Skip to main content

Abstract

During the past several decades, fungi have become increasingly common pathogens, particularly among critically ill or immunosuppressed patients. Until recently, advances in antifungal therapy had not kept pace with this trend. Historically, antifungal development significantly lagged behind that of antibacterial therapy. For many years, there were few choices for the treatment of systemic mycoses. However, the recent past has seen the development of a new class of antifungal agents (the echinocandins); safer or more bioavailable formulations of marketed antifungal agents (itraconazole oral and iv solution, lipid formulations of amphotericin B); and a new addition to an existing class of agents (voriconazole). Today, antifungal agents differ sufficiently in terms of activity, toxicity, and drug interaction potential so that clinicians now have the luxury of considering these characteristics when tailoring therapy to treat a specific systemic fungal infection. Systemically acting antifungal agents can cause drug—drug interactions by a variety of mechanisms. Therefore, they have the potential to interact with a vast array of medicines. Given the patient populations in whom systemic mycoses typically occur, the increased use of antifungal therapy, and the growing but still relatively limited selection of antifungal agents, clinicians must understand the drug interaction profile of this small but increasingly important class of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gallis HA, Drew RH, Pickard WW. Amphotericin B: 30 years of clinical experience. Rev Infect Dis 1990;12:308–329.

    PubMed  CAS  Google Scholar 

  2. Yamaguchi H, Abe S, Tokuda Y. Immunomodulating activity of antifungal drugs. Ann NY Acad Sci 1993;685:447–457.

    PubMed  CAS  Google Scholar 

  3. Bekersky I, Fielding RH, Dressler DE, Lee JW, Buell DN, Walsh TJ. Plasma protein binding of amphotericin B and pharmacokinetics of bound versus unbound amphotericin B after administration of intravenous liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate. Antimicrob Agents Chemother 2002;46:834–840.

    PubMed  CAS  Google Scholar 

  4. Bekersky I, Fielding RH, Dressler DE, Lee JW, Buell DN, Walsh TJ. Pharmacokinetics, excretion, and mass balance of liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate in humans. Antimicrob Agents Chemother 2002;46:828–833.

    PubMed  CAS  Google Scholar 

  5. Wong-Beringer A, Jacobs RA, Guglielmo BJ. Lipid formulations of amphotericin B: clinical efficacy and toxicities. Clin Infect Dis 1998;27:603–618.

    PubMed  CAS  Google Scholar 

  6. Daneshmend TK, Warnock DW. Clinical pharmacokinetics of systemic antifungal drugs. Clin Pharmacokinet 1983;8:17–42.

    PubMed  CAS  Google Scholar 

  7. Como JA, Dismukes WE. Oral azole drugs as systemic antifungal therapy. N Engl J Med 1994;330:263–272.

    PubMed  CAS  Google Scholar 

  8. Wang EJ, Lew K, Casciano CN, Clement RP, Johnson WW. Interaction of common azole antifungals with p-glycoprotein. Antimicrob Agents Chemother 2002;46:160–165.

    PubMed  CAS  Google Scholar 

  9. Wacher VJ, Wu CY, Benet LZ. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol Carcinogen 1995;13:129–134.

    CAS  Google Scholar 

  10. Wacher VJ, Silverman JA, Zhang Y, Benet LZ. Role of P-glycoprotein and cytochrome P450 in limiting oral absorption of peptides and peptidomimetics. J Pharm Sci 1998;87:1322–1330.

    PubMed  CAS  Google Scholar 

  11. Heykants J, Van Peer A, Van de Velde V, et al. The clinical pharmacokinetics of itraconazole: an overview. Mycoses 1989;32(Suppl 1):67–87.

    PubMed  Google Scholar 

  12. Johnson MD, Hamilton CD, Drew RH, Sanders LL, Pennick GJ, Perfect JR. A randomized comparative study to determine the effect of omeprazole on the peak serum concentration of itraconazole oral solution. J Antimicrob Chemother 2003;51:453–457.

    PubMed  CAS  Google Scholar 

  13. Van de Velde VJ, Van Peer A, Heykants JJP, et al. Effect of food on the pharmacokinetics of a new hydroxypropyl-β-cyclodextrin formulation of itraconazole. Pharmacotherapy 1996;16:424–428.

    PubMed  Google Scholar 

  14. Barone JA, Moskovitz BL, Guarnieri J, et al. Enhanced bioavailability of itraconazole in hydroxypropyl-β-cyclodextrin solution versus capsules in healthy volunteers. Antimicrob Agents Chemother 1998;42:1862–1865.

    PubMed  CAS  Google Scholar 

  15. Debruyne D, Ryckelynk JP. Clinical Pharmacokinetics of fluconazole. Clin Pharmacokinet 1993;24:10–27.

    PubMed  CAS  Google Scholar 

  16. Pearson MM, Rogers PD, Cleary JD, Chapman SW. Voriconazole: A new triazole antifungal. Ann Pharmacotherapy 2003;37:420–432.

