Skip to main content

Neural Progenitor Cells of the Adult Human Brain

  • Chapter
Book cover Neural Development and Stem Cells

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Over the past two decades, studies of cell genesis in the adult vertebrate brain have revealed the persistence of neural progenitor cells in both the neuroepithelial lining of the cerebral ventricles and the developmentally contiguous hippocampal dentate gyrus. Competent neural progenitor cells have been identified in adult fish, reptiles, birds, rodents, monkeys, and humans (1,2). Across phylogeny, both multipotential and phenotypically restricted progenitors populate the ventricular lining (37), within which they appear to be largely subependymal in origin (8,9). These subependymal neural progenitor cells extend throughout the adult ventricular system (1012), persist throughout adult life (13,14), and may include or derive from multipotential founders (1517). Although ependymal cells have also been reported to include multipotential progenitors (18), this observation remains controversial and as yet unverified. Rather, most studies have pointed to the existence in adults of a subependymal progenitor cell population, which remains neurogenic in selected regions, such as the avian neostriatum and rodent olfactory bulb, but that more typically is quiescent unless activated (17,19), then yielding either glia or short-lived neuronal progeny (18,20).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldman, S. (1998) Adult neurogenesis: from canaries to the clinic. J. Neurobiol. 36, 267–286.

    Article  PubMed  CAS  Google Scholar 

  2. Goldman, S. A. and Luskin, M. B. (1998) Strategies utilized by migrating neurons of the postnatal vertebrate forebrain. Trends Neurosci. 21, 107–114.

    Article  PubMed  CAS  Google Scholar 

  3. Goldman, S. A. and Nottebohm, F. (1983) Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc. Natl. Acad. Sci. USA 80, 2390–2394.

    Article  PubMed  CAS  Google Scholar 

  4. Lois, C. and Alvarez-Buylla, A. (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc. Natl. Acad. Sci. USA 90, 2074–2077.

    Article  PubMed  CAS  Google Scholar 

  5. Luskin, M. B. (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–189.

    Article  PubMed  CAS  Google Scholar 

  6. Kirschenbaum, B., et al. (1994) In vitro neuronal production and differentiation by precursor cells derived from the adult human forebrain. Cereb. Cortex 4, 576–589.

    Article  PubMed  CAS  Google Scholar 

  7. Goldman, S. A., Zukhar, A., Barami, K., Mikawa, T., and Niedzwiecki, D. (1996) Ependy-mal/subependymal zone cells of postnatal and adult songbird brain generate both neurons and nonneuronal siblings in vitro and in vivo. J. Neurobiol. 30, 505–520.

    Article  PubMed  CAS  Google Scholar 

  8. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M., and Alvarez-Buylla, A. (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716.

    Article  PubMed  CAS  Google Scholar 

  9. Chiasson, B., Tropepe, V., Morshead, C., and van der Kooy, D. (1999) Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. J. Neurosci. 19, 4462–4471.

    PubMed  CAS  Google Scholar 

  10. Kirschenbaum, B. and Goldman, S. A. (1995) Brain-derived neurotrophic factor promotes the survival of neurons arising from the adult rat forebrain subependymal zone. Proc. Natl. Acad. Sci. USA 92, 210–214.

    Article  PubMed  CAS  Google Scholar 

  11. Doetsch, F. and Alvarez-Buylla, A. (1996) Network of tangential pathways for neuronal migration in the adult mammalian brain. Proc. Natl. Acad. Sci. USA 93, 14895–14900.

    Article  PubMed  CAS  Google Scholar 

  12. Bauer-Dantoin, A. C., Weiss, J., and Jameson, J. L. (1996) Gonadotropin-releasing hormone regulation of pituitary follistatin gene expression during the primary follicle-stimulating hormone surge. Endocrinology 137, 1634–1639.

