Detection of Early Tumor Dissemination in Patients With Breast Cancer

  • Debra Hawes
  • Richard J. Cote
Part of the Cancer Drug Discovery and Development book series (CDD&D)


Women who are newly diagnosed with breast cancer have operable disease, and therefore are potentially curable. Nevertheless, a sub-population of these patients, who are thought to be disease free after initial treatment, go on to develop recurrent disease. These recurrences are due to early spread of tumor cells, either systemically (peripheral blood and/or bone marrow) or regionally (lymph nodes) that are not detected by methods routinely employed. To address this problem, more sensitive methodologies of detecting early disseminated tumor cells have been developed over the past decade and a half. This chapter looks at the more important methods and discusses the clinical relevance of these methods.

Key Words

Bone marrow circulating tumor cells early tumor dissemination flow cytometry immunohistochemistry immunomagnetic separation lymph nodes micrometastasis occult metastasis peripheral blood prognosis reverse transcriptase-polymerase chain reaction sentinel lymph nodes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wallgren A, Bonetti M, Gelber RD, et al. Risk factors for locoregional recurrence among breast cancer patients: results from international breast cancer study group trials I through VII. J Clin Oncol 2003;21:1205–1213.PubMedCrossRefGoogle Scholar
  2. 2.
    Kuru B, Camlibel M, Gulcelik MA, Alagol H. Prognostic factors affecting survival and disease-free survival in lymph node-negative breast carcinomas. J Surg Oncol 2003;83:167–172.PubMedCrossRefGoogle Scholar
  3. 3.
    Asagoe T, Hanatani Y, Doi M, et al. The indications for postoperative adjuvant therapy in node-negative breast cancer patients. Jpn J Cancer Chemother 1996;23:311–316.Google Scholar
  4. 4.
    Abrams JS. Adjuvant therapy for breast cancer-results from USA consensus conference. Breast Cancer 2001;8:298–304.PubMedGoogle Scholar
  5. 5.
    Russell C A. Adj uvant systemic therapy for lymph node-negative breast cancer less than or equal to 1 cm. Curr Women’s Health Rep 2002;2:134–139.Google Scholar
  6. 6.
    Group IBCS. Endocrine responsiveness and tailoring adjuvant therapy for post-menopausal lymph node-negative breast cancer; a randomized trial. J Natl Cancer Inst 2002;94:1054–1065.Google Scholar
  7. 7.
    Hawes D, Neville AM, Cote RJ. Detection of occult metastasis in patients with breast cancer. Semin Surg Oncol 2001;20:312–318.PubMedCrossRefGoogle Scholar
  8. 8.
    Gross HJ, Verwer B, Houck D, Hoffman RA, Recketenwald D. Model study detecting breast cancer cells in peripheral blood mononuclear cells at frequencies as low as 10-7. Proc Natl Acad Sci USA 1995;92:537–541.PubMedCrossRefGoogle Scholar
  9. 9.
    Leslie DS, Johnston WW, Daly L, et al. Detection of breast carcinoma cells in human bone marrow using fluorescent-activated cell sorting and conventional cytology. Am J Clin Pathol 1990;94:8–13.PubMedGoogle Scholar
  10. 10.
    Leers MPG, Schoffelen RHMG, Hoop JGM, et al. Multiparameter flow cytometry as a tool for the detection of micrometastatic tumour cells in the sentinel lymph node procedure of patients with breast cancer. J Clin Pathol 2002;55:359–366.PubMedGoogle Scholar
  11. 11.
    Redding WH, Monaghan P, Imrie SF. Detection of micrometastases in patients with primary breast cancer. Lancet 1983:1271–1274.Google Scholar
  12. 12.
    Osborne MP, Wong GY, Asina S, et al. Sensitivity of immunocytochemical detection of breast cancer cells in human bone marrow. Cancer Res 1991;51:2706.PubMedGoogle Scholar
  13. 13.
