smith, E.E. and Guyton, A.C. (1973) Local control of tissue oxygen delivery and its contribution to the regulation of cardiac output. Am. J. Physiol. 225:747–755.

    PubMed  CAS  Google Scholar 

  82. Coleman, T.G. and Guyton, A.C. (1969) Hypertension caused by salt loading in the dog. III. Onset transients of cardiac output and other circulatory variables. Circ. Res. 25:153–160.

    PubMed  CAS  Google Scholar 

  83. Manning, R.D., Jr., Coleman, T.G., Guyton, A.C., Norman, R.A., Jr., McCaa, R.E. (1979) Essential role of mean circulatory filling pressure in salt-induced hypertension. Am. J. Physiol. 236:R40–R47.

    PubMed  Google Scholar 

  84. Patterson, G.C., Shepherd, J.T. and Whelan, R.F. (1957) The resistance to blood flow in the upper and lower limb vessels in patients with coarctation of the aorta. Clin. Sci. 16:627–632.

    PubMed  CAS  Google Scholar 

  85. Stanek, K.A., Coleman, T.G. and Murphy, W.R. (1987) Overall hemodynamic pattern in coarctation of the abdominal aorta in conscious rats. Hypertens. 9:611–618.

    CAS  Google Scholar 

  86. Wakim, K.G., Slaughter, O. and Clagett, O.T. (1948) Studies of the blood flow in the extremities in cases of coarctation of the aorta: determinations before and after excision of the coarctate region. Mayo Clin. Proc. Staff Meetings 23:347–351.

    CAS  Google Scholar 

  87. Struijker Boudier, H.A., le Noble, J.L., Messing, M.W., Huijberts, M.S., le Noble, F.A. and van Essen, H. (1992) The microcirculation and hypertension. J. Hypertens. Suppl. 10:S147–S156.

    Article  PubMed  CAS  Google Scholar 

  88. Folkow, B., Gurevich, M., Hallback, M., Lundgren, Y. and Weiss, L. (1971) The hemodynamic consequences of regional hypotension in spontaneously hypertensive and normotensive rats. Acta Physiol. Scand. 83: 532–541.

    PubMed  CAS  Google Scholar 

  89. Gangluli, M., Tobian, L. and Iwai, J. (1979) Cardiac output and peripheral resistance in strains of rats sensitive and resistant to NaCl hypertension. Hyperten. 1:3–7.

    Google Scholar 

  90. Greene, A.S., Yu, Y., Roman, R.J. and Cowley, A.W. (1990) Role of blood volume expansion in Dahl rat model of hypertension. Am. J. Physiol. (Heart Circ Physiol) 258:H508–H514.

    CAS  Google Scholar 

  91. Pfeffer, M.A., Pfeffer, J., Mirsky, I. and Iwai, J. (1984) Cardiac hypertrophy and performance of Dahl hypertensive rats on graded salt diets. Hypertens. 6:475–481.

    CAS  Google Scholar 

  92. Simchon, S., Manger, W.M. and Brown, T.W. (1991) Dual hemodynamic mechanisms for saltinduced hypertension in Dahl salt-sensitive rats. Hypertens. 17:1063–1071.

    CAS  Google Scholar 

  93. Krieger, J.E. and Cowley, A.W., Jr. (1990) Prevention of salt angiotensin II hypertension by servo control of body water. Am. J. Physiol. Heart Circ. Physiol. 258:H994–H1003.

    CAS  Google Scholar 

  94. Krieger, J.E., Liard, J-F. and Cowley, A.W., Jr. (1990) Hemodynamics, fluid volume, and hormonal responses to chronic high salt intake in dogs. Am. J. Physiol. Heart Circ. Physiol. 259:H1629–H1636.

    CAS  Google Scholar 

  95. Lund-Johansen, P. (1986) Hemodynamic patterns in the natural history of borderline hypertension. J. Cardiovasc. Pharmacol. 8(Suppl 5):S8–S14.

    Article  PubMed  Google Scholar 

  96. Van Vliet, B.N., Lohmeier, T.E., Mizelle, L. and Hall, J.E. (1996) The Kidney. In: Nervous Control of Blood Vessels. The Autonomic Nervous System, Vol. 8. (T. Bennet and S. Gardiner, Eds.). Harwood Academic Publishers, London, pp. 371–433.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Van Vliet, B.N., Montani, JP. (2005). Circulation and Fluid Volume Control. In: Walz, W. (eds) Integrative Physiology in the Proteomics and Post-Genomics Age. Humana Press. https://doi.org/10.1385/1-59259-925-7:043

Download citation

Publish with us

Policies and ethics