    CAS  Google Scholar 

  17. Johnson LB, Kauffman CA. Voriconazole: A new triazole antifungal agent. Clin Infect Dis 2003;36:630–637.

    PubMed  CAS  Google Scholar 

  18. Schwartz S, Milatovic D, Thiel E. Successful treatment of cerebral aspergillosis with a novel triazole (voriconazole) in a patient with acute leukemia. Brit J Haematol 1997;97:663–665.

    CAS  Google Scholar 

  19. Poirier JM, Cheymol G. Optimization of itraconazole therapy using target drug concentrations. Clin Pharmacokinet 1998;35:461–473.

    PubMed  CAS  Google Scholar 

  20. Brammer KW, Coakley AJ, Jezequel SG, Tarbit MH. The disposition and metabolism of [14C] fluconazole in humans. Drug Metab Disp 1991;19:764–767.

    CAS  Google Scholar 

  21. Sabo JA, Abdel-Rahman SM. Voriconazole: A new triazole antifungal. Ann Pharmacotherapy 2000;34:1032–1043.

    CAS  Google Scholar 

  22. Hyland R, Jones BC, Smith DA. Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole. Drug Metab Disp 2003;31:540–547.

    CAS  Google Scholar 

  23. Goldstein JA. Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol 2001;52:349–355.

    PubMed  CAS  Google Scholar 

  24. Lee CR. Goldstein JA. Pieper JA. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics 2002;12:251–263.

    PubMed  CAS  Google Scholar 

  25. Denning DW. Echinocandins: A new class of antifungal. J Antimicrob Chemother 2002;49:889–891.

    PubMed  CAS  Google Scholar 

  26. Balani SK, Xu X, Arison BH, et al. Metabolites of caspofungin acetate, a potent antifungal agent, in human plasma and urine. Drug Metab Disp 2000;28:1274–1278.

    CAS  Google Scholar 

  27. Hajdu R, Thompson R, Sundelof JG, et al. Preliminary animal pharmacokinetics of the parenteral antifungal agent MK-0991 (L-743,872). Antimcrob Agents Chemother 1997;41:2339–2344.

    CAS  Google Scholar 

  28. Chiller T, Farrokhshad K, Brummer E, Stevens DA. The influence of human sera on the in vitro activity of MK-0991 against Aspergillus fumigatus. Program and Abstracts 39th Interscience Conference on Antimicrobial Agents and Chemotherapy. San Francisco, CA, September 26–29 1999, Abstract 153.

    Google Scholar 

  29. Stone JA, Holland SD, Wickersham PJ, et al. Single-and multiple-dose pharmacokinetics of caspofungin in healthy men. Antimicrob Agents Chemother 2002;46:739–745.

    PubMed  CAS  Google Scholar 

  30. Stone JA, Ballow CH, Holland SD, et al. Single dose caspofungin pharmacokinetics in healthy elderly subjects. Program and Abstracts 40th Interscience Conference on Antimicrobial Agents and Chemotherapy. Toronto, Ontario, September 17–20, 2000, Abstract 853.

    Google Scholar 

  31. Stone JA, McCrea JB, Wickersham PJ, et al. A phase I study of caspofungin evaluating the potential for drug interactions with itraconazole, the effect of gender and the use of a loading dose regimen. Program and Abstracts 40th Interscience Conference on Antimicrobial Agents and Chemotherapy. Toronto, Ontario, September 17–20 2000, Abstract 854.

    Google Scholar 

  32. White MH, Bowden RA, Sandler ES, et al. Randomized, double-blind clinical trial of amphotericin B colloidal dispersion vs. amphotericin B in the empirical treatment of fever and neutropenia. Clin Infect Dis 1998;27:296–302.

    PubMed  CAS  Google Scholar 

  33. Ringdén O, Andström E, Remberger M, Svahn BM, Tollemar J. Safety of liposomal amphotericin B (AmBisome) in 187 transplant recipients treated with cyclosporine. Bone Marrow Transplant 1994;14(Suppl 5):S10–S14.

    PubMed  Google Scholar 

  34. June CH, Thompson CB, Kennedy MS, Nims J, Thomas ED. Profound hypomagnesemia associated with the use of cyclosporine for marrow transplantation. Transplantation 1985;39:620–624.

    PubMed  CAS  Google Scholar 

  35. Stamm AM, Diaso RB, Dismukes WE, et al. Toxicity of amphotericin B plus flucytosine in 194 patients with cryptococcal meningitis. Am J Med 1987;83:236–242.

    PubMed  CAS  Google Scholar 

  36. Bennett JE, Dismukes WE, Duma RJ, et al. A comparison of amphotericin B alone and combined with flucytosine in the treatment of cryptococcal meningitis. N Engl J Med 1979;301:126–131.