    Ellis G, Fergusson M, Yamanaka E. Monoclonal antibodies for detection of occult carcinoma cells in bone marrow of breast cancer patients. Cancer 1989;63:2509–2514.PubMedCrossRefGoogle Scholar
  14. 14.
    Cote RJ, Rosen PP, Lesser ML, Old LJ, Osborne MP. Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastases. J Clin Oncol 1991;9:1749–1756.PubMedGoogle Scholar
  15. 15.
    Cote RJ, Rosen PP, Hakes TB, et al. Monoclonal antibodies detect occult breast carcinoma metastases in bone marrow of patients with early-stage disease. Am J SurgPathol 1988;12:333.Google Scholar
  16. 16.
    Schlimok G, Funke I, Bock B, Schweiberer B, Witte J, Riethmuller G. Epithelial tumor cells in bone marrow of patients with colorectal cancer: immunocytochemi-cal detection, phenotypic characterization, and prognostic significance. J Clin Oncol 1990;8:831–837.PubMedGoogle Scholar
  17. 17.
    Lindeman F, Schlimok G, Dirschedl P, Witte J, Reithmuller G. Prognostic significance of micrometastatic tumor cells in bone marrow of colorectal cancer patients. Lancet 1992;340:685–689.CrossRefGoogle Scholar
  18. 18.
    Silly H, Samanigg H, Stoger H, Brezinschek HP, Wilders-Trusching M. Micrometastatic tumor cells in bone marrow in colorectal carcinoma. Lancet 1992;340:1288.PubMedCrossRefGoogle Scholar
  19. 19.
    Calaluce R, Miedema BW, Yesus YW. Micrometastasis in colorectal carcinoma: a review. J Surg Oncol 1998;67:194–202.PubMedCrossRefGoogle Scholar
  20. 20.
    Moreno JG, Croce CM, Fischer R, et al. Detection of hematogenous micro-metastases in patients with prostate cancer. Cancer Res 1992;52:6110–6112.PubMedGoogle Scholar
  21. 21.
    Oberneder R, Riesenberg R, Kriegmair M, et al. Immunocytochemical detection and phenotypic characterization of micrometastatic tumour cells in bone marrow of patients with prostate cancer. Urol Res 1994;22:3–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Bretton PR, Melamed MR, Fair WR, Cote RJ. Detection of occult micrometastases in the bone marrow of patients with prostate carcinoma. Prostate 1994;25:108–114.PubMedCrossRefGoogle Scholar
  23. 23.
    Wood DPJ, Banks ER, Humphreys S, McRoberts JW, Rangnekar VM. Identification of bone marrow micrometastases in patients with prostate cancer. Cancer 1994;74:2533–2540.PubMedCrossRefGoogle Scholar
  24. 24.
    Frew AJ, Ralkaier N, Ghosh AK, Gatter KC, Mason DY. Immunohistochemistry in the detection of bone marrow micrometastases in patients with primary lung cancer. Br J Cancer 1986;53:555–556.PubMedGoogle Scholar
  25. 25.
    Leonard RCF, Duncan LW, Hay FG. Immunocytological detection of residual marrow disease at clinical remission predicts metastatic relapse in small cell lung cancer. Cancer Res 1990;50:6545–6548.PubMedGoogle Scholar
  26. 26.
    Pantel K, Izbicki JR, Angswurm M, et al. Immunocytological detection of bone marrow micrometastasis in operable non-small cell lung cancer. Cancer Res 1993;53:1027–1031.PubMedGoogle Scholar
  27. 27.
    Pantel K, Isbicki J, Passlick B, et al. Frequency and prognostic significance of isolated tumour cells in bone marrow of patients with non-small cell lung cancer without overt metastases. Lancet 1996;347:649–653.PubMedCrossRefGoogle Scholar
  28. 28.
    Cote RJ, Hawes D, Chaiwun B, Beattie EJ. Detection of occult metastases in lung carcinomas: Progress and implications for staging. J Surg Oncol 1998;69:265–274.PubMedCrossRefGoogle Scholar
  29. 29.