    Article  PubMed  CAS  Google Scholar 

  13. Kuhn, G., Dickinson-Anson, H., and Gage, F. (1996) Neurogenesis in the dentate gyrus of the adult rat: Age related decrease of neuronal progenitor proliferation. J. Neurosci. 16, 2027–2033.

    PubMed  CAS  Google Scholar 

  14. Goldman, S., Kirschenbaum, B., Harrison-Restelli, C., and Thaler, H. (1997) Neuronal precursor cells of the adult rat ventricular zone persist into senescence, with no change in spatial extent or BDNF response. J. Neurobiol. 32, 554–566.

    Article  PubMed  CAS  Google Scholar 

  15. Reynolds, B. A. and Weiss, S. (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710.

    Article  PubMed  CAS  Google Scholar 

  16. Richards, L. J., Kilpatrick, T. J., and Bartlett, P. F. (1992) De novo generation of neuronal cells from the adult mouse brain. Proc. Natl. Acad. Sci. USA 89, 8591–8595.

    Article  PubMed  CAS  Google Scholar 

  17. Morshead, C. M., et al. (1994) Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13, 1071–1082.

    Article  PubMed  CAS  Google Scholar 

  18. Johansson, C., et al. (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96, 25–34.

    Article  PubMed  CAS  Google Scholar 

  19. Morshead, C. and van der Kooy, D. (1992) Postmitotic death is the fate of constitutively proliferating cells in the subependymal layer of the adult mouse brain. J. Neurosci. 12, 249–256.

    PubMed  CAS  Google Scholar 

  20. Craig, C. G., et al. (1996) In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J. Neurosci. 16, 2649–2658.

    PubMed  CAS  Google Scholar 

  21. Pincus, D. W., et al. (1997) In vitro neurogenesis by adult human epileptic temporal neo-cortex. Clin. Neurosurg. 44, 17–25.

    PubMed  CAS  Google Scholar 

  22. Pincus, D. W., et al. (1998) FGF2/BDNF-associated maturation of new neurons generated from adult human subependymal cells. Ann. Neurol. 43, 576–585.

    Article  PubMed  CAS  Google Scholar 

  23. Sanai, N., et al. (2004) Unique astrocyte ribbon in adult human brain contains neural stem, cells but lacks chain migration. Nature 427, 740–743.

    Article  PubMed  CAS  Google Scholar 

  24. Roy, N. S., et al. (1999) Identification, isolation, and promoter-defined separation of mitotic oligodendrocyte progenitor cells from the adult human subcortical white matter. J. Neurosci. 19, 9986–9995.

    PubMed  CAS  Google Scholar 

  25. Roy, N. S., et al. (2000) In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat. Med. 6, 271–277.

    Article  PubMed  CAS  Google Scholar 

  26. Roy, N. S., et al. (2000) Promoter-targeted selection and isolation of neural progenitor cells from the adult human ventricular zone. J. Neurosci. Res. 59, 321–331.

    Article  PubMed  CAS  Google Scholar 

  27. Roy, N., Windrem, M., and Goldman, S. A. (2004) Progenitor cells of the adult white matter. In Myelin Biology and Disorders (Lazzarini, R., ed.), Elsevier, Amsterdam, pp. 259–287.

    Google Scholar 

  28. Nunes, M. C., et al. (2003) Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat. Med. 9, 439–447.

    Article  PubMed  CAS  Google Scholar 

  29. Goldman, S. (2003) Glia as neural progenitor cells. Trends Neurosci. 26, 590–596.

    Article  PubMed  CAS  Google Scholar 

  30. Windrem, M. S., et al. (2002) Progenitor cells derived from the adult human subcortical white matter disperse and differentiate as oligodendrocytes within demyelinated lesions of the rat brain. J. Neurosci. Res. 69, 966–975.

    Article  PubMed  CAS  Google Scholar 

  31. Windrem, M. S., et al. (2004) Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain. Nat. Med. 10, 93–97.

    Article  PubMed  CAS  Google Scholar 

  32. Svendsen, C., Caldwell, M., and Ostenfeld, T. (1999) Human neural stem cells: Isolation, expansion and transplantation. Brain Pathol. 9, 499–513.

    Article  PubMed  CAS  Google Scholar 

  33. Chmielnicki, E., Benraiss, A., Economides, A. N., and Goldman, S. A. (2004) Adeno-virally expressed noggin and BDNF cooperate to induce new medium spiny neurons from resident progenitor cells in the adult striatal ventricular zone. J. Neurosci. 24, 2133–2142.

    Article  PubMed  CAS  Google Scholar 

  34. Chmielnicki, E. and Goldman, S. A. (2002) Induced neurogenesis by endogenous progenitor cells in the adult mammalian brain. Prog. Brain Res. 138, 451–464.

    Article  PubMed  CAS  Google Scholar 

  35. Benraiss, A., Chmielnicki, E., Lerner, K., Roh, D., and Goldman, S. A. (2001) Adeno-viral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J. Neurosci. 21, 6718–6731.

    PubMed  CAS  Google Scholar 

  36. Aberg, M., Aberg, D., Hedbacker, H., Oscarsson, J., and Eriksson, P. (2000) Peripheral infusion of IGF-1 selectively induces neurogenesis in the adult rat hippocampus. J. Neurosci. 20, 2896–2903.

    PubMed  CAS  Google Scholar 

  37. Fallon, J., et al. (2000) In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc. Natl. Acad. Sci. USA 97, 14686–14691.

    Article  PubMed  CAS  Google Scholar 

  38. Pencea, V., Bingaman, K. D., Wiegand, S. J., and Luskin, M. B. (2001) Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J. Neurosci. 21, 6706–6717.

    PubMed  CAS  Google Scholar 

  39. Kuhn, H. G., Winkler, J., Kempermann, G., Thal, L. J., and Gage, F. H. (1997) Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci. 17, 5820–5829.

    PubMed  CAS  Google Scholar 

  40. Zigova, T., Pencea, V., Wiegand, S. J., and Luskin, M. B. (1998) Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol. Cell. Neurosci. 11, 234–245.

    Article  PubMed  CAS  Google Scholar 

  41. Kaplan, M. (1983) Proliferation of subependymal cells in the adult primate CNS: differential uptake of thymidine by DNA-labeled precursors. J. Hirnforsch. 23, 23–33.

    Google Scholar 

  42. Gould, E., Reeves, A., Graziano, M., and Gross, C. (1999) Neurogenesis in the neocortex of adult primates. Science 286, 548–552.

    Article  PubMed  CAS  Google Scholar 

  43. Lois, C. and Alvarez-Buylla, A. (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264, 1145–1148.

    Article  PubMed  CAS  Google Scholar 

  44. Barami, K., Kirschenbaum, B., Lemmon, V., and Goldman, S. A. (1994) N-cadherin and Ng-CAM/8D9 are involved serially in the migration of newly generated neurons into the adult songbird brain. Neuron 13, 567–582.

    Article  PubMed  CAS  Google Scholar 

  45. Pincus, D. W., Goodman, R. R., Fraser, R. A., Nedergaard, M., and Goldman, S. A. (1998) Neural stem and progenitor cells: a strategy for gene therapy and brain repair. Neurosurgery 42, 858–867; discussion 867–868.

    Article  PubMed  CAS  Google Scholar 

  46. Frederiksen, K. and McKay, R. D. (1988) Proliferation and differentiation of rat neuroepithelial precursor cells in vivo. J. Neurosci. 8, 1144–1151.

    PubMed  CAS  Google Scholar 

  47. Clark, S., Shetty, A., Bradley, J., and Turner, D. (1994) Reactive astrocytes express the embryonic intermediate neurofilament nestin. NeuroReport 5, 1885–1888.

