Physiological Determinants of Consciousness

  • Mircea Steriade


It is taken for granted that everyone has a rough idea of what is meant by consciousness, but we know as long as no one asks us to define it (1). This is why some consider that “it is better to avoid a precise definition of consciousness because of the dangers of a premature definition” (2). Still, many theoretical writers and even some basic neuroscientists play with the global notion of consciousness in very different ways. For most authors, the notion covers sensations, mental images, thoughts, and volition. Special emphasis was also placed on emotions and feelings as important components of consciousness toward the emergence of self (3,4). In dictionaries, consciousness is simply defined as the state of being awake or, sometimes more subtly, as an organism’s awareness of its own self and surroundings. Awareness exists in animals, whereas self-awareness and evolved forms of consciousness that implicate complex plans in anticipated future probably restrict this notion to humans. The view that consciousness depends on awareness and arises from a background of brain arousal led most commentators to conclude that consciousness is what abandons us every evening and reappears the next morning when we wake up. However, peculiar types of consciousness, such as mentation with illogical thought and bizarre feelings, occur during dreaming in rapid-eye-movement (REM) sleep, whereas during deep stages of slow-wave sleep (SWS) dream mentation is much closer to real life (5, 6, 7).


Absence Seizure Absence Epilepsy Sleep Spindle Slow Oscillation Childhood Absence Epilepsy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    James, W. (1890) The Principles of Psychology. Henry Holt, New York, NY.Google Scholar
  2. 2.
    Crick, F. (1994) The Astonishing Hypothesis. Charles Scribner’s Sons, New York, NY.Google Scholar
  3. 3.
    Damasio, A.R. (1999) The Feelings of What Happens: Body and Emotion in the Making of Consciousness. Harcourt, Brace & Co, New York, NY.Google Scholar
  4. 4.
    Damasio, A.R. (2003) Looking for Spinoza: Joy, Sorrow, and the Feeling Brain. Harcourt/Heinemann, New York, NY.Google Scholar
  5. 5.
    Hobson, J.A. and Steriade, M. (1986) Neuronal basis of behavioral state control. In Handbook of Physiology (Vol. IV) (Mountcastle, V.B. and Bloom, F.E., eds.), American Physiological Society, Bethesda, MD, pp. 701–823.Google Scholar
  6. 6.
    Kahn, D., Pace-Schott, E.F. and Hobson, J.A. (1997) Consciousness in waking and dreaming: the roles of neuronal oscillations and neuromodulation in determining similarities and differences. Neuroscience. 78:13–38.PubMedCrossRefGoogle Scholar
  7. 7.
    Hobson, J.A., Pace-Schott, E. and Stickgold, R. (2000) Dreaming and the brain: toward a cognitive neuroscience of conscious states. Brain Behav. Sci. 23:793–842.CrossRefGoogle Scholar
  8. 8.
    Edelman, G.M. (1989) The Remembered Present: A Biological Theory of Consciousness. Basic Books, New York, NY.Google Scholar
  9. 9.
    Damasio, A.R. and Damasio, H. (1996) Making images and creating subjectivity. In The Mind-Brain Continuum (Llinás, R. and Churchland, P.S., eds.), The MIT Press, Cambridge, MA, pp. 19–27.Google Scholar
  10. 10.
    Libet, B. (1998) Do the models offer testable proposals of brain functions for conscious experience? In Consciousness: At the Frontiers of Neuroscience (Advances in Neurology, vol. 77) (Jasper, H.H., Descarries, L., Castelucci, V.F. and Rossignol, S., eds.), Lippincott-Raven, Philadelphia, PA, pp. 213–217.Google Scholar
  11. 11.
    Smart, J.J.C. (1959) Sensations and brain processes. Philos. Rev. 68:141–156.CrossRefGoogle Scholar
  12. 12.
    Llinás, R.R. (2001) I of the Vortex. The MIT Press, Cambridge, MA.Google Scholar
  13. 13.
    Nichols, M.J. and Newsome, W.T. (1999) The neurobiology of cognition. Nature. 402(Suppl.):C35–C38.PubMedCrossRefGoogle Scholar
  14. 14.
    Popper, K.R. and Eccles, J.C. (1977) The Self and Its Brain. Springer, Berlin.Google Scholar
  15. 15.
    Eccles, J.C. (1994) How the Self ControlsI Its Brain. Springer, Berlin.Google Scholar
  16. 16.
    Soury, J. (1899) Le Système Nerveux Central. Histoire Critique des Théories et des Doctrines (vol. 1). Carré et Naud, Paris.Google Scholar
  17. 17.
    Walshe, F.M.R. (1957) The brain-stem conceived as the “highest level” of function in the nervous system: with particular reference to the “automatic apparatus” of Carpenter (1850) and to the “centrencephalic integrating system” of Penfield. Brain. 80:510–539.PubMedCrossRefGoogle Scholar
  18. 18.
    Penfield, W. and Rasmussen, T. (1950) The Cerebral Cortex of Man. A Clinical Study of Localization of Function. Macmillan, New York, NY.Google Scholar
  19. 19.
    Zattore, R.J., Jones-Gotman, M., Evans, A.C. and Meyer, E. (1992) Functional localization and lateralization of human olfactory cortex. Nature. 360:339–341.CrossRefGoogle Scholar
  20. 20.
    Laurent, G. (1996) Dynamical representation of odors by oscillating and evolving neural assemblies. Trends Neurosci. 19:489–496.PubMedCrossRefGoogle Scholar
  21. 21.
    Laing, D.G. (1983) Natural sniffing gives optimum odor perception for humans. Perception. 12:99–117.PubMedCrossRefGoogle Scholar
  22. 22.
    Sobel, N., Prabhakaran, V., Desmond, J.E., et al. (1998) Sniffing and smelling: separate subsystems in the human olfactory cortex. Nature. 392:282–286.PubMedCrossRefGoogle Scholar
  23. 23.
    Doty, R.L., Deems, D.A. and Stellar, S. (1988) Olfactory dysfunction in Parkinsonism: a general deficit unrelated to neurologic signs, disease stage, or disease duration. Neurology. 38:1237–1244.PubMedGoogle Scholar
  24. 24.
    Grillner, S. and Matsushima, T. (1991) The neural network underlying locomotion in lamprey-synaptic and cellular mechanisms. Neuron. 7:1–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Viana di Prisco, G., Pearlstein, E., Robitaille, R. and Dubuc, R. (1997) Role of sensory-evoked NMDA plateau potentials in the initiation of locomotion. Science. 278:1122–1125.CrossRefGoogle Scholar
  26. 26.
    Grillner, S. (1997) Ion channels and locomotion. Science. 278:1087–1088.PubMedCrossRefGoogle Scholar
  27. 27.
    Llinás, R.R. and Paré, D. (1991) Of dreaming and wakefulness. Neuroscience. 44:521–535.PubMedCrossRefGoogle Scholar
  28. 28.
    Llinás, R., Ribary, U., Joliot, M. and Wang, X.J. (1993) Content and context in temporal thalamocortical binding. In Temporal Coding in the Brain (Buzsáki, G., Llinás, R., Singer, W., Berthoz A. and Christen, Y., eds.), Springer, Berlin, pp. 251–272.Google Scholar
  29. 29.
    Crick, F. and Koch, C. (1995) Are we aware of neural activity in primary visual cortex? Nature. 375:121–123.PubMedCrossRefGoogle Scholar
  30. 30.
    Pollen, D.A. (1995) Cortical areas in visual awareness. Nature. 377:293–294.PubMedCrossRefGoogle Scholar
  31. 31.
    Block, N. (1996) How can we find the neuronal correlates of consciousness? Trends Neurosci. 19:456–459.PubMedCrossRefGoogle Scholar
  32. 32.
    Steriade, M. (2001) The Intact and Sliced Brain. MIT Press, Cambridge, MA.Google Scholar
  33. 33.
    Tononi, G. and Edelman, G.M. (1998) Consciousness and complexity. Science. 282:1846–1851.PubMedCrossRefGoogle Scholar
  34. 34.
    Crick, F. and Koch, C. (2003) A framework for consciousness. Nat. Neurosci. 6:119–126.PubMedCrossRefGoogle Scholar
  35. 35.
    Koch, C. (1998) The neuroanatomy of visual consciousness, in Consciousness: At the Frontiers of Neuroscience (Advances in Neurology, vol. 77) (Jasper, H.H., Descarries, L., Castelucci, V.F. and Rossignol, S., eds.), Lippincott-Raven, Philadelphia, PA, pp. 229–241.Google Scholar
  36. 36.
    Connors, B.W., Gutnick, M.J. and Prince, D.A. (1982) Electrophysiological properties of neocortical neurons in vitro. J. Neurophysiol. 48:1302–1320.PubMedGoogle Scholar
  37. 37.
    Connors, B.W. and Amitai, Y. (1995) Functions of local circuits in neocortex: synchrony and laminae. In The Cortical Neuron (Gutnick, M.J. and Mody, I., eds), Oxford University Press, New York, Oxford, pp. 123–140.Google Scholar
  38. 38.
    Steriade, M., Nuñez, A. and Amzica, F. (1993) A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13:3252–3265.PubMedGoogle Scholar
  39. 39.
    Chen, W., Zhang, J.J., Hu, G.Y. and Wu, C.P. (1996) Electrophysiological and morphological properties of pyramidal and non-pyramidal neurons in the cat motor cortex in vitro. Neuroscience. 73:39–55.PubMedCrossRefGoogle Scholar
  40. 40.
    Nishimura, Y., Kitagawa, H., Saitoh, K., et al. (1996) The burst firing in the layer III and V pyramidal neurons of the cat sensorimotor cortex in vitro. Brain Res. 727:212–216.PubMedCrossRefGoogle Scholar
  41. 41.
    Steriade, M., Timofeev, I. and Grenier, F. (2001) Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol. 85:1969–1985.PubMedGoogle Scholar
  42. 42.
    Yang, C.R., Seamans, J.K. and Gorelova, N. (1996) Electrophysiological and morphological properties of layers V–VI principal pyramidal cells in rat prefrontal cortex in vitro. J. Neurosci. 16:1904–1921.PubMedGoogle Scholar
  43. 43.
    Timofeev, I., Grenier, F., Bazhenov, M., Sejnowski, T.J. and Steriade, M. (2000) Origin of slow oscillations in deafferented cortical slabs. Cereb. Cortex 10:1185–1199.PubMedCrossRefGoogle Scholar
  44. 44.
    Steriade, M., Timofeev, I., Dürmüller, N. and Grenier, F. (1998) Dynamic properties of corticothalamic neurons and local cortical interneurons generating fast rhythmic (30–40 Hz) spike bursts. J. Neurophysiol. 79:483–490.PubMedGoogle Scholar
  45. 45.
    Gray, C.M. and McCormick, D.A. (1996) Chattering cells: superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science. 274:109–113.PubMedCrossRefGoogle Scholar
  46. 46.
    Moruzzi, G. and Magoun, H.W. (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 1:455–473.Google Scholar
  47. 47.
    Steriade, M. and McCarley, R.W. (1990) Brainstem Control of Wakefulness and Sleep. Plenum, New York, NY.Google Scholar
  48. 48.
    Mesulam, M.M., Mufson, E.J., Levey, A.I. and Wainer, B.H. (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J. Comp. Neurol. 214:170–197.PubMedCrossRefGoogle Scholar
  49. 49.
    Steriade, M., Amzica, F. and Nuñez, A. (1993) Cholinergic and noradrenergic modulation of the slow (∼0.3 Hz) oscillation in neocortical cells. J. Neurophysiol. 70:1384–1400.Google Scholar
  50. 50.
    Bremer, F. (1935) Cerveau “isolé” et physiologie du sommeil. C. R. Soc. Biol. (Paris). 118:1235–1241.Google Scholar
  51. 51.
    Batsel, H.L. (1964) Spontaneous desynchronization in the chronic cat “cerveau isolé”. Arch. Ital. Biol. 102:547–566.PubMedGoogle Scholar
  52. 52.
    Villablanca, J. (1965) The electrocorticogram in the chronic cerveau isolé cat. Electroencephalogr. Clin. Neurophysiol. 19:576–586.PubMedCrossRefGoogle Scholar
  53. 53.
    Kreindler, A. and Steriade, M. (1964) EEG patterns of arousal and sleep induced by stimulating various amygdaloid levels in the cat. Arch. Ital. Biol. 102:576–586.PubMedGoogle Scholar
  54. 54.
    Façon, E., Steriade, M. and Wertheimer, N. (1958) Hypersomnie prolongée engendrée par des lésions bilatérales du système activateur médial: le syndrome thrombotique de la bifurcation du tronc basilaire. Rev. Neurol. (Paris). 98:117–133.Google Scholar
  55. 55.
    Castaigne, P., Buge, A., Escourolle, R. and Mason, M. (1962) Ramollissement pédonculaire médian, tegmentothalamique avec ophtalmoplégie et hypersomnie. Rev. Neurol. (Paris). 106:357–367.Google Scholar
  56. 56.
    Plum, F. (1991) Coma and related global disturbances of the human conscious state. In Cerebral Cortex (vol. 9, Normal and Altered States of Function) (Peters, A. and Jones, E.G., eds.) Plenum, New York, NY, pp. 359–425.Google Scholar
  57. 57.
    Kinomura, S., Larsson, J., Gulyás, B. and Roland, P. (1996) Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science. 271:512–515.PubMedCrossRefGoogle Scholar
  58. 58.
    Steriade, M., Datta, S., Paré, D., Oakson, G. and Curró Dossi, R. (1990) Neuronal activities in brainstem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J. Neurosci. 10:2541–2559.PubMedGoogle Scholar
  59. 59.
    Steriade, M., Paré, D., Datta, S., Oakson, G. and Curró Dossi, R. (1990c) Different cellular types in mesopontine cholinergic nuclei related to ponto-geniculo-occipital waves. J. Neurosci. 10:2560–2579.PubMedGoogle Scholar
  60. 60.
    Desimone, R. and Duncan, J. (1995) Neural mechanisms of selective attention. Ann. Rev. Neurosci. 18:193–222.PubMedCrossRefGoogle Scholar
  61. 61.
    Robinson, D.L. and Cowie, R.J. (1997) The primate pulvinar: structural, functional, and behavioral components of visual salience. In Thalamus (vol. 2, Experimental and Clinical Aspects) (Steriade, M., Jones, E.G. and McCormick, D.A., eds.), Elsevier, Oxford, pp. 53–92.Google Scholar
  62. 62.
    Fuster, J.M. (1996) Network memory. Trends Neurosci. 20:451–459.CrossRefGoogle Scholar
  63. 63.
    Goldman-Rakic, P.S. (1996) Regional and cellular fractionation of working memory. Proc. Natl. Acad. Sci. USA. 93:13473–13480.PubMedCrossRefGoogle Scholar
  64. 64.
    LeDoux, J.E. (1996) The Emotional Brain. Simon and Schuster, New York, NY.Google Scholar
  65. 65.
    Bushara, K.O., Hanakawa, T., Immisch, I., Toma, K., Kansaku, K. and Haller, M. (2003) Neural correlates of cross-modal binding. Nat. Neurosci. 6:190–195.PubMedCrossRefGoogle Scholar
  66. 66.
    Ungerleider, L.G., Courtney, S.M. and Haxby, J.V. (1998) A neural system for human visual working memory. Proc. Natl. Acad. Sci. USA 95:883–890.PubMedCrossRefGoogle Scholar
  67. 67.
    Wilson, F.A., Scalaidhe, S.P. and Goldman-Rakic, P.S. (1993) Dissociation of object and spatial processing domains in primate prefrontal cortex. Science. 260:1955–1958.PubMedCrossRefGoogle Scholar
  68. 68.
    Northoff, G., Richter, A., Gessner, M., et al. (2000) Functional dissociation between medial and lateral prefrontal cortical spatiotemporal activation in negative and positive emotions: a combined fMRI/MEG study. Cereb. Cortex 10:93–107.PubMedCrossRefGoogle Scholar
  69. 69.
    Opitz, B., Mecklinger, A., Friederici, A.D. and von Cramon, D.Y. (1999) The functional neuroanatomy of novelty processing: integrating ERP and fMRI results. Cereb. Cortex 9:379–391.PubMedCrossRefGoogle Scholar
  70. 70.
    Slotnick, S.D., Moo, L.R., Kraut, M.A., Lesser, R.P. and Hart J Jr. (2002) Interactions between thalamic and cortical rhythms during semantic memory recall in human. Proc. Natl. Acad. Sci. USA. 99:6440–6443.PubMedCrossRefGoogle Scholar
  71. 71.
    Pavlov, I.P. (1923) “Innere Hemmung” der bedingten Reflexe und der Schlaf-ein und derselbe Prozess. Skand. Arch. Physiol. 44:42–58.Google Scholar
  72. 72.
    Eccles, J.C. (1961) Chairman’s opening remarks. In The Nature of Sleep (Wolstenholme, G.E.W. and O’Connor, M., eds.), Churchill, London, pp. 1–3.Google Scholar
  73. 73.
    Sherrington, C.S. (1955) Man on his Nature. Doubleday, New York, NY.Google Scholar
  74. 74.
    Steriade, M., Jones, E.G. and Llinás, R.R. (1990) Thalamic Oscillations and Signaling. Wiley-Interscience, New York, NY.Google Scholar
  75. 75.
    Moruzzi, G. (1966) The functional significance of sleep with particular regard to the brain mechanisms underlying consciousness. In Brain and Conscious Experience (J.C. Eccles, ed.), Springer, New York, NY, pp. 345–379.Google Scholar
  76. 76.
    Steriade, M., Contreras, D., Curró Dossi, R. and Nuñez, A. (1993) The slow (<1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J. Neurosci. 13:3284–3299.PubMedGoogle Scholar
  77. 77.
    Steriade, M., McCormick, D.A. and Sejnowski, T.J. (1993) Thalamocortical oscillation in the sleeping and aroused brain. Science. 262:679–685.PubMedCrossRefGoogle Scholar
  78. 78.
    Buzsáki, G. (1996) The hippocampo-neocortical dialogue. Cereb. Cortex 6:81–92.PubMedCrossRefGoogle Scholar
  79. 79.
    Stickgold, R., James, L. and Hobson, J.A. (2000) Visual discrimination learning requires sleep after training. Nat. Neurosci. 3:1237–1238.PubMedCrossRefGoogle Scholar
  80. 80.
    Stickgold, R., Whitbee, D., Schirmer, B., Patel, V. and Hobson, J.A. (2000) Visual discrimination improvement. A multi-step process occurring during sleep. J. Cogn. Neurosci. 12:246–254.PubMedCrossRefGoogle Scholar
  81. 81.
    Gais, S., Plihal, W., Wagner, U. and Born, J. (2000) Early sleep triggers memory for early visual discrimination skills. Nat. Neurosci. 3:1335–1339.PubMedCrossRefGoogle Scholar
  82. 82.
    Gais, S., Mölle, M., Helms, K. and Born, J. (2002) Learning-dependent increases in sleep density. J. Neurosci. 22:6830–6834.PubMedGoogle Scholar
  83. 83.
    Hobson, J.A., Pace-Schott, E. and Stickgold, R. (2000) Dreaming and the brain: toward a cognitive neuroscience of conscious states. Brain Behav. Sci. 23:793–842.CrossRefGoogle Scholar
  84. 84.
    Nielsen, T. (2000) Cognition in REM and NREM sleep. Brain Behav. Sci. 23:851–866.CrossRefGoogle Scholar
  85. 85.
    Steriade, M., Deschênes, M., Domich, L. and Mulle, C. (1985) Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. J. Neurophysiol. 54:1473–1497.PubMedGoogle Scholar
  86. 86.
    Steriade, M., Domich, L., Oakson, G. and Deschênes, M. (1987) The deafferented reticularis thalami nucleus generates spindle rhythmicity. J. Neurophysiol. 57:260–273.PubMedGoogle Scholar
  87. 87.
    Steriade, M. (1999) Cellular substrates of brain rhythms. In Electroencephalography: Basic Principles, Clinical Applications, and Related Fields (4th ed.) (Niedermeyer, E. and Lopes Da Silva, F., eds.), Williams & Wilkins, Baltimore, MD, pp. 28–75.Google Scholar
  88. 88.
    Steriade, M., Nuñez, A. and Amzica, F. (1993) Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms. J. Neurosci. 13:3266–3283.PubMedGoogle Scholar
  89. 89.
    Sanchez-Vives, M.V. and McCormick, D.A. (2000) Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat. Neurosci. 3:1027–1034.PubMedCrossRefGoogle Scholar
  90. 90.
    Steriade, M., Amzica, F. and Contreras, D. (1996) Synchronization of fast (30–40 Hz) spontaneous cortical rhythms during brain activation. J. Neurosci. 16:392–417.PubMedGoogle Scholar
  91. 91.
    Mölle, M., Marshall, L., Gais, S. and Born, J. (2002) Grouping of spindle activity during slow oscillations in human non-REM sleep. J. Neurosci. 22:10941–10947.PubMedGoogle Scholar
  92. 92.
    Siapas, A.G. and Wilson, M.A. (1998) Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron. 21:1123–1128.PubMedCrossRefGoogle Scholar
  93. 93.
    Sirota, A., Csicsvari, J., Buhl, D. and Buzsáki, G. (2003) Communication between neocortex and hippocampus during sleep in rodents. Proc. Natl. Acad. Sci. USA. 100:2065–2069.PubMedCrossRefGoogle Scholar
  94. 94.
    Yuste, R. and Tank, D.W. (1996) Dendritic integration in mammalian neurons, a century after Cajal. Neuron. 16:701–716.PubMedCrossRefGoogle Scholar
  95. 95.
    Destexhe, A. and Sejnowski, T.J. (2001) Thalamocortical Assembly. Oxford University Press, Oxford.Google Scholar
  96. 96.
    Soderling, T.R. and Derkach, V.A. (2000) Postsynaptic protein phosphorylation and LTP. Trends Neurosci. 23:75–80.PubMedCrossRefGoogle Scholar
  97. 97.
    Morison, R.S. and Dempsey, E.W. (1942) Mechanism of thalamocortical augmentation and repetition. Am. J. Physiol. 138:297–308.Google Scholar
  98. 98.
    Steriade, M. and Timofeev, I. (1997) Short-term plasticity during intrathalamic augmenting responses in decorticated cats. J. Neurosci. 17:3778–3795.PubMedGoogle Scholar
  99. 99.
    Steriade, M., Timofeev, I., Grenier, F. and Dürmüller, N. (1998) Role of thalamic and cortical neurons in augmenting responses: dual intracellular recordings in vivo. J. Neurosci. 18:6425–6443.PubMedGoogle Scholar
  100. 100.
    Castro-Alamancos, M.A. and Connors, B.W. (1996) Cellular mechanisms of the augmenting response: short-term plasticity in a thalamocortical pathway. J. Neurosci. 16:7742–7756.PubMedGoogle Scholar
  101. 101.
    Timofeev, I., Grenier, F., Bazhenov, M., Houweling, A., Sejnowski, T.J. and Steriade, M. (2002) Short-and medium-term plasticity associated with augmenting responses in cortical slabs and spindles in intact cortex of cats in vivo. J. Physiol. (Lond.) 542:583–598.CrossRefGoogle Scholar
  102. 102.
    Steriade, M. (1991) Alertness, quiet sleep, dreaming. In Cerebral Cortex (vol. 9, Normal and Altered States of Function) (Peters, A. and Jones, E.G., eds.), Plenum, New York, NY, pp. 279–357.Google Scholar
  103. 103.
    Bazhenov, M., Timofeev, I., Steriade, M. and Sejnowski, T.J. (1998) Computational models of thalamocortical augmenting responses. J. Neurosci. 18:6444–6465.PubMedGoogle Scholar
  104. 104.
    Kato, N. (1990) Cortico-thalamo-cortical projection between visual cortices. Brain Res. 509:150–152.PubMedCrossRefGoogle Scholar
  105. 105.
    Steriade, M. (2001) Impact of network activities on neuronal properties in corticothalamic systems. J. Neurophysiol. 86:1–39.PubMedGoogle Scholar
  106. 106.
    Hernández-Cruz, A. and Pape, H.C. (1989) Identification of two calcium currents in acutely dissociated neurons from the rat lateral geniculate nucleus. J. Neurophysiol. 61:1270–1283.PubMedGoogle Scholar
  107. 107.
    Kammermeier, P.J. and Jones, S.W. (1997) High-voltage-activated calcium currents in neurons acutely isolated from the ventrobasal nucleus of the rat thalamus. J. Neurophysiol. 77:465–475.PubMedGoogle Scholar
  108. 108.
    Steriade, M. and Timofeev, I. (2003) Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron. 37:563–576..PubMedCrossRefGoogle Scholar
  109. 109.
    Abel, T., Nguyen, P.V., Barad, M., Deuel, T.A., Kandel, E.R. and Bourtchouladze, R. (1997) Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell. 88:615–626.PubMedCrossRefGoogle Scholar
  110. 110.
    Dolmetsch, R.E., Pajvani, U., Fife, K., Spotts, J.M. and Greenberg, M.E. (2001) Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science. 294:333–339.PubMedCrossRefGoogle Scholar
  111. 111.
    Steriade, M. and Timofeev, I. (2003) Neuronal plasticity during sleep oscillations in corticothalamic systems. In Sleep and Brain Plasticity (Maquet, P., Stickgold, R. and Smith, C.S., eds.), Oxford University Press, Oxford, pp. 271–291.Google Scholar
  112. 112.
    Steriade, M. (2003) Neuronal Substrates of Sleep and Epilepsy. Cambridge University Press, Cambridge, UK.Google Scholar
  113. 113.
    Niedermeyer, E. (1999) Abnormal EEG patterns (epileptic and paroxysmal). In Electroencephalography: Basic Principles, Clinical Applications and Related Fields (4th ed.) (Niedermeyer, E. and Lopes da Silva, F., eds.), Williams & Wilkins, Baltimore, MD, pp. 235–260.Google Scholar
  114. 114.
    Halasz, P. (1991) Runs of rapid spikes in sleep: a characteristic EEG expression of generalized malignant epileptic encephalopathies. A conceptual review with new pharmacological data. Epilepsy Res. 2(Suppl.):49–71.Google Scholar
  115. 115.
    Steriade, M., Amzica, F., Neckelmann, D. and Timofeev, I. (1998) Spike-wave complexes and fast runs of cortically generated seizures. II. Extra-and intracellular patterns. J. Neurophysiol. 80:1456–1479.PubMedGoogle Scholar
  116. 116.
    Reutens, D.C., Bye, A.M., Hopkins, I.J., et al. (1993) Corpus callosotomy for intractable epilepsy: seizure outcome and prognostic factors. Epilepsia. 34:904–909.PubMedCrossRefGoogle Scholar
  117. 117.
    Steriade, M. and Contreras, D. (1998) Spike-wave complexes and fast runs of cortically generated seizures. I. Role of neocortex and thalamus. J. Neurophysiol. 80:1439–1455.PubMedGoogle Scholar
  118. 118.
    Penfield, W. and Jasper, H.H. (1954) Epilepsy and the Functional Anatomy of the Human Brain. Little, Brown, Boston, MA.Google Scholar
  119. 119.
    Jasper, H.H. and Droogleever-Fortuyn, J. (1949) Experimental studies on the functional anatomy of petit-mal epilepsy. Res. Publ. Ass. Nerv. Ment. Dis. 26:272–298.Google Scholar
  120. 120.
    Danober, L., Depaulis, A., Vergnes, M. and Marescaux, C. (1995) Mesopontine cholinergic control over generalized non-convulsive seizures in a genetic model of absence epilepsy in the rat. Neuroscience. 69:1183–1193.PubMedCrossRefGoogle Scholar
  121. 121.
    Steriade, M. and Amzica, F. (1994) Dynamic coupling among neocortical neurons during evoked and spontaneous spike-wave seizure activity. J. Neurophysiol. 72:2051–2069.PubMedGoogle Scholar
  122. 122.
    Jasper, H.H. and Hawkes, W.A. (1938) Electroencephalography. IV. Localization of seizure waves in epilepsy. Arch. Neurol. (Chic.) 39:885–901.Google Scholar
  123. 123.
    Petsche, H. (1962) Pathophysiologie und Klinik des Petit-Mal. Wiener Zeitschr. Nervenheilkrank. 19:345–442.Google Scholar
  124. 124.
    Lemieux, J.F. and Blume, W.T. (1986) Topographical evolution of spike-wave complexes. Brain Res. 373:275–287.PubMedCrossRefGoogle Scholar
  125. 125.
    Kobayashi, K., Nishibayashi, N., Ohtsuka, Y., Oka, E. and Ohtahara, S. (1994) Epilepsy with electrical status epilepticus during slow sleep and secondary bilateral synchrony. Epilepsia. 35:1097–1103.PubMedCrossRefGoogle Scholar
  126. 126.
    Steriade, M. and Contreras, D. (1995) Relations between cortical and thalamic cellular events during transition from sleep pattern to paroxysmal activity. J. Neurosci. 15:623–642.PubMedGoogle Scholar
  127. 127.
    Pinault, D., Leresche, N., Charpier, S., Deniau, J.M., Marescaux, C., Vergnes, M. and Crunelli, V. (1998) Intracellular recordings in thalamic neurones during spontaneous spike and wave discharges in rats with absence epilepsy. J. Physiol. (Lond.). 509:449–456.CrossRefGoogle Scholar
  128. 128.
    Crunelli, V. and Leresche, N. (2002) Childhood absence epilepsy: genes, channels, neurons and networks. Nat. Rev. Neurosci. 3:371–382.PubMedCrossRefGoogle Scholar
  129. 129.
    Timofeev, I., Grenier, F. and Steriade, M. (1998) Spike-wave complexes and fast runs of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons. J. Neurophysiol. 80:1495–1513.PubMedGoogle Scholar
  130. 130.
    Amzica, F. and Steriade, M. (2002) The functional significance of K-complexes. Sleep Med. Rev. 6:139–149.PubMedCrossRefGoogle Scholar
  131. 131.
    Contreras, D. and Steriade, M. (1996) Spindle oscillation: the role of corticothalamic feedback in a thalamically generated rhythm. J. Physiol. (Lond.). 490:159–179.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Mircea Steriade
    • 1
  1. 1.Departement de PhysiologieUniversite de LavalQuebecCanada

Personalised recommendations