    Osaki T, Oyama T, Gu C-D, et al. Prognostic impact of micrometastatic tumor cells in the lymph nodes and bone marrow of patients with completely resected stage I non-small-cell lung cancer. J Clin Oncol 2002;20:2930–2936.PubMedCrossRefGoogle Scholar
  30. 30.
    Zheng R, Ge D, Qiao Y, Shin M. Impact of micrometastasis in pathologically negative lymph node on staging and prognosis of non-small cell lung cancers. Clin J Oncol 2002;24:41–43.Google Scholar
  31. 31.
    Ohta Y, Oda M, Wu J, et al. Can tumor size be a guide for limited surgical intervention on patients with peripheral non-small cell lung cancer? Assessment from the point of view of nodal micrometastasis. J Thorac Cardiovasc Surg 2001;122:900–906.PubMedCrossRefGoogle Scholar
  32. 32.
    Gu C-D, Osaki T, Oyama T, et al. Detection of micrometastatic tumor cells in pN0 lymph nodes of patients with completely resected nonsmall cell lung cancer: impact on recurrence and survival. Ann Surg 2002;235:133–139.PubMedCrossRefGoogle Scholar
  33. 33.
    Doki Y, Ishikawa O, Mano M, et al. Cytokeratin deposits in lymph nodes show distinct clinical significance from lymph node micrometastasis in human esophageal cancers. J Surg Res 2002;107:75–81.PubMedGoogle Scholar
  34. 34.
    Tanabe T, Nishimaki T, Watanabe H, et al. Immunohistochemically detected micrometastasis in lymph nodes from superficial esophageal squamous cell carcinoma. J Clin Oncol 2003;82:153–159.Google Scholar
  35. 35.
    Chen Z, Lu X, Huang R. Detection of occult tumor cells in resected lymph nodes of patients with stage I carcinoma and its clinicopathological significance. Chin J Oncol 1997;19:69–71.Google Scholar
  36. 36.
    Hosch SB, Stoecklein NH, Pichlmeier U, et al. Esophageal cancer: the mode of lymphatic tumor cell spread and its prognostic significance. J Clin Oncol 2001;19:1970–1975.PubMedGoogle Scholar
  37. 37.
    Komukai S, Nishimaki T, Watanabe H, Ajioka Y, Suzuki T, Hatakeyama K. Significance of immunohistochemically demonstrated micrometastases to lymph nodes in esophageal cancer with histologically negative nodes. Surgery 2000;127:40–46.PubMedCrossRefGoogle Scholar
  38. 38.
    Ross GL, Shoaib T, Scott J, et al. The impact of immunohistochemistry on sentinel node biopsy for primary cutaneous malignant melanoma. Br J Plast Surg 2003;56:153–155.PubMedCrossRefGoogle Scholar
  39. 39.
    O’Reilly FM, Brat DJ, McAlpine BE, Grossniklaus HE, Folpe AL, Arbiser JL. Microphthalmia transcription factor immunohistochemistry: a useful diagnostic marker in the diagnosis and detection of cutaneous melanoma, sentinel lymph node metastases, and extracutaneous melanocytic neoplasms. J Am Acad Dermatol 2001;45:414–419.PubMedCrossRefGoogle Scholar
  40. 40.
    Reintgen DS, Shivers S. Sentinel lymph node micrometastasis from melanoma. Cancer 1999;86:551–552.PubMedCrossRefGoogle Scholar
  41. 41.
    Osborne MP, Asina S, Wong GY. Immunofluorescent monoclonal antibody detection of breast cancer in bone marrow: sensitivity in a model system. Cancer Res 1989;49:2510.PubMedGoogle Scholar
  42. 42.
    Chaiwun B, Saad AD, Chen S-C, et al. Immunohistochemical detection of occult carcinoma in bone marrow and blood. Diag Oncol 1992;2:267.Google Scholar
  43. 43.
    Page DL, Anderson TJ, Carter B A. Minimal solid tumor involvement of regional and distant sites. Cancer 1999;86:2589–2592.PubMedCrossRefGoogle Scholar
  44. 44.
    Datta YH, Adams PT, Drobski WR, et al. Sensitive detection of occult breast cancer by reverse-transcriptase polymerase chain reaction. J Clin Oncol 1994;12:475–482.PubMedGoogle Scholar
  45. 45.
    Bostick PJ, Chatterjee S, Chi DD, et al. Limitations of specific reverse-transcriptase polymerase chain reaction markers in the detection of metastases in the lymph nodes and blood of breast cancer patients. J Clin Oncol 1998;16:2632–2640.PubMedGoogle Scholar
  46. 46.
    Zippelius P, Kufer P, Honold G, et al. Limitations of reverse-transcriptase polymerase chain reaction analysis for detection of micrometastatic epithelial cancer cells in bone marrow. J Clin Oncol 1997;15:2701–2708.PubMedGoogle Scholar
  47. 47.
    Grunewald K, Haun M, Urbanek M, et al. Mammaglobin gene expression: a superior marker of breast cancer cells in peripheral blood in comparison to epidermal-growth-factor receptor and cytokeratin-19. Lab Invest 2000;80:1071–1077.PubMedGoogle Scholar
  48. 48.
    Watson MA, Dintzis S, Darrow CM, et al. Mammaglobin expression in primary, metastatic, and occult breast cancer. Cancer Res 1999;59:3028–3031.PubMedGoogle Scholar
  49. 49.
    Zach O, Kasparu H, Krieger O, Hehenwarter W, Girschikofsky M, Lutz D. Detection of circulating mammary carcinoma cells in the peripheral blood of breast cancer patients via nested reverse transcriptase polymerase chain reaction assay for mammaglobin mRNA. J Clin Oncol 1999;17:2015–2019.PubMedGoogle Scholar
  50. 50.
    Slade MJ, Smith BM, Sinnett D, Cross NCP, Coombes RC. Quantitative polymerase chain reaction for the detection of micrometastases in patients with breast cancer. J Clin Oncol 1999;17:870–879.PubMedGoogle Scholar
  51. 51.
    Smith BM, Slade MJ, English J, et al. Response of circulating tumor cells to systemic therapy in patients with metastatic breast cancer: comparison of quantitative polymerase chain reaction and immunocytochemical techniques. J Clin Oncol 2000;18:1432–1439.PubMedGoogle Scholar
  52. 52.
    Zach O, Kasparu H, Wagner H, Krieger O, Lutz D. Mammoglobin as a marker for the detection of tumor cells in the peripheral blood of breast cancer patients. Ann NYAcad Sci 2000;923:343–345.CrossRefGoogle Scholar
  53. 53.
    Pantel K, Schlimok G, Angstwurm M, et al. Methodological analysis of immunocytochemical screening for disseminated epithelial tumor cells in bone marrow. JHematother 1994;3:165–173.Google Scholar
  54. 54.
    Naume B, Borgen E, Beiske K, et al. Immunomagnetic techniques for the enrichment and detection of isolated breast carcinoma cells in bone marrow and peripheral blood. J Hematother 1997;6:103–114.PubMedGoogle Scholar
  55. 55.
    Martin VM, Siewert C, Scharl A, et al. Immunomagnetic enrichment of disseminated epithelial tumor cells from peripheral blood by MACS. Exp Hematol 1998;26.Google Scholar
  56. 56.
    Naume B, Borgen E, Nesland JM, et al. Increased sensitivity for detection of micrometastases in bone-marrow/peripheral-blood stem-cell products from breast-cancer patients by negative immunomagnetic separation. Int J Cancer 1998;78:556–560.PubMedCrossRefGoogle Scholar
  57. 57.
    Racila E, Euhus D, Weiss AJ, et al. Detection and characterization of carcinoma cells in the blood. Proc NatlAcad Sci USA 1998;95:4589–4594.CrossRefGoogle Scholar
  58. 58.
    Fodstad O, Trones GE, Forus A, et al. Improved immunomagnetic method for detection and characterization of cancer cells in blood and bone marrow (abstract). ProcAmAssoc Cancer Res 1997;38:(abstr 172).Google Scholar
  59. 59.
    Kim SJ, Ikeda N, Shiba E, Takamura Y, Noguchi S. Detection of breast cancer micrometastases in peripheral blood using immunomagnetic separation and immunocytochemistry. Breast Cancer 2001;8:63–39.PubMedGoogle Scholar
  60. 60.
    Stathopoulou A, Vlachonikolis I, Mavroudis D, et al. Molecular detection of cytokeratin-19-positive cells in the peripheral blood of patients with operable breast cancer: evaluation of their prognostic significance. J Clin Oncol 2002;20:3404–3412.PubMedCrossRefGoogle Scholar
  61. 61.
    Cristofanelli M, Budd GT, Ellis MJ, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 2004;351:781–791.CrossRefGoogle Scholar
  62. 62.
    Theriult RL, Hortobagy GN. Bone metastases in breast cancer. Anticancer Drugs 1992;3:455–462.CrossRefGoogle Scholar
  63. 63.
    Body JJ. Metastatic bone disease: clinical and therapeutic aspects. Bone 1992;13:857–862.CrossRefGoogle Scholar
  64. 64.
    Berger U, Bettelheim R, Mansi JL, Easton D, Coombes RC, Neville AM. The relationship between micrometastases in the bone marrow, histopathologic features in the primary tumor in breast cancer and prognosis. Am J Clin Pathol 1988;90:1–6.PubMedGoogle Scholar
  65. 65.
    Osborne MP, Rosen PP. Detection and management of bone marrow micro-metastases in breast cancer. Oncology (Huntingt) 1994;8:25–31.Google Scholar
  66. 66.
    Mansi JL, Berger U, Easton D, et al. Micrometastases in bone marrow in patients with primary breast cancer: evaluation as an early predictor of bone metastases. Br Med J 1987;295:1093–1096.Google Scholar
  67. 67.
    Porro G, Menard S, Tagliabue E, et al. Monoclonal antibody detection of carcinoma cells in bone marrow biopsy specimens from breast cancer patients. Cancer 1988;61:2407.PubMedCrossRefGoogle Scholar
  68. 68.
    Cancer Statistics. Ca-A Cancer J Clin, 1990:40.Google Scholar
  69. 69.
    Society AC. Breast Cancer Facts and Figures 2003–2004. Vol. 2003: American Cancer Society, 2003.Google Scholar
  70. 70.
    Fehm T, Sagalowsky A, Cliffird E, et al. Cytogenetic evidence that circulating epithelial cells in patients with carcinoma are malignant. Clin Cancer Res 2002;8:2073–2084.PubMedGoogle Scholar
  71. 71.
    Diel IJ, Kaufmann M, Costa SD, et al. Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status. J Natl Cancer Inst 1997;88:1652–1658.CrossRefGoogle Scholar
  72. 72.
    Mansi JL, Gogas H, Bliss JM, Gazet J-C, Berger U, Coombes RC. Outcome of primary-breast-cancer patients with micrometastases: a long-term follow-up study. Lancet 1999;354:197–202.PubMedCrossRefGoogle Scholar
  73. 73.
    Braun S, Pantel K, Muller P, et al. Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 2000;342:525–533.PubMedCrossRefGoogle Scholar
  74. 74.
    Gerber B, Krause A, Muller H, et al. Simultaneous immunohistochemical detection of tumor cells in lymph nodes and bone marrow aspirates in breast cancer and its correlation with other prognostic factors. J Clin Oncol 2001;19:960–971.PubMedGoogle Scholar
  75. 75.
    Gebauer G, Fehm T, Merkle E, Beck EP, Lang N, Jager W. Epithelial cells in bone marrow of breast cancer patients at time of primary surgery: clinical outcome during long-term follow-up. J Clin Oncol 2001;19:3669–3674.PubMedGoogle Scholar
  76. 76.
    Wiedswang G, Borgen E, Karesen R, et al. Detection of isolated tumor cells in bone marrow is an independent prognostic factor in breast cancer. J Clin Oncol 2003;21:3469–3478.PubMedCrossRefGoogle Scholar
  77. 77.
    Dearnaley DP, Ormerod MG, Sloane JP. Micrometastases in breast cancer: long-term follow-up of the first patient cohort. Eur J Cancer 1991;27:236.PubMedCrossRefGoogle Scholar
  78. 78.
    Mansi JL, Easton U, Berger JC, et al. Bone marrow micrometastases in primary breast cancer: prognostic significance after six years’ follow-up. Eur J Cancer 1991;27:1552.PubMedGoogle Scholar
  79. 79.
    Diel IJ, Kaufman M, Costa SD, et al. Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status. J Natl Cancer Inst 1996;88:1652–1658.PubMedCrossRefGoogle Scholar
  80. 80.
    Diel IJ, Kaufman M, Goener R, et al. Detection of tumor cells in bone marrow of patients with primary breast cancer: a prognostic factor for distant metastases. J Clin Oncol 1992;10:1534–1539.PubMedGoogle Scholar
  81. 81.
    Gusterson B A, Ott R. Occult axillary lymph node micrometastases in breast cancer. Lancet 1990;336:434–435.CrossRefGoogle Scholar
  82. 82.
    Neville AM. Breast cancer micrometastases in lymph nodes and bone marrow are prognostically important. Ann Oncol 1989;2:13–14.Google Scholar
  83. 83.
    Saphir O, Amromin GD. Obscure axillary lymph node metastases in carcinoma of the breast. Cancer 1948;1:238–241.CrossRefPubMedGoogle Scholar
  84. 84.
    Pickren JW. Significance of occult metastases. A study of breast cancer. Cancer 1961;14:1266–1271.PubMedCrossRefGoogle Scholar
  85. 85.
    Fisher ER, Saminoss S, Lee CH, et al. Detection and significance of occult axillary node metastases in patients with invasive breast cancer. Cancer 1978;42:2025–2031.PubMedCrossRefGoogle Scholar
  86. 86.
    Wilkinson EJ, Hause LL, Hoffman RG, et al. Occult axillary lymph node metastases in invasive breast carcinoma: characteristics of the primary tumor and the significance of metastases. Pathol Ann 1982;17:67–91.Google Scholar
  87. 87.
    International (LUDWIG) Breast Cancer Study Group. Prognostic importance of occult lymph node micrometastases from breast cancers. Lancet 1990;335:1565–1568.Google Scholar
  88. 88.
    de Mascarel I, Bonichon F, Coindre JM, Trojani M. Prognostic significance of breast cancer axillary lymph node micrometastases assessed by two special techniques: reevaluation with longer follow-up. Br J Cancer 1992;66:523–527.PubMedGoogle Scholar
  89. 89.
    Wells CA, Heryt A, Brochier J, et al. The immunohistochemical detection of axillary micrometastases in breast cancer. Br J Cancer 1984;50:193–197.PubMedGoogle Scholar
  90. 90.
    Bussolati G, Gugliotta P, Morra Z, et al. The immunohistochemical detection of lymph node micrometastases from infiltrating lobular carcinoma of the breast. BrJ Cancer 1986;54:631–636.Google Scholar
  91. 91.
    Byrne J, Waldron R, Mc Avinchy D, et al. The use of monoclonal antibodies for the histological detection of mammary axillary micrometastases. Eur J Surg Oncol 1987;13:409.PubMedGoogle Scholar
  92. 92.
    Trojani L, Mascarel I, Bonichon F, et al. Micrometastases to axillary lymph nodes from carcinoma of the breast: detection by immunohistochemistry and prognostic significance. Br J Cancer 1987;55:303–306.PubMedGoogle Scholar
  93. 93.