    Article  Google Scholar 

  48. Sakakibara, S., et al. (1996) Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell. Dev. Biol. 176, 230–242.

    Article  PubMed  CAS  Google Scholar 

  49. Nakamura, M., Okano, H., Blendy, J., and Montell, C. (1994) Musashi, a neural RNA-binding protein required for Drosophila adult external sensory organ development. Neuron 13, 67–81.

    Article  PubMed  CAS  Google Scholar 

  50. Richter, K., Good, P., and Dawid, I. (1990) A developmentally regulated, nervous system specific gene in Xenopus encodes a putative RNA-binding protein. New Biologist 2, 556–565.

    PubMed  CAS  Google Scholar 

  51. Sakakibara, S. and Okano, H. (1997) Expression of neural RNA-binding proteins in the postnatal CNS: implications of their roles in neuronal and glial cell development. J. Neurosci. 17, 8300–8312.

    PubMed  CAS  Google Scholar 

  52. Szabo, A., et al. (1991) HuD, a paraneoplastic encephalomyelitis antigen, contains RNA binding domains and is homologous to elav and sex-lethal. Cell 67, 325–333.

    Article  PubMed  CAS  Google Scholar 

  53. Marusich, M. and Weston, J. (1992) Identification of early neurogenic cells in the neural crest lineage. Dev. Biol. 149, 295–306.

    Article  PubMed  CAS  Google Scholar 

  54. Marusich, M., Furneaux, H., Henion, P., and Weston, J. (1994) Hu neuronal proteins are expressed in proliferating neurogenic cells. J. Neurobiol. 25, 143–155.

    Article  PubMed  CAS  Google Scholar 

  55. Barami, K., Iversen, K., Furneaux, H., and Goldman, S. A. (1995) Hu protein as an early marker of neuronal phenotypic differentiation by subependymal zone cells of the adult songbird forebrain. J. Neurobiol. 28, 82–101.

    Article  PubMed  CAS  Google Scholar 

  56. Palmer, T. D., Ray, J., and Gage, F. H. (1995) FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol. Cell. Neurosci. 6, 474–486.

    Article  PubMed  CAS  Google Scholar 

  57. Gritti, A., et al. (1996) Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J. Neurosci. 16, 1091–1100.

    PubMed  CAS  Google Scholar 

  58. Ahmed, S., Reynolds, B. A., and Weiss, S. (1995) BDNF enhances the differentiation but not the survival of CNS stem cell-derived neuronal precursors. J. Neurosci. 15, 5765–5778.

    PubMed  CAS  Google Scholar 

  59. Pincus, D., Goodman, R., Fraser, R., Nedergaard, M., and Goldman, S. (1998) Neural stem and progenitor cells: a strategy for gene therapy and brain repair. Neurosurgery 42, 858–868.

    Article  PubMed  CAS  Google Scholar 

  60. Vescovi, A. L., Reynolds, B. A., Fraser, D. D., and Weiss, S. (1993) bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11, 951–966.

    Article  PubMed  CAS  Google Scholar 

  61. Svendsen, C., et al. (1997) Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson’s disease. Exp. Neurol. 148, 135–146.

    Article  PubMed  CAS  Google Scholar 

  62. Carpenter, M., et al. (1999) In vitro expansion of a multipotent population of human neural progenitor cells. Exp. Neurol. 158, 265–278.

    Article  PubMed  CAS  Google Scholar 

  63. Vescovi, A. L., Gritti, A., Galli, R., and Parati, E. A. (1999) Isolation and intracerebral grafting of nontransformed multipotential embryonic human CNS stem cells. J. Neurotrauma 16, 689–693.

    Article  PubMed  CAS  Google Scholar 

  64. Kukekov, V., et al. (1999) Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp. Neurol. 156, 333–344.

    Article  PubMed  CAS  Google Scholar 

  65. Johe, K. K., Hazel, T. G., Muller, T., Dugich-Djordjevic, M. M., and McKay, R. D. (1996) Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev. 10, 3129–3140.

    Article  PubMed  CAS  Google Scholar 

  66. Rao, M. and Mayer-Proschel, M. (1997) Glial-restricted precursors are derived from multipotential neuroepithelial stem cells. Dev. Biol. 188, 48–63.

    Article  PubMed  CAS  Google Scholar 

  67. Marmur, R., Kessler, J. A., Zhu, G., Gokhan, S., and Mehler, M. F. (1998) Differentiation of oligodendroglial progenitors derived from cortical multipotent cells requires extrinsic signals including activation of gp130/LIFbeta receptors. J. Neurosci. 18, 9800–9811.

    PubMed  CAS  Google Scholar 

  68. Jiang, J., McMurtry, J., Niedzwiecki, D., and Goldman, S. A. (1998) Insulin-like growth factor-1 is a radial cell-associated neurotrophin that promotes neuronal recruitment from the adult songbird ependyma/subependyma. J. Neurobiol. 36, 1–15.

    Article  PubMed  CAS  Google Scholar 

  69. Wagner, J., et al. (1999) Induction of a midbrain dopaminergic phenotype in Nurr1-overexpressing neural stem cells by type 1 astrocytes. Nat. Biotechnol. 17, 653–659.

    Article  PubMed  CAS  Google Scholar 

  70. Weiss, S., et al. (1996) Is there a neural stem cell in the mammalian forebrain? Trends Neurosci. 19, 387–393.

    Article  PubMed  CAS  Google Scholar 

  71. Vescovi, A. L., et al. (1999) Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp. Neurol. 156, 71–83.

    Article  PubMed  CAS  Google Scholar 

  72. Song, H., Stevens, C. F., and Gage, F. H. (2002) Astroglia induce neurogenesis from adult neural stem cells. Nature 417, 39–44.

    Article  PubMed  CAS  Google Scholar 

  73. Brustle, O., et al. (1998) Chimeric brains generated by intraventricular transplantation of fetal human brain cells into embryonic rats. Nat. Biotech. 16, 1040–1044.

    Article  CAS  Google Scholar 

  74. Fricker, R., et al. (1999) Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain. J. Neurosci. 19, 5990–6005.

    PubMed  CAS  Google Scholar 

  75. Flax, J., et al. (1998) Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat. Biotech. 16, 1033–1039.

    Article  CAS  Google Scholar 

  76. Goldman, S. A. and Nedergaard, M. (1992) Newly generated neurons of the adult songbird brain become functionally active in long-term culture. Dev. Brain Res. 68, 217–223.

    Article  CAS  Google Scholar 

  77. Pincus, D. W., et al. (1998) Fibroblast growth factor-2/brain-derived neurotrophic factor-associated maturation of new neurons generated from adult human subependymal cells. Ann. Neurol. 43, 576–585.

    Article  PubMed  CAS  Google Scholar 

  78. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W., and Prasher, D. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Article  PubMed  CAS  Google Scholar 

  79. Cheng, L., Fu, J., Tsukamoto, A., and Hawley, R. (1996) Use of green fluorescent protein variants to monitor gene transfer and expression in mammalian cells. Nat. Biotech. 14, 606–609.

    Article  CAS  Google Scholar 

  80. Levy, J., Muldoon, R., Zolotukhin, S., and Link, C. (1996) Retroviral transfer and expression of a humanized, red-shifted green fluorescent protein gene into human tumor cells. Nat. Biotech. 14, 610–614.

    Article  CAS  Google Scholar 

  81. Miller, F., Naus, C., Durand, M., Bloom, F., and Milner, R. (1987) Isotypes of a-tubulin are differentially regulated during neuronal maturation. J. Cell Biol. 105, 3065–3073.

    Article  PubMed  CAS  Google Scholar 

  82. Gloster, A., et al. (1994) The Ta1 a-tubulin promoter specifies gene expression as a function of neuronal growth and regeneration in transgenic mice. J. Neurosci. 14, 7319–7330.

    PubMed  CAS  Google Scholar 

  83. Goldman, S., et al. (1997) Neural precursors and neuronal production in the adult mammalian forebrain. Ann. NY Acad. Sci. 835, 30–55.

    Article  PubMed  CAS  Google Scholar 

  84. Wang, S., et al. (1998) Isolation of neuronal precursors by sorting embryonic forebrain transfected with GFP regulated by the T alpha 1 tubulin promoter. Nat. Biotechnol. 16, 196–201.

    Article  PubMed  CAS  Google Scholar 

  85. Wang, S., Roy, N., Benraiss, A., Harrison-Restelli, C., and Goldman, S. (2000) Promoter-based isolation and purification of mitotic neuronal progenitor cells from the adult mammalian ventricular zone. Dev. Neurosci. 22, 167–176.

    Article  PubMed  Google Scholar 

  86. Zimmerman, L., et al. (1994) Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells and muscle precursors. Neuron 12, 11–24.

    Article  PubMed  CAS  Google Scholar 

  87. Lothian, C. and Lendahl, U. (1997) An evolutionarily conserved region in the second intron of the human nestin gene directs gene expression to CNS progenitor cells and to early neural crest cells. Eur. J. Neurosci. 9, 452–462.

    Article  PubMed  CAS  Google Scholar 

  88. Rossant, J., Zirngibl, R., Cado, D., Shago, M., and Giguere, V. (1991) Expression of a retinoic acid response element-hsp/lacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes Dev. 5, 1333–1344.

    Article  PubMed  CAS  Google Scholar 

  89. Kawaguchi, A., et al. (2001) Nestin-GFP transgenic mice: visualization of the self-renewal and multipotency of CNS stem cells. Mol. Cell. Neurosci. 17, 259–273.

    Article  PubMed  CAS  Google Scholar 

  90. Sawamoto, K., et al. (2001) Generation of dopaminergic neurons in the adult brain from mesencephalic precursor cells labeled with a nestin-GFP transgene. J. Neurosci. 21, 3895–3903.

    PubMed  CAS  Google Scholar 

  91. Svendsen, C. N., Caldwell, M. A., and Ostenfeld, T. (1999) Human neural stem cells: isolation, expansion and transplantation. Brain Pathol. 9, 499–513.

    Article  PubMed  CAS  Google Scholar 

  92. Keyoung, H. M., et al. (2001) High-yield selection and extraction of two promoter-defined phenotypes of neural stem cells from the fetal human brain. Nat. Biotechnol. 19, 843–850.

    Article  PubMed  CAS  Google Scholar 

  93. Uchida, N., et al. (2000) Direct isolation of human central nervous system stem cells. Proc. Natl. Acad. Sci. USA 97, 14720–14725.

    Article  PubMed  CAS  Google Scholar 

  94. Altman, J. and Das, G. D. (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 124, 319–335.

    Article  PubMed  CAS  Google Scholar 

  95. Kaplan, M. S. and Hinds, J. W. (1977) Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197, 1092–1094.

    Article  PubMed  CAS  Google Scholar 

  96. Bayer, S., Yackel, J., and Puri, P. (1982) Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life. Science 216, 890–892.

    Article  PubMed  CAS  Google Scholar 

  97. Barnea, A. and Nottebohm, F. (1994) Seasonal recruitment of hippocampal neurons in adult free-ranging black-capped chickadees. Proc. Natl. Acad. Sci. USA 91, 11217–11221.

    Article  PubMed  CAS  Google Scholar 

  98. Gould, E., McEwen, B., Tanapat, P., Galea, L., and Fuchs, E. (1997) Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J. Neurosci. 17, 2492–2498.

    PubMed  CAS  Google Scholar 

  99. Gould, E., Tanapat, P., McEwen, B., Flugge, G., and Fuchs, E. (1998) Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc. Natl. Acad. Sci. USA 95, 3168–3171.

    Article  PubMed  CAS  Google Scholar 

  100. Eriksson, P. S., et al. (1998) Neurogenesis in the adult human hippocampus. Nat. Med. 4, 1313–1317.

    Article  PubMed  CAS  Google Scholar 

  101. Gould, E., Cameron, H., Daniels, D., Wooley, C., and McEwen, B. (1992) Adrenal hormones suppress cell division in the adult rat dentate gyrus. J. Neurosci. 12, 3642–3650.

    PubMed  CAS  Google Scholar 

  102. Kempermann, G., Kuhn, H., and Gage, F. (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495.

    Article  PubMed  CAS  Google Scholar 

  103. van Praag, H., Kempermann, G., and Gage, F. (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci. 2, 266–270.

    Article  PubMed  Google Scholar 

  104. Gould, E., Beylin, A., tanapat, P., Reeves, A., and Shors, T. (1999) Learning enhances adult neurogenesis in the adult hippocampal formation. Nat. Neurosci. 2, 260–265.

    Article  PubMed  CAS  Google Scholar 

  105. Kornack, D. and Rakic, P. (1999) Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc. Natl. Acad. Sci. USA 96, 5768–5773.

    Article  PubMed  CAS  Google Scholar 

  106. Shankle, W., et al. (1998) Evidence for a postnatal doubling of neuron number in the developing human cerebral cortex between 15 months and 6 years. J. Theor. Biol. 191, 115–140.

    Article  PubMed  CAS  Google Scholar 

  107. Shankle, W., Rafii, M., Landing, B., and Fallon, J. (1999) Approximate doubling of numbers of neurons in postnatal human cerebral cortex and in 35 specific cytoarchitectural areas from birth to 72 months. Pediatr. Dev. Pathol. 2, 244–259.

    Article  PubMed  CAS  Google Scholar 

  108. Palmer, T. D., Takahashi, J., and Gage, F. H. (1997) The adult rat hippocampus contains primordial neural stem cells. Mol. Cell. Neurosci. 8, 389–404.

    Article  PubMed  CAS  Google Scholar 

  109. Suhonen, J., Peterson, D., Ray, J., and Gage, F. (1996) Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature 383, 624–627.

    Article  PubMed  CAS  Google Scholar 

  110. Wolswijk, G. and Noble, M. (1989) Identification of an adult-specific glial progenitor cell. Development 105, 387–400.

    PubMed  CAS  Google Scholar 

  111. Gensert, J. M. and Goldman, J. E. (1996) In vivo characterization of endogenous proliferating cells in adult rat subcortical white matter. Glia 17, 39–51.

    Article  PubMed  CAS  Google Scholar 

  112. Gensert, J. M. and Goldman, J. E. (1997) Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 19, 197–203.

    Article  PubMed  CAS  Google Scholar 

  113. Noble, M. (1997) The oligodendrocyte-type 2 astrocyte lineage: in vitro and in vivo studies on development, tissue repair and neoplasia. In Isolation, Characterization and Utilization of CNS Stem Cells (Gage, F. Y. C., ed.), Springer-Verlag, Berlin, pp. 101–128.

    Google Scholar 

  114. Palmer, T. D., Markakis, E. A., Willhoite, A. R., Safar, F., and Gage, F. H. (1999) Fibro-blast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J. Neurosci. 19, 8487–8497.

    PubMed  CAS  Google Scholar 

  115. Nunes, M. C., et al. (2003) Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat. Med. 9, 439–447.

    Article  PubMed  CAS  Google Scholar 

  116. Kondo, T. and Raff, M. (2000) Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289, 1754–1757.

    Article  PubMed  CAS  Google Scholar 

  117. Marmur, R., et al. (1998) Isolation and developmental characterization of cerebral cortical multipotent progenitors. Dev. Biol. 204, 577–591.

    Article  PubMed  CAS  