    PubMed  CAS  Google Scholar 

  37. Block ER, Bennett JE. Pharmacological studies with 5-fluorocytosine. Antimicrob Agents Chemother 1972;1:476–482.

    PubMed  CAS  Google Scholar 

  38. Viviani MA. Flucytosine-what is its future? J Antimicrob Chemother 1995;35:241–244.

    PubMed  CAS  Google Scholar 

  39. Chung DK, Koenig MG. Reversible cardiac enlargement during treatment with amphotericin B and hydrocortisone. Am Rev Respir Dis 1971;103:831–841.

    PubMed  CAS  Google Scholar 

  40. Paterson DL, Singh N. Interactions between tacrolimus and antimicrobial agents. Clin Infect Dis 1997;25:1430–1440.

    PubMed  CAS  Google Scholar 

  41. Albengres E, Le Louët H, Tillement JP. Systemic antifungal agents: drug interactions of clinical significance. Drug Safety 1998;18:83–97.

    PubMed  CAS  Google Scholar 

  42. Fleisher D, Li C, Zhou Y, Pao LH, Karim A. Drug, meal and formulation interactions influencing drug absorption after oral administration: clinical implications. Clin Pharmacokinet 1999;36:233–254.

    PubMed  CAS  Google Scholar 

  43. Lange D, Pavao JH, Wu J, Klausner M. Effect of a cola beverage on the bioavailability of itraconazole in the presence of H2 blockers. J Clin Pharmacol 1997;37:535–540.

    PubMed  CAS  Google Scholar 

  44. Hoeschele JD, Roy AK, Pecoraro VL, Carver PL. In vitro analysis of the interaction between sucralfate and ketoconazole. Antimicrob Agents Chemother 1994;38:319–325.

    PubMed  CAS  Google Scholar 

  45. Thummel KE, Wilkinson GR. In vitro and in vivo drug interactions involving human CYP3A. Annu Rev Pharmacol Toxicol 1998;38:389–430.

    PubMed  CAS  Google Scholar 

  46. Omar G, Whiting PH, Hawksworth GM, Humphrey MJ, Burke MD. Ketoconazole and fluconazole inhibition of the metabolism of cyclosporin A by human liver in vitro. Ther Drug Monit 1997;19:436–445.

    PubMed  CAS  Google Scholar 

  47. Black DJ, Kunze KL, Wienkers LC, et al. Warfarin-fluconazole II. A metabolically based drug interaction: in vivo studies. Drug Metab Disp 1996;24:422–428.

    CAS  Google Scholar 

  48. Muijser RBR, Goa KL, Scott LJ. Voriconazole in the treatment of invasive aspergillosis. Drugs 2002;62:2655–2664.

    Google Scholar 

  49. Kim RB. Organic anion-transporting polypeptide (OATP) transporter family and drug disposition. Eur J Clin Invest 2003;33(Suppl. 2):1–5.

    PubMed  Google Scholar 

  50. Wandel C, Kim RB, Kajiji S, Guengerich P, Wilkinson GR, Wood AJ. P-glycoprotein and cytochrome P-450 3A inhibition: dissociation of inhibitory potencies. Cancer Res 1999;59:3944–3948.

    PubMed  CAS  Google Scholar 

  51. Eytan GD, Regev R, Oren G, Assaraf YG. The role of passive transbilayer drug movement in multidrug resistance and its modulation. J. Biol Chem 1996;271:12,897–12,902.

    CAS  Google Scholar 

  52. Ferte J. Analysis of tangled relationships between P-glycoprotein-mediated multidrug resistance and the lipid phase of the cell membrane. Eur J Biochem 2000;267;277–294.

    PubMed  CAS  Google Scholar 

  53. Purkins L, Wood N, Kleinermans D, Nichols D. Voriconazole does not affect the steadystate pharmacokinetics of digoxin. Br J Clin Pharmacol 2003;56(Suppl 1):45–50.

    PubMed  CAS  Google Scholar 

  54. Baciewicz AM, Baciewicz FA. Ketoconazole and fluconazole drug interactions. Arch Intern Med 1993;153:1970–1976.

    PubMed  CAS  Google Scholar 

  55. Hall SD, Thummel KE, Watkins PB, et al. Molecular and physical mechanisms of firstpass extraction. Drug Metab Disp 1999;27:161–166.

    CAS  Google Scholar 

  56. Gomez DY, Wacher VJ, Tomlanovich SJ, Hebert MF, Benet LZ. The effects of ketoconazole on intestinal metabolism and bioavailability of cyclosporine. Clin Pharmacol Ther 1995;58:15–19.

    PubMed  CAS  Google Scholar 

  57. Campana C, Regazzi MB, Buggia I, Molinaro M. Clinically significant drug interactions with cyclosporin: an update. cyclosporine with antimicrobial agents. Clin Pharmacokinet 1996;30:141–179.

    PubMed  CAS  Google Scholar 

  58. Keogh A, Spratt P, McCosker C, Macdonald P, Mundy J, Kaan A. Ketoconazole to reduce the need for cyclosporine after cardiac surgery. N Engl J Med 1995;333:628–633.

    PubMed  CAS  Google Scholar 

  59. Zimmermann T, Yeates RA, Laufen H, Pfaff G, Wildfeuer A. Influence of concomitant food intake on the oral absorption of two triazole antifungal agents, itraconazole and fluconazole. Eur J Clin Pharmacol 1994;46:147–150.

    PubMed  CAS  Google Scholar 

  60. Kanda Y, Kami M, Matsuyama T, et al. Plasma concentrations of itraconazole in patients receiving chemotherapy for hematological malignancies: the effect of famotidine on the absorption of itraconazole. Hematol Oncol 1998;16:33–37.

    PubMed  CAS  Google Scholar 

  61. Lim SG, Sawyerr AM, Hudson M, Sercombe J, Pounder RE. Short report: the absorption of fluconazole and itraconazole under conditions of low intragastric acidity. Aliment Pharmacol Ther 1993;7:317–321.

    PubMed  CAS  Google Scholar 

  62. Jaruratanasirikul S, Sriwiriyajan S. Effect of omeprazole on the pharmacokinetics of itraconazole. Eur J Clin Pharmacol 1998;54:159–161.

    PubMed  CAS  Google Scholar 

  63. May DB, Drew RH, Yedinak KC, Bartlett JA. Effect of simultaneous didanosine administration on itraconazole absorption in healthy volunteers. Pharmacotherapy 1994;14:509–513.

    PubMed  CAS  Google Scholar 

  64. Damle B, Hess H, Kaul S, Knupp C. Absence of clinically relevant drug interactions following simultaneous administration of didanosine-encapsulated, enteric-coated bead formulation with either itraconazole or fluconazole. Biopharm Drug Disp 2002;23:59–66.

    CAS  Google Scholar 

  65. Glasmacher A, Hahn C, Molitor E, Sauerbruch T, Marklein G, Schmidt-Wolf IG. Definition of a minimal effective trough concentration of itraconazole for antifungal prophylaxis in severely neutropenic patients with hematologic malignancies. 39th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, September 26–29, 1999, Abstract 1417.

    Google Scholar 

  66. Christians U, Jacobsen W, Floren LC. Metabolism and drug interactions of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors in transplant patients: are the statins mechanistically similar? Pharmacol Ther 1998;80:1–34.

    PubMed  CAS  Google Scholar 

  67. McCormick AD, McKillop D, Butters CJ, et al. ZD4522-An HMG-CoA reductase inhibitor free of metabolically mediated drug interactions: Metabolic studies in human in vitro systems [abstract]. J Clin Pharmacol 2000;40:1055.

    Google Scholar 

  68. Jacobsen W, Kirchner G, Hallensleben K, et al. Comparison of cytochrome P-450-dependent metabolism and drug interactions of the 3-hydroxy-3-methylglutaryl-COA-reductase inhibitors lovastatin and pravastatin in the liver. Drug Metab Disp 1999;27:173–179.

    CAS  Google Scholar 

  69. Neuvonen PJ, Jalava KM. Itraconazole drastically increases plasma concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther 1996;60:54–61.

    PubMed  CAS  Google Scholar 

  70. Neuvonen PJ, Kantola T, Kivistö KT. Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clin Pharmacol Ther 1998;63:332–341.

    PubMed  CAS  Google Scholar 

  71. Kantola T, Kivistö KT, Neuvonen PJ. Effect of itraconazole on the pharmacokinetics of atorvastatin. Clin Pharmacol Ther 1998;64:58–65.

    PubMed  CAS  Google Scholar 

  72. Mazzu AL, Lasseter KC, Shamblin EC, Agarwal V, Lettieri J, Sundaresen P. Itraconazole alters the pharmacokinetics of atorvastatin to a greater extent than either cerivastatin or pravastatin. Clin Pharmacol Ther 2000;68:391–400.

    PubMed  CAS  Google Scholar 

  73. Ishigam M, Uchiyama M, Kondo T, et al. Inhibition of in vitro metabolism of simvastatin by itraconazole in humans and predictions of in vivo drug-drug interactions. Pharm Res 2001;18:622–631.

    PubMed  CAS  Google Scholar 

  74. Kivistö KT, Kantola T, Neuvonen PJ. Different effects of itraconazole on the pharmacokinetics of fluvastatin and lovastatin. Br J Clin Pharmacol 1998;46:49–53.

    PubMed  Google Scholar 

  75. Cooper KJ, Martin PD, Dane AL, Warwick MJ, Schneck DW, Cantarini MV. Effect of itraconazole on the pharmacokinetics of rosuvastatin. Clin Pharmacol Ther 2003;73:322–329.

    PubMed  CAS  Google Scholar 

  76. Olkkola KT, Ahonen J, Neuvonen PJ. The effect of the systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesth Analg 1996;82:511–516.

    PubMed  CAS  Google Scholar 

  77. Varhe A, Olkkola KT, Neuvonen PJ. Oral triazolam is potentially hazardous to patients receiving systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994;56:601–607.

    PubMed  CAS  Google Scholar 

  78. Neuvonen PJ, Varhe A, Olkkola KT. The effect of ingestion time interval on the interaction between itraconazole and triazolam. Clin Pharmacol Ther 1996;60:326–331.

    PubMed  CAS  Google Scholar 

  79. Backman JT, Kivistö KT, Olkkola KT, Neuvonen PJ. The area under the plasma concentration-time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur J Clin Pharmacol 1998;54:53–58.

    PubMed  CAS  Google Scholar 

  80. Ahonen J, Olkkola KT, Neuvonen PJ. The effect of the antimycotic itraconazole on the pharmacokinetics and pharmacodynamics of diazepam. Fundam Clin Pharmacol 1996;10:314–318.

    PubMed  CAS  Google Scholar 

  81. Otsuji Y, Okuyama N, Aoshima T, et al. No effect of itraconazole on the single oral dose pharmacokinetics and pharmacodynamics of estazolam. Ther Drug Monit 2002;24:375–378.

    PubMed  CAS  Google Scholar 

  82. Oda M, Kotegawa T, Tsutsumi K, Ohtani Y, Kuwatani K, Nakano S. The effect of itraconazole on the pharmacokinetics and pharmacodynamics of bromazepam in healthy volunteers. Eur J Clin Pharmacol 2003;59:615–619.

    PubMed  CAS  Google Scholar 

  83. Ahonen J, Olkkola KT, Neuvonen PJ. Lack of effect of the antimycotic itraconazole on the pharmacokinetics or pharmacodynamics of temazepam. Ther Drug Monit 1996;18:124–127.

    PubMed  CAS  Google Scholar 

  84. Kivistö KT, Lamberg TS, Kantola T, Neuvonen PJ. Plasma buspirone concentrations are greatly increased by erythromycin and itraconazole. Clin Pharmacol Ther 1997;62:348–354.

    PubMed  Google Scholar 

  85. Luurila H, Kivistö KT, Neuvonen PJ. Effect of itraconazole on the pharmacokinetics and pharmacodynamics of zolpidem. Eur J Clin Pharmacol 1998;54:163–166.

    PubMed  CAS  Google Scholar 

  86. Bertz RJ, Granneman GR. Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 1997;32:210–258.

    PubMed  CAS  Google Scholar 

  87. Yasui N, Kondo T, Otani K, et al. Effects of itraconazole on the steady-state plasma concentrations of haloperidol and its reduced metabolite in schizophrenic patients: in vivo evidence of the involvement of CYP3A4 for haloperidol metabolism. J Clin Psychopharmacol 1999;19:149–154.

    PubMed  CAS  Google Scholar 

  88. Raaska K, Neuvonen PJ. Serum concentrations of clozapine and N-desmethylclozapine are unaffected by the potent CYP3A4 inhibitor itraconazole. Eur J Clin Pharmacol 1998;54:167–170.

    PubMed  CAS  Google Scholar 

  89. Kramer MR, Marshall SE, Denning DW, et al. Cyclosporine and itraconazole in heart and lung transplant recipients. Ann Intern Med 1990;113:327–329.

    PubMed  CAS  Google Scholar 

  90. McLachlan AJ, Tett SE. Effect of metabolic inhibitors on cyclosporine pharmacokinetics using a population approach. Ther Drug Monit 1998;20:390–395.

    PubMed  CAS  Google Scholar 

  91. Billaud EM, Guillemain R, Tacco F, Chevalier P. Evidence for a pharmacokinetic interaction between itraconazole and tacrolimus in organ transplant patients. Br J Clin Pharmacol 1998;46:271–272.

    PubMed  CAS  Google Scholar 

  92. Varis T, Kaukonen KM, Kivistö KT, Neuvonen PJ. Plasma concentrations and effects of oral methylprednisolone are considerably increased by itraconazole. Clin Pharmacol Ther 1998;64:363–368.

    PubMed  CAS  Google Scholar 

  93. Lebrun-Vignes B, Archer VC, Diquet B, et al. Effect of itraconazole on the pharmacokinetics of prednisolone and methylprednisolone and cortisol secretion in healthy subjects. Br J Clin Pharmacol 2001;51:443–450.

    PubMed  CAS  Google Scholar 

  94. Varis T, Kivistö KT, Backman JT, Neuvonen PJ. Itraconazole decreases the clearance and enhances the effects of intravenously administered methylprednisolone in healthy volunteers. Pharmacol Toxicol 1999;85:29–32.

    PubMed  CAS  Google Scholar 

  95. Varis T, Kivistö KT, Backman JT, Neuvonen PJ. The cytochrome P450 3A4 inhibitor itraconazole markedly increases the plasma concentrations of dexamethasone and enhances its adrenal-suppressant effect. Clin Pharmacol Ther 2000;68:487–494.

    PubMed  CAS  Google Scholar 

  96. Varis T, Kivistö KT, Neuvonen PJ. The effect of itraconazole on the pharmacokinetics and pharmacodynamics of oral prednisolone. Eur J Clin Pharmacol 2000;56:57–60.

    PubMed  CAS  Google Scholar 

  97. Raaska K, Niemi M, Neuvonen M, Neuvonen PJ, Kivistö KT. Plasma concentrations of inhaled budesonide and its effects on plasma cortisol are increased by the cytochrome P4503A4 inhibitor itraconazole. Clin Pharmacol Ther 2002;72:362–369.

    PubMed  CAS  Google Scholar 

  98. Jalava KM, Olkkola KT, Neuvonen PJ. Itraconazole greatly increases plasma concentrations and effects of felodipine. Clin Pharmacol Ther 1997;61:410–415.

    PubMed  CAS  Google Scholar 

  99. Lukkari E, Juhakoski A, Aranko K, Neuvonen PJ. Itraconazole moderately increases serum concentrations of oxybutynin but does not affect those of the active metabolite. Eur J Clin Pharmacol 1997;52:403–406.

    PubMed  CAS  Google Scholar 

  100. Palkama VJ, Neuvonen PJ, Olkkola KT. The CYP3A4 inhibitor itraconazole has no effect on the pharmacokinetics of i.v. fentanyl. Br J Anaesth 1998;81:598–600.

    PubMed  CAS  Google Scholar 

  101. Kivistö KT, Wang JS, Backman JT, et al. Selegiline pharmacokinetics are unaffected by the CYP3A4 inhibitor itraconazole. Eur J Clin Pharmacol 2001;57:37–42.

    PubMed  Google Scholar 

  102. Lomaestro BM, Piatek MA. Update on drug interactions with azole antifungal agents. Ann Pharmacotherapy 1998;32:915–928.

    CAS  Google Scholar 

  103. Bonay M, Jonville-Bera AP, Diot P, Lemarie E, Lavandier M, Autret E. Possible interaction between phenobarbital, carbamazepine and itraconazole. Drug Safety 1993;9:309–311.

    PubMed  CAS  Google Scholar 

  104. Ducharme MP, Slaughter RL, Warbasse LH, et al. Itraconazole and hydroxyitraconazole serum concentrations are reduced more than tenfold by phenytoin. Clin Pharmacol Ther 1995;58:617–624.

    PubMed  CAS  Google Scholar 

  105. Jaruratanasirikul S, Sriwiriyajan S. Effect of rifampicin on the pharmacokinetics of itraconazole in normal volunteers and AIDS patients. Eur J Clin Pharmacol 1998;54:155–158.

    PubMed  CAS  Google Scholar 

  106. de Lannoy IA, Silverman M. The mdr-1 gene product P-glycoprotein mediates transport of the cardiac glycoside, digoxin. Biochem Biophys Res Comm 1992;189:551–557.

    PubMed  Google Scholar 

  107. Jalava KM, Partanen J, Neuvonen PJ. Itraconazole decreases renal clearance of digoxin. Ther Drug Monit 1997;19:609–613.

    PubMed  CAS  Google Scholar 

  108. Kaukonen KM, Olkkola KT, Neuvonen PJ. Itraconazole increases plasma concentrations of quinidine. Clin Pharmacol Ther 1997;62:510–517.

    PubMed  CAS  Google Scholar 

  109. Damkier P, Hansen LL, Brøsen K. Effect of diclofenac, disulfram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine. Br J Clin Pharmacol 1999;48:829–838.

    PubMed  CAS  Google Scholar 

  110. de Lannoy IA, Koren G, Klein J, Charuk J, Silverman M. Cyclosporin and quinidine inhibition of renal digoxin excretion: evidence for luminal secretion of digoxin. Am J Physiol 1992;263:F613–F622.

    PubMed  Google Scholar 

  111. Karyekar CS, Eddington ND, Garimella TS, Gubbins PO, Dowling TC. Evaluation of Pglycoprotein mediated renal drug interactions in an MDR1-MDCK model. Pharmacotherapy 2003;23:436–442.

    PubMed  CAS  Google Scholar 

  112. Karyekar CS, Eddington ND, Briglia A, Gubbins PO, Dowling TC. Renal interaction between itraconazole and cimetidine. J Clin Pharmacol 2004;44:919–927.

    PubMed  CAS  Google Scholar 

  113. Sachs MK, Blanchard LM, Green PJ. Interaction of itraconazole and digoxin. Clin Infect Dis 1993;16:400–403.

    PubMed  CAS  Google Scholar 

  114. Ahonen J, Olkkola KT, Neuvonen PJ. Effect of route of administration of fluconazole on the interaction between fluconazole and midazolam. Eur J Clin Pharmacol 1997;51:415–419.