    Apostolikas N, Petraki C, Agnantis NJ. The reliability of histologically negative axillary lymph nodes in breast cancer. Pathol Res Pract 1989;184:35–38.Google Scholar
  94. 94.
    Sedmak DD, Meinke TA, Knechtges DS, et al. Prognostic significance of cytokeratin-postive breast cancer metastases. Mod Pathol 1989;2:516–520.PubMedGoogle Scholar
  95. 95.
    Cote RJ, Chaiwun B, Qu J, Agnantis NJ, et al. Prognostic importance of occult lymph node metastases in patients with breast cancer. Proc Am Assoc Cancer Res 1992;33:202.Google Scholar
  96. 96.
    Neville AM. Prognostic factors and primary breast cancer. Diag Oncol 1991;1:53.Google Scholar
  97. 97.
    Neville AM, Price KN, Gelber RD, et al. Axillary lymph node micrometastases and breast cancer. Lancet 1991;337:110.CrossRefGoogle Scholar
  98. 98.
    Elson CE, Kufe D, Johnston WW. Immunohistochemical detection and significance of axillary lymph node micrometastases in breast cancer-a study of 97 cases. Anal Quant Cytol Histol 1993:171–178.Google Scholar
  99. 99.
    Nasser IA, Lee AKC, Bosari S, Saganich R, Heatly G, Silverman ML. Occult axillary lymph node metastases in “node-negative” breast cancer. Hum Pathol 1993;24:950–957.PubMedCrossRefGoogle Scholar
  100. 100.
    Hainsworth PJ, Tjandra JJ, Stillwell RG, et al. Detection and significance of occult metastases in node-negative breast cancer. Br J Surg 1993;80:459–463.PubMedCrossRefGoogle Scholar
  101. 101.
    Schoenfeld A, Luqmani Y, Smith D, et al. Detection of breast cancer micrometastases in axillary nodes using polymerase chain reaction. Cancer Res 1994;54:2986–2990.PubMedGoogle Scholar
  102. 102.
    Noguchi S, Aihara T, Nakamori S, et al. The detection of breast cancer micrometastases in axillary lymph nodes by means of reverse-transcriptase polymerase chain reaction. Cancer 1994;74:1595–1600.PubMedCrossRefGoogle Scholar
  103. 103.
    Cote RJ, Peterson HF, Chaiwun B, et al. Role of immunohistochemical detection of lymph-node metastases in management of breast cancer. Lancet 1999;354:896–900.PubMedCrossRefGoogle Scholar
  104. 104.
    Giuliano AE, Jones RC, Brennan M, Statman R. Sentinel lymphadenectomy in breast cancer. J Clin Oncol 1997;15:2345.PubMedGoogle Scholar
  105. 105.
    Veronesi U, Paganelli G, Galimberti V, et al. Sentinel-node biopsy to avoid axillary dissection in breast cancer with clinically negative lymph-nodes. Lancet 1997;349:1864–1867.PubMedCrossRefGoogle Scholar
  106. 106.
    Veronesi U, Paganelli G, Viale G, et al. A randomized comparison of sentinel-node biopsy with routine axillary dissection in breast cancer [comment]. N Engl J Med 2003;349:603–605.CrossRefGoogle Scholar
  107. 107.
    Alex JC, Krag DN. The gamma-probe-guided resection of radiolabeled primary lymph nodes. Surg Oncol Clin North Am 1996;5:33–41.Google Scholar
  108. 108.
    Albertini JJ, Lyman GH, Cox C, et al. Lymphatic mapping and sentinel node biopsy in the patient with breast cancer. JAMA 1996;276:1818–1822.PubMedCrossRefGoogle Scholar
  109. 109.
    Krag DN, Weaver D, Ashikaga T, et al. The sentinel node in breast cancer: a multicenter validation study. N Engl J Med 1998;339:941–995.PubMedCrossRefGoogle Scholar
  110. 110.
    Fisher B, Dignam J, Walmark N. Lumpectomy and radiation therapy for the treatment of intraductal breast cancer: findings from national adj uvant breast and bowel project B-17. J Clin Oncol 1998;16:441–452.PubMedGoogle Scholar
  111. 111.
    Julien J-P, Bijker N, Fentiman IS. Radiotherapy in breast-conserving treatment for ductal carcinoma in situ: first results of the EORTC randomised phase III trial 10853. Lancet 2000;355:528–533.PubMedCrossRefGoogle Scholar
  112. 112.
    Dowlatshahi K, Fan M, Snider HC. Lymph node micrometastases from breast carcinoma: reviewing the dilemma. Cancer 1997;80:1188–1197.PubMedCrossRefGoogle Scholar
  113. 113.
    Pendas S, Dauway E, Giuliano R, Ku N, Reintgen DS. Sentinel node biopsy in ductal carcinoma in situ patients. Ann Surg Oncol 2000;7:15–20.PubMedCrossRefGoogle Scholar
  114. 114.
    Frykberg ER, Bland KI. In situ breast carcinoma. Adv Surg 1993;26:29–72.PubMedGoogle Scholar
  115. 115.
    Schwartz GF, Lawrence JS, Olivotto IA, Ernster VL, Pressman PI. Consensus Conference on the treatment of in situ ductal carcinoma of the breast. Cancer 2000;88:946–954.PubMedCrossRefGoogle Scholar
  116. 116.
    Cox CE, Pendas S, Cox J. Guidelines for sentinel node biopsy and lymphatic mapping of patients with breast cancer. Ann Surg 1998;227:645–653.PubMedCrossRefGoogle Scholar
  117. 117.
    Braun S, Schlimok G, Heumos I, et al. erbB2 overexpression on occult metastatic cells in bone marrow predicts poor clinical outcome of stage I–III breast cancer patients. Cancer Res 2001;61:1890–1895.PubMedGoogle Scholar
  118. 118.
    Pantel K, Braun S. Molecular determinants of occult metastatic tumor cells in bone marrow. [Review]. Clin Breast Cancer 2001;2:222–228.PubMedCrossRefGoogle Scholar
  119. 119.
    Otte M, Zafrakas M, Riethdorf L, et al. MAGE-A gene expression pattern in primary breast cancer. Cancer Res 2001;61:6682–6687.PubMedGoogle Scholar
  120. 120.
    De Plaen E, Arden K, Traversari C, et al. Structure, chromosomal localization, and expression on 12 genes of the MAGE family. Immunogenetics 1994;40:360–369.PubMedCrossRefGoogle Scholar
  121. 121.
    Takahashi K, Shichijo S, Noguchi M, Hirohata M, Itoh K. Identification of MAGE-1 and MAGE-4 proteins in spermatogonia and primary spermatocytes. Cancer Res 1995;55:3478–3482.PubMedGoogle Scholar
  122. 122.
    Tossvik S, Trane A, Lonning PE, et al. Persistence of occult metastatic cells in bone marrow of breast cancer patients despite systemic neoadj uvant taxol/epidriamycin treatment., 4th International Symposium on Minimal Residual Cancer, Oslo, Norway, November 13–16, 2003, 2003.Google Scholar
  123. 123.
    Braun S, Kentenich C, Janni W, et al. Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients. J Clin Oncol 2000;18:80–86.PubMedGoogle Scholar
  124. 124.
    Chaiwun B, Saad A, Chatterjee SJ, Taylor CR, Beattie EJ, Cote RJ. Advances in the pathologic staging of lung cancer: detection of regional and systemic occult metastases. In: Marchevsky AM, Koss MN, eds. State of the Art Reviews. Vol. 4. Philadelphia: Hanley & Belfus, 1996:155–168.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • Debra Hawes
    • 1
  • Richard J. Cote
    • 1
  1. 1.Norris Comprehensive Cancer Center, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations