Repair and Defense Systems at the Epithelial Surface in the Lung

  • Pieter S. Hiemstra


The vast majority of infectious agents enter the body through the mucosal surfaces, such as those of the lung and intestine. These surfaces are covered by an epithelium that forms the interface between the external environment and the internal milieu. The epithelium is an essential physical barrier between the potentially hostile outside world and the host, but is also actively involved in processes like infection, inflammation, and immunity. The epithelium is therefore considered an important component of the host defense system. Epithelial layers are frequently injured because they are exposed to environmental toxic agents such as chemicals and micro-organisms, and to mechanical injury. To prevent invasion of the underlying tissue by pathogens and toxic agents, this epithelial injury must be followed by a rapid repair response. This chapter focuses on the interplay between this epithelial repair and the host defense system at the epithelial surface, two mechanisms that appear to act in concert to protect the host from infection. Whereas many of the principle mechanisms that operate in the diverse epithelia display marked similarities, some characteristics are typical for one type of epithelium. This chapter focuses on the pulmonary epithelium.


Antimicrobial Peptide Airway Epithelial Cell Wound Repair Airway Epithelium Mucociliary Clearance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Corrin, B. (2000) Normal lung structure, In Pathology of the lungs (Corrin, B., ed), Churchill Livingstone, London, pp. 1–34.Google Scholar
  2. 2.
    Danel, C. J. (1996) Morphological characteristics of human airway structures: diversity and unity, in Environmental impact on the airways. From injury to repair (Chretien, J. and Dusser, D., eds), Marcel Dekker, New York, pp. 19–42.Google Scholar
  3. 3.
    Crapo, J. D., Barry, B. E., Gehr, P., Bachofen, M. and Weibel, E. R. (1982) Cell number and cell characteristics of the normal human lung. Am. Rev. Resp. Dis. 126:332–337.PubMedGoogle Scholar
  4. 4.
    Bals, R. and Hiemstra, P. S. (2004) Innate immunity in the lung: how epithelial cells fight against respiratory pathogens. Eur. Respir. J. 23:327–333.PubMedCrossRefGoogle Scholar
  5. 5.
    Ganz, T. (2004) Antimicrobial polypeptides. J. Leukoc. Biol. 75:34–38.PubMedCrossRefGoogle Scholar
  6. 6.
    Message, S. D. and Johnston, S. L. (2004) Host defense function of the airway epithelium in health and disease: clinical background. J. Leukoc. Biol. 75:5–17.PubMedCrossRefGoogle Scholar
  7. 7.
    Takeda, K., Kaisho, T. and Akira, S. (2003) Toll-like receptors. Annu. Rev. Immunol. 21: 335–376.PubMedCrossRefGoogle Scholar
  8. 8.
    Poltorak, A., He, X., Smirnova, I., andet al. (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088.PubMedCrossRefGoogle Scholar
  9. 9.
    Agnese, D. M., Calvano, J. E., Hahm, S. J., andet al. (2002) Human toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gram-negative infections. J. Infect. Dis. 186: 1522–1525.PubMedCrossRefGoogle Scholar
  10. 10.
    Wanner, A., Salathe, M. and O’Riordan, T. G. (1996) Mucociliary clearance in the airways. Am. J. Respir. Crit Care Med. 154:1868–1902.PubMedGoogle Scholar
  11. 11.
    Sleigh, M. A., Blake, J. R. and Liron, N. (1988) The propulsion of mucus by cilia. Am. Rev. Respir. Dis. 137:726–741.PubMedGoogle Scholar
  12. 12.
    Boucher, R. C. (2004) New concepts of the pathogenesis of cystic fibrosis lung disease. Eur. Respir. J 23:146–158.PubMedCrossRefGoogle Scholar
  13. 13.
    Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395.PubMedCrossRefGoogle Scholar
  14. 14.
    Sallenave, J. M. (2000) The role of secretory leukocyte proteinase inhibitor and elafin (elastase-specific inhibitor/skin-derived antileukoprotease) as alarm antiproteinases in inflammatory lung disease. Respir. Res. 1:87–92.PubMedCrossRefGoogle Scholar
  15. 15.
    Ganz, T. (2003) Defensins: Antimicrobial peptides of innate immunity. Nature Rev. Immunol. 3: 710–720.CrossRefGoogle Scholar
  16. 16.
    Schutte, B. C. and McCray, P. B., Jr. (2002) [beta]-defensins in lung host defense. Annu. Rev. Physiol 64:709–748.PubMedCrossRefGoogle Scholar
  17. 17.
    Schutte, B. C., Mitros, J. P., Bartlett, J. A.,et al. (2002) Discovery of five conserved beta-defensin gene clusters using a computational search strategy. Proc. Natl. Acad. Sci. U. S. A 99:2129–2133.PubMedCrossRefGoogle Scholar
  18. 18.
    Kao, C. Y., Chen, Y., Zhao, Y. H. and Wu, R. (2003) ORFeome-Based Search of Airway Epithelial Cell-Specific Novel Human β-Defensin Genes. Am. J. Resp. Cell Mol. Biol. 29:71–80.CrossRefGoogle Scholar
  19. 19.
    Moser, C., Weiner, D. J., Lysenko, E., Bals, R., Weiser, J. N. and Wilson, J. M. (2002) beta-Defensin 1 contributes to pulmonary innate immunity in mice. Infect. Immun. 70:3068–3072.PubMedCrossRefGoogle Scholar
  20. 20.
    Zanetti, M. (2004) Cathelicidins, multifunctional peptides of the innate immunity. J. Leukoc. Biol. 75:39–48.PubMedCrossRefGoogle Scholar
  21. 21.
    Bals, R., Weiner, D. J., Meegalla, R. L. and Wilson, J. M. (1999) Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. J. Clin. Invest 103:1113–1117.PubMedGoogle Scholar
  22. 22.
    Nizet, V., Ohtake, T., Lauth, X., Trowbridge, J.,et al. (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414:454–457.PubMedCrossRefGoogle Scholar
  23. 23.
    Hertz, C. J., Wu, Q., Porter, E. M.,et al. (2003) Activation of toll-like receptor 2 on human tracheobronchial epithelial cells induces the antimicrobial peptide human beta defensin-2. J. Immunol. 171:6820–6826.PubMedGoogle Scholar
  24. 24.
    Liu, L., Roberts, A. A. and Ganz, T. (2003) By IL-1 signaling, monocyte-derived cells dramatically enhance the epidermal antimicrobial response to lipopolysaccharide. J. Immunol. 170:575–580.PubMedGoogle Scholar
  25. 25.
    Tsutsumi-Ishii, Y. and Nagaoka, I. (2003) Modulation of human beta-defensin-2 transcription in pulmonary epithelial cells by lipopolysaccharide-stimulated mononuclear phagocytes via proinflammatory cytokine production. J. Immunol. 170:4226–4236.PubMedGoogle Scholar
  26. 26.
    Akinbi, H. T., Epaud, R., Bhatt, H. and Weaver, T. E. (2000) Bacterial killing is enhanced by expression of lysozyme in the lungs of transgenic mice. J. Immunol. 165:5760–5766.PubMedGoogle Scholar
  27. 27.
    Singh, P. K., Parsek, M. R., Greenberg, E. P. and Welsh, M. J. (2002) A component of innate immunity prevents bacterial biofilm development. Nature 417:552–555.PubMedCrossRefGoogle Scholar
  28. 28.
    Costerton, J. W., Stewart, P. S. and Greenberg, E. P. (1999) Bacterial Biofilms: A Common Cause of Persistent Infections. Science 284:1318.PubMedCrossRefGoogle Scholar
  29. 29.
    Hiemstra, P. S., Maassen, R. J., Stolk, J., Heinzel-Wieland, R., Steffens, G. J. and Dijkman, J. H. (1996) Antibacterial activity of antileukoprotease. Infect. Immun. 64:4520–4524.PubMedGoogle Scholar
  30. 30.
    McNeely, T. B., Dealy, M., Dripps, D. J., Orenstein, J. M., Eisenberg, S. P. and Wahl, S. M. (1995) Secretory leukocyte protease inhibitor: a human saliva protein exhibiting anti-human immunodeficiency virus 1 activity in vitro. J. Clin. Invest. 96:456–464.PubMedCrossRefGoogle Scholar
  31. 31.
    Simpson, A. J., Maxwell, A. I., Govan, J. R., Haslett, C. and Sallenave, J. M. (1999) Elafin (elastase-specific inhibitor) has anti-microbial activity against gram-positive and gram-negative respiratory pathogens. FEBS Lett. 452:309–313.PubMedCrossRefGoogle Scholar
  32. 32.
    Cole, A. M., Liao, H. I., Stuchlik, O., Tilan, J., Pohl, J. and Ganz, T. (2002) Cationic Polypeptides Are Required for Antibacterial Activity of Human Airway Fluid. J. Immunol. 169:6985.PubMedGoogle Scholar
  33. 33.
    Nakamura, A., Mori, Y., Hagiwara, K., et al. (2003) Increased susceptibility to LPS-induced endotoxin shock in secretory leukoprotease inhibitor (SLPI)-deficient mice. J. Exp. Med. 197:669–674.PubMedCrossRefGoogle Scholar
  34. 34.
    Simpson, A. J., Wallace, W. A., Marsden, M. E., et al. (2001) Adenoviral augmentation of elafin protects the lung against acute injury mediated by activated neutrophils and bacterial infection. J. Immunol. 167: 1778–1786.PubMedGoogle Scholar
  35. 35.
    Yang, D., Chertov, O. and Oppenheim, J. J. (2001) Participation of mammalian defensins and cathelicidins in anti-microbial immunity: receptors and activities of human defensins and cathelicidin (LL-37). J. Leukoc. Biol. 69:691–697.PubMedGoogle Scholar
  36. 36.
    Davidson, D. J., Currie, A. J., Reid, G. S. D., et al. (2004) The Cationic Antimicrobial Peptide LL-37 Modulates Dendritic Cell Differentiation and Dendritic Cell-Induced T Cell Polarization. J. Immunol. 172: 1146–1156.PubMedGoogle Scholar
  37. 37.
    Lillard, J. W., Jr., Boyaka, P. N., Chertov, O., Oppenheim, J. J. and McGhee, J. R. (1999) Mechanisms for induction of acquired host immunity by neutrophil peptide defensins. Proc. Natl. Acad. Sci. U. S. A 96: 651–656.PubMedCrossRefGoogle Scholar
  38. 38.
    Erjefalt, J. S. and Persson, C. G. A. (1997) Airway epithelial repair: breathtakingly quick and multipotentially pathogenic. Thorax 52:1010–1012.PubMedCrossRefGoogle Scholar
  39. 39.
    Puchelle, E. and Zahm, J.-M. (1996) Repair processes of the airway epithelium, in Environmental impact on the airways. From injury to repair. (Chretien, J. and Dusser, D., eds), Marcel Dekker, New York, pp. 157–182.Google Scholar
  40. 40.
    Rennard, S. I. (1996) Repair mechanisms in asthma. J. Allergy Clin. Immunol 98:S278–S286.PubMedCrossRefGoogle Scholar
  41. 41.
    Jacinto, A., Martinez-Arias, A. and Martin, P. (2001) Mechanisms of epithelial fusion and repair. Nature Cell Biology 3:E117–E123.PubMedCrossRefGoogle Scholar
  42. 42.
    Keenan, K. P., Combs, J. W. and McDowell, E. M. (1982) Regeneration of hamster tracheal epithelium after mechanical injury. I. Focal lesions: quantitative morphologic study of cell proliferation. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 41:193–214.PubMedGoogle Scholar
  43. 43.
    Erjefalt, J. S., Erjefalt, I., Sundler, F. and Persson, C. G. (1995) In vivo restitution of airway epithelium. Cell Tissue Res. 281:305–316.PubMedGoogle Scholar
  44. 44.
    Zahm, J. M., Kaplan, H., Herard, A. L.,et al. (1997) Cell migration and proliferation during the in vitro wound repair of the respiratory epithelium. Cell Motil. Cytoskeleton 37:33–43.PubMedCrossRefGoogle Scholar
  45. 45.
    Puchelle, E. and Peault, B. (2000) Human airway xenograft models of epithelial cell regeneration. Resp.Res. 1:125–128.CrossRefGoogle Scholar
  46. 46.
    Murphy, C. J., Foster, B. A., Mannis, M. J., Selsted, M. E. and Reid, T. W. (1993) Defensins are mitogenic for epithelial cells and fibroblasts. J. Cell. Physiol. 155:408–413.PubMedCrossRefGoogle Scholar
  47. 47.
    Aarbiou, J., Ertmann, M., van Wetering, S.,et al. (2002) Human neutrophil defensins induce lung epithelial cell proliferation in vitro. J. Leukoc. Biol. 72:167–174.PubMedGoogle Scholar
  48. 48.
    Calafat, J., Janssen, H., Stahle-Backdahl, M., Zuurbier, A. E., Knol, E. F. and Egesten, A. (1997) Human monocytes and neutrophils store transforming growth factor-alpha in a subpopulation of cytoplasmic granules. Blood 90:1255–1266.PubMedGoogle Scholar
  49. 49.
    Egesten, A., Calafat, J., Knol, E. F., Janssen, H. and Walz, T. M. (1996) Subcellular localization of transforming growth factor-alpha in human eosinophil granulocytes. Blood 87:3910–3918.PubMedGoogle Scholar
  50. 50.
    Takeyama, K., Jung, B., Shim, J. J.,et al. (2001) Activation of epidermal growth factor receptors is responsible for mucin synthesis induced by cigarette smoke. Am. J. Physiol. Lung Cell Mol. Physiol. 280: L165–L172.PubMedGoogle Scholar
  51. 51.
    Takeyama, K., Dabbagh, K., Jeong, S. J.,et al. (2000) Oxidative stress causes mucin synthesis via transactivation of epidermal growth factor receptor: role of neutrophils. J. Immunol. 164:1546–1552.PubMedGoogle Scholar
  52. 52.
    Breuer, R., Christensen, T. G., Lucey, E. C., Stone, P. J. and Snider, G. L. (1987) An ultrastructural morphometric analysis of elastase-treated hamster bronchi shows discharge followed by progressive accumulation of secretory granules. Am. Rev. Respir. Dis. 136:698–703.PubMedGoogle Scholar
  53. 53.
    Stolk, J., Rudolphus, A., Davies, P.,et al. (1992) Introduction of emphysema and bronchial mucus cell hyperplasia by intratracheal instillation of lipopolysaccharide in the hamster. J. Pathol. 167: 349–356.PubMedCrossRefGoogle Scholar
  54. 54.
    Frohm, M., Gunne, H., Bergman, A.-C.,et al. (1996) Biochemical and antibacterial analysis of human wound and blister fluid. Eur. J. Biochem. 237:86–92.PubMedCrossRefGoogle Scholar
  55. 55.
    Dorschner, R. A., Pestonjamasp, V. K., Tamakuwala, S.,et al. (2001) Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group A Streptococcus. J. Invest. Dermatol. 117: 91–97.PubMedCrossRefGoogle Scholar
  56. 56.
    Heilborn, J. D., Nilsson, M. F., Kratz, G.,et al. (2003) The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J. Invest. Dermatol. 120:379–389.PubMedCrossRefGoogle Scholar
  57. 57.
    Schmid, P., Grenet, O., Medina, J., Chibout, S. D., Osborne, C. and Cox, D. A. (2001) An intrinsic antibiotic mechanism in wounds and tissue-engineered skin. J. Invest. Dermatol. 116:471–472.PubMedCrossRefGoogle Scholar
  58. 58.
    Wingens, M., van Bergen, B. H., Hiemstra, P. S.,et al. (1998) Induction of SLPI (ALP/HUSI-I) in epidermal keratinocytes. J. Invest. Dermatol. 111:996–1002.PubMedCrossRefGoogle Scholar
  59. 59.
    van Bergen, B. H., Andriessen, M. P., Spruijt, K. I., van de Kerkhof, P. C. and Schalkwijk, J. (1996) Expression of SKALP/elafin during wound healing in human skin. Arch. Dermatol. Res. 288:458–462.PubMedGoogle Scholar
  60. 60.
    Frohm, M., Agerberth, B., Ahangari, G.,et al. (1997) The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J. Biol. Chem. 272: 15258–15263.PubMedCrossRefGoogle Scholar
  61. 61.
    Harder, J., Bartels, J., Christophers, E. and Schröder, J.-M. (1997) A peptide antibiotic from human skin. Nature 387:861.PubMedCrossRefGoogle Scholar
  62. 62.
    Harder, J., Bartels, J., Christophers, E. and Schroder, J. M. (2001) Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem. 276:5707–5713.PubMedCrossRefGoogle Scholar
  63. 63.
    Sorensen, O. E., Cowland, J. B., Theilgaard-Monch, K., Liu, L., Ganz, T. and Borregaard, N. (2003) Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J. Immunol. 170:5583–5589.PubMedGoogle Scholar
  64. 64.
    Aarbiou, J., Verhoosel, R. M., van Wetering, S.,et al. (2004) Neutrophil defensins enhance lung epithelial wound closure and mucin gene expression in vitro. Am. J. Respir. Cell Mol. Biol. 30:193–201.PubMedCrossRefGoogle Scholar
  65. 65.
    Hagiwara, T., Shinoda, I., Fukuwatari, Y. and Shimamura, S. (1995) Effects of lactoferrin and its peptides on proliferation of rat intestinal epithelial cell line, IEC-18, in the presence of epidermal growth factor. Biosci. Biotechnol. Biochem. 59:1875–1881.PubMedCrossRefGoogle Scholar
  66. 66.
    Aarbiou, J., Van Schadewijk, A., Stolk, J.,et al. (2004) Human neutrophil defensins and secretory leukocyte proteinase inhibitor in squamous metaplastic epithelium of bronchial airways. Inflamm. Res. 53: 230–238.PubMedCrossRefGoogle Scholar
  67. 67.
    Koczulla, R., von Degenfeld, G., Kupatt, C., Krotz, F., Zahler, S., Gloe, T., Issbrucker, K., Unterberger, P., Zaiou, M., Lebherz, C., Karl, A., Raake, P., Pfosser, A., Boekstegers, P., Welsch, U., Hiemstra, P. S., Vogelmeier, C., Gallo, R. L., Clauss, M. and Bals, R. (2003) An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J. Clin. Invest. 111, 1665–1672.PubMedCrossRefGoogle Scholar
  68. 68.
    Tjabringa, G. S., Aarbiou, J., Ninaber, D. K.,et al. (2003) The Antimicrobial Peptide LL-37 Activates Innate Immunity at the Airway Epithelial Surface by Transactivation of the Epidermal Growth Factor Receptor. J. Immunol. 171:6690–6696.PubMedGoogle Scholar
  69. 69.
    Frye, M., Bargon, J. and Gropp, R. (2001) Expression of human beta-defensin-1 promotes differentiation of keratinocytes. J Mol. Med. 79:275–282.PubMedCrossRefGoogle Scholar
  70. 70.
    Ashcroft, G. S., Lei, K., Jin, W.,et al. (2000) Secretory leukocyte protease inhibitor mediates non-redundant functions necessary for normal wound healing. Nat. Med. 6:1147–1153.PubMedCrossRefGoogle Scholar
  71. 71.
    Zhang, D., Simmen, R. C., Michel, F. J., Zhao, G., Vale-Cruz, D. and Simmen, F. A. (2002) Secretory leukocyte protease inhibitor mediates proliferation of human endometrial epithelial cells by positive and negative regulation of growth-associated genes. J. Biol. Chem. 277:29,999–30,009.PubMedCrossRefGoogle Scholar
  72. 72.
    Zhu, J., Nathan, C., Jin, W.,et al. (2002) Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. Cell 111:867–878.PubMedCrossRefGoogle Scholar
  73. 73.
    Kikuchi, T., Abe, T., Yaekashiwa, M., et al. (2000) Secretory leukoprotease inhibitor augments hepatocyte growth factor production in human lung fibroblasts. Am. J. Respir. Cell Mol. Biol. 23:364–370.PubMedGoogle Scholar
  74. 74.
    Zahm, J. M., Debordeaux, C., Raby, B., Klossek, J. M., Bonnet, N. and Puchelle, E. (2000) Motogenic effect of recombinant HGF on airway epithelial cells during the in vitro wound repair of the respiratory epithelium. J. Cell. Physiol. 185:447–453.PubMedCrossRefGoogle Scholar
  75. 75.
    Mogi, M., Inagaki, H., Kojima, K., Minami, M. and Harada, M. (1995) Transforming growth factor-alpha in human submandibular gland and saliva. J. Immunoassay 16:379–394.PubMedCrossRefGoogle Scholar
  76. 76.
    Murakami, M., Ohtake, T., Dorschner, R. A. and Gallo, R. L. (2002) Cathelicidin antimicrobial peptides are expressed in salivary glands and saliva. J Dent. Res. 81:845–850.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Pieter S. Hiemstra
    • 1
  1. 1.Department of PulmonologyLeiden University Medical CenterLeidenNetherlands

Personalised recommendations