Skip to main content

Abstract

The sequencing of the human genome has provided the scientific community with the “roadmap of life” (1,2), yet the understanding of this map is dependent on the elucidation of the function of the approx 30,000 to 35,000 genes that have been predicted/identified from the sequence of the human genome. As recently reviewed, however, only one-third of these genes have any inferred function ascribed to them, whereas approximately one-sixth or less have a confirmed action (3,4). Moreover, it is estimated that there are as many as 100,000 distinct proteins with presumably distinct biological function. The challenge facing scientists in the post-genome era is to construct a model of the organism that includes gene sequence and expression, protein structure and function, the molecular interactions that occur between proteins and other molecules to create pathways, and the combination of the many complex pathways that results in functioning cells, tissues, and organisms. Only by addressing and meeting this challenge can science utilize the vast potential of the human genome project to link gene to function in health and disease. To begin to address this problem, a combination of automated technologies, novel experimental strategies, and the newly available genomic sequence data are permitting scientists to begin to assemble the individual components of biological systems into a map of the human organism that will provide an understanding of the function of different genes and gene pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lander, E.S., Linton, L.M., Birren, B., et al. (2001) International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921.

    Article  PubMed  CAS  Google Scholar 

  2. Venter, J.C., Adams, M.D., Myers, E.W., et al. (2001) The sequence of the human genome. Science 291, 1304–1351

    Article  PubMed  CAS  Google Scholar 

  3. Glueck, S.B. and Dzau, V.J. (2002) Physiological genomics: implications in hypertension research. Hypertension 39, 310–315.

    Article  PubMed  CAS  Google Scholar 

  4. Roman, R.J., Cowley, A.W. Jr., Greene, A., Kwitek, A.E., Tonellato, P.J., and Jacob, H.J. (2002) Consomic rats for the identification of genes and pathways underlying cardiovascular disease. Cold Spring Harbor Symposia on Quantitative Biology 67, 309–315.

    Article  PubMed  CAS  Google Scholar 

  5. Cowley, A.W. Jr. (2003) Genomics and homeostasis. Am. J. Physiol. 284, R611–R627.

    CAS  Google Scholar 

  6. Vukmirovic, O.G. and Tilghman, S.M. (2000) Exploring genome space. Nature 405, 820–822.

    Article  PubMed  CAS  Google Scholar 

  7. Jacob, H.J. and Kwitek, A.E. (2002) Rat genetics:attaching physiology and pharmacology to the genome. Nature Reviews Genetics 3, 33–42.

    Article  PubMed  CAS  Google Scholar 

  8. Kreutz, R. and Hubner, N. (2002) Congenic rat strains are important tools for the genetic dissection of essential hypertension. Seminars in Nephrology 22, 135–147.

    Article  PubMed  CAS  Google Scholar 

  9. Rapp, J.P. (2000) Genetic analysis of inherited hypertension in the rat. Physiol. Rev. 80, 135–72.

    PubMed  CAS  Google Scholar 

  10. Warren, K.S. and Fishman, M.C. (1998) Physiological genomics: mutant screens in zebrafish. Am. J. Physiol. 275, H1–H7.

    PubMed  CAS  Google Scholar 

  11. Members of the Complex Trait Consortium. (2003) The nature and identification of quantitative trait loci: a community’s view. Nature Reviews Genetics. 4, 911–916.

    Article  CAS  Google Scholar 

  12. Glazier, A.M., Nadeau, J.H., and Aitman, T.J. (2002) Finding genes that underlie complex traits. Science 298, 2345–2349.

    Article  PubMed  CAS  Google Scholar 

  13. Greene, A.S. (2002) Application of physiological genomics to the microcirculation. Microcirculation 9, 3–12.

    Article  PubMed  Google Scholar 

  14. Arcellano-Panlilio, M. and Robbins, S.M. (2002) Cutting-edge technology I. Global gene expression profiling using DNA microarrays. Am. J. Physiol. 282, G397–G402.

    Google Scholar 

  15. Ruijter, J.M., Van Kampen, A.H.C., and Baas, F. (2002) Statistical evaluation of SAGE libraries: consequences for experimental design. Physiol. Genomics 11, 37–44.

    PubMed  CAS  Google Scholar 

  16. Schena, M., Shalon, D., Davis, R.W., and Brown, P.O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.

    Article  PubMed  CAS  Google Scholar 

  17. Liang, M., Yuan, B., Rute, E., et al. (2002) Renal medullary genes in salt-sensitive hypertension: a chromosomal substitution and cDNA microarray study. Physiol. Genomics 8, 139–149.

    PubMed  CAS  Google Scholar 

  18. Aebersold, R. and Mann, M. (2003) Mass spectrometry-based proteomics. Nature 422, 198–207.

    Article  PubMed  CAS  Google Scholar 

  19. Bader, G.D., Heilbut, A., Andrews, B., Tyers, M., Hughes, T., and Boone, C. (2003) Functional genomics and proteomics: charting a multidimensional map of the yeast cell. Trends in Cell Biology 13, 344–356.

    Article  PubMed  CAS  Google Scholar 

  20. Patterson, S.D. and Aebersold, R.H. (2003) Proteomics: the first decade and beyond. Nature Genetics 33, 311–323.

    Article  PubMed  CAS  Google Scholar 

  21. Coffman, T.M. (1998) Gene targeting in physiological investigations: studies of the renin-angiotensin system. Am. J. Physiol. 274, F999–F1005.

    PubMed  CAS  Google Scholar 

  22. Smithies, O. (1997) A mouse view of hypertension. Hypertension 30, 1318–1324.

    PubMed  CAS  Google Scholar 

  23. Sauer, B. (1993) Manipulation of transgenes by site-specific recombination: use of Cre recombinase. Methods of Enzymology 225, 890–900.

    CAS  Google Scholar 

  24. Furth, P.A., St. Onge, L., Boger, H., et al. (1994) Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc. Natl. Acad. Sci. 91, 9302–9306.

    Article  PubMed  CAS  Google Scholar 

  25. Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., and Bujard, H. (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769.

    Article  PubMed  CAS  Google Scholar 

  26. Gossen, M. and Bujard, H. (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. 89, 5547–5551.

    Article  PubMed  CAS  Google Scholar 

  27. Zan, Y., Haag, J.D., Chen, K.S., et al. (2003) Production of knockout rats using ENU mutagenesis and a yeast-based screening assay. Nature Biotechnology 21, 645–651.

    Article  PubMed  CAS  Google Scholar 

  28. Dykxhoorn, D.M., Novina, C.D., and Sharp, P.A. (2003) Killing the messenger: short RNAs that silence gene expression. Nature Reviews 4, 457–467.

    Article  PubMed  CAS  Google Scholar 

  29. Skipper, M. (2003) Have our dreams been shattered? Nature Reviews Genetics 4, 671.

    Article  CAS  Google Scholar 

  30. Tijsterman, M., Ketting, R.F., and Plasterk, R.H.A. (2002) The genetics of RNA silencing. Annu. Rev. Genet. 36, 489–519.

    Article  PubMed  CAS  Google Scholar 

  31. Scalzitti, J.M., and Hensler, J.G. (1999) Design and efficacy of serotonin-2A receptor antisense oligodeoxynucleotide. Methods Enzymology 314, 76–89.

    Article  Google Scholar 

  32. Kanehisa, M. and Bork, P. (2003) Bioinformatics in the post-sequence era. Nature Genetics 33, 305–310.

    Article  PubMed  CAS  Google Scholar 

  33. Freimer, N. and Sabatti, C. (2003) The human phenome project. Nature Genetics 34, 15–21.

    Article  PubMed  CAS  Google Scholar 

  34. Bogue, M. (2003) Mouse Phenome Project: understanding human biology through mouse genetics and genomics. J. Appl. Physiol. 95, 1335–1337.

    PubMed  CAS  Google Scholar 

  35. Bassingthwaighte, J.B. (2000) Strategies for the physiome project. Annals of Biomedical Engineering 28, 1043–1058.

    Article  PubMed  CAS  Google Scholar 

  36. Kitano, H. (2003) Computational systems biology. Nature 420, 206–210.

    Article  CAS  Google Scholar 

  37. Hood, L. and Galas, D. (2003) The digital code of DNA. Nature 421, 444–448.

    Article  PubMed  CAS  Google Scholar 

  38. Guyton, A.C., Coleman, T.G., Cowley, A.W. Jr., Manning, R.D. Jr., Norman, R.A. Jr., and Ferguson, J.D. (1974) A systems analysis approach to understanding long-range arterial blood pressure control and hypertension. Circ. Res. 35, 159–176.

    Google Scholar 

  39. Guyton, A.C., Coleman, T.G., and Granger, H.J. (1972) Circulation: overall regulation. Ann. Rev. Physiol. 34, 13–46.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Mattson, D.L. (2005). Functional Genomics. In: Walz, W. (eds) Integrative Physiology in the Proteomics and Post-Genomics Age. Humana Press. https://doi.org/10.1385/1-59259-925-7:007

Download citation

Publish with us

Policies and ethics