    PubMed  CAS  Google Scholar 

  115. Varhe A, Olkkola KT, Neuvonen PJ. Fluconazole, but not terbinafine, enhances the effects of triazolam by inhibiting its metabolism. Br J Clin Pharmacol 1996;41:319–323.

    PubMed  CAS  Google Scholar 

  116. Varhe A, Olkkola KT, Neuvonen PJ. Effect of fluconazole dose on the extent of fluconazole-triazolam interaction. Br J Clin Pharmacol 1996;42:465–470.

    PubMed  CAS  Google Scholar 

  117. Krüger HU, Schuler U, Zimmermann R, Ehninger G. Absence of significant interaction of fluconazole with cyclosporin. J Antimicrob Chemother 1989;24:781–786.

    PubMed  Google Scholar 

  118. Canafax DM, Graves NM, Hilligoss DM, Carleton BC, Gardner MJ, Matas AJ. Interaction between cyclosporine and fluconazole in renal allograft recipients. Transplantation 1991;51:1014–1018.

    PubMed  CAS  Google Scholar 

  119. Lopez-Gil JA. Fluconazole-cyclosporine interaction: a dose-dependent effect? Ann Pharmacotherapy 1993;27:427–430.

    CAS  Google Scholar 

  120. Manez R, Martin M, Raman D, et al. Fluconazole therapy in transplant recipients receiving FK506. Transplantation 1994;57:1521–1523.

    PubMed  CAS  Google Scholar 

  121. Osowski CL, Dix SP, Lin LS, Mullins RE, Geller RB, Wingard JR. Evaluation of the drug interaction between intravenous high-dose fluconazole and cyclosporine or tacrolimus in bone marrow transplant recipients. Transplantation 1996;61:1268–1272.

    PubMed  CAS  Google Scholar 

  122. Blum RA, Wilton JH, Hilligoss DM, et al. Effect of fluconazole on disposition of phenytoin. Clin Pharmacol Ther 1991;49:420–425.

    PubMed  CAS  Google Scholar 

  123. Kaukonen KM, Olkkola KT, Neuvonen PJ. Fluconazole but not itraconazole decreases the metabolism of losartan to E-3174. Eur J Clin Pharmacol 1998;53:445–449.

    PubMed  CAS  Google Scholar 

  124. Palkama VJ, Isohanni MH, Neuvonen PJ, Olkkola KT. The effect of intravenous and oral fluconazole on the pharmacokinetics and pharmacodynamics of intravenous alfentanil. Anesth Analg 1998;87:190–194.

    PubMed  CAS  Google Scholar 

  125. Koks CHW, Crommentuyn KML, Hoetelmans RMW, et al. The effect of fluconazole on ritonavir and saquinavir pharmacokinetics in HIV-1 infected adults. Br J Clin Pharmacol 2001;51:631–635.

    PubMed  CAS  Google Scholar 

  126. Yule SM, Walker D, Cole M, et al. The effect of fluconazole on cyclophosphamide metabolism in children. Drug Metab Disp 1999;27:417–421.

    CAS  Google Scholar 

  127. Ren S, Yang JS, Kalhorn TF, Slattery JT. Oxidation of cyclophosphamide to 4-hydroxycyclophosphamide and deschloroethylcyclophosphamide in human liver microsomes. Cancer Res 1997;57:4229–4235.

    PubMed  CAS  Google Scholar 

  128. Apseloff G, Hilligoss DM, Gardner MJ, et al. Induction of fluconazole metabolism by rifampin: in vivo study in humans. J Clin Pharmacol 1991;31:358–361.

    PubMed  CAS  Google Scholar 

  129. Sahai J, Gallicano K, Pakuts A, Cameron DW. Effect of fluconazole on zidovudine pharmacokinetics in patients infected with Human Immunodeficiency Virus. J Infect Dis 1994;169:1103–1107.

    PubMed  CAS  Google Scholar 

  130. Purkins L, Wood N, Kleinermans D, Nichols D. Voriconazole potentiates warfarin-induced prothrombin time prolongation. Br J Clin Pharmacol 2003;56(Suppl 1):24–29.

    PubMed  CAS  Google Scholar 

  131. Romero AJ, Pogamp PL, Nilsson LG, Wood N. Effect of voriconazole on the pharmacokinetics of cyclosporine in renal transplant recipients. Clin Pharmacol Ther 2002;71:226–234.

    PubMed  CAS  Google Scholar 

  132. Venkataramanan R, Zang S, Gayowski T, Singh N. Voriconazole inhibition of the metabolism of tacrolimus in a liver transplant recipient and in human liver microsomes. Antimicrob Agents Chemother 2002;46:3091–3093.

    PubMed  CAS  Google Scholar 

  133. Wood N, Tan K, Allan R, Fielding A, Nichols DJ. Effect of voriconazole on the pharmacokinetics of tacrolimus. Program and Abstracts 41st Interscience Conference on Antimicrobial Agents and Chemotherapy. Chicago, IL, December 16–19, 2001, Abstract 20.

    Google Scholar 

  134. Purkins L, Wood N Ghahramani P, Love ER, Eve MD, Fielding A. Coadministration of voriconazole and phenytoin: pharmacokinetic interaction, safety, and toleration. Br J Clin Pharmacol 2003;56(Suppl 1):37–44.

    PubMed  CAS  Google Scholar 

  135. Andersson T, Miners JO, Veronese ME, Birkett DJ. Identification of human liver cytochrome P450 isoforms mediating secondary omeprazole metabolism. Br J Clin Pharmacol 1994;597–604.

    Google Scholar 

  136. Wood N, Tan K, Allan R, Fielding A, Nichols DJ. Effect of voriconazole on the pharmacokinetics of omeprazole. Program and Abstracts 41st Interscience Conference on Antimicrobial Agents and Chemotherapy. Chicago, IL, December 16–19, 2001, Abstract 19.

    Google Scholar 

  137. Ghahramani P, Purkins L, Klienermans D, Nichols DJ. The pharmacokinetics of voriconazole and its effect on prednisolone disposition. Program and Abstracts 40th Interscience Conference on Antimicrobial Agents and Chemotherapy. Toronto, Ontario, September 17–20, 2000, Abstract 842.

    Google Scholar 

  138. Purkins L, Wood N, Klienermans, Love ER.. No clinically significant pharmacokinetic interaction between voriconazole and indinavir in healthy volunteers. Br J Clin Pharmacol 2003;56(Suppl 1):62–68.

    PubMed  CAS  Google Scholar 

  139. Wood N, Abel S, Fielding A, Nichols DJ, Bygrave E. Voriconazole does not affect the pharmacokinetics of mycophenolic acid. Program and Abstracts 41st Interscience Conference on Antimicrobial Agents and Chemotherapy. Chicago, IL, December 16–19, 2001, Abstract 24.

    Google Scholar 

  140. Ghahramani P, Purkins L, Klienermans D, Nichols DJ. Effects of rifampicin and rifabutin on the pharmacokinetics of voriconazole. Program and Abstracts 40th Interscience Conference on Antimicrobial Agents and Chemotherapy. Toronto, Ontario, September 17–20, 2000, Abstract 844.

    Google Scholar 

  141. Purkins L, Wood N, Klienermans, Nichols D. Histamine H2-receptor antagonists have no clinically significant effect on the steady-state pharmacokinetics of voriconazole. Br J Clin Pharmacol 2003;56(Suppl 1):51–55.

    PubMed  CAS  Google Scholar 

  142. Purkins L, Wood N, Ghahramani P, Kleinermans D, Layton G, Nichols D. No clinically significant effect of erythromycin or azithromycin on the pharmacokinetics of voriconazole in healthy male volunteers. Br J Clin Pharmacol 2003;56(Suppl 1):30–36.

    PubMed  CAS  Google Scholar 

  143. Wood N, Tan K, Purkins L, et al. Effect of omeprazole on the steady-state pharmacokinetics of voriconazole. Br J Clin Pharmacol 2003;56(Suppl 1):56–61.

    PubMed  CAS  Google Scholar 

  144. Schutze GE, Hickerson SL, Fortin E, et al. Blastomycosis in children, Clin Infect Dis 1996;22:496–502.

    PubMed  CAS  Google Scholar 

  145. Ullman AJ. Review of the safety, tolerability, and drug interactions of the new antifungal agents caspofungin and voriconazole. Curr Med Res Opinion 2003;19:263–271.

    Google Scholar 

  146. Letscher-Bru V, Herbrecht R. Caspofungin: the first representative of a new antifungal class. J Antimicrob Chemother 2003;51:513–521.

    PubMed  CAS  Google Scholar 

  147. Stone J, Holland S, Wickersham P, et al. Drug interactions between caspofungin and tacrolimus. Program and Abstracts 41st Interscience Conference on Antimicrobial Agents and Chemotherapy. Chicago, IL, December 16–19, 2001, Abstract 13.

    Google Scholar 

  148. Stone J, Migoya E, Hickey L, et al. Drug interactions between caspofungin and nelfinavir or rifampin. Program and Abstracts 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy. Chicago, IL; September 14–17, 2003, Abstract 1605.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Gubbins, P.O., McConnell, S.A., Amsden, J.R. (2005). Antifungal Agents. In: Piscitelli, S.C., Rodvold, K.A. (eds) Drug Interactions in Infectious Diseases. Infectious Disease. Humana Press. https://doi.org/10.1385/1-59259-924-9:289

Download citation

  • DOI: https://doi.org/10.1385/1-59259-924-9:289

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-455-5

  • Online ISBN: 978-1-59259-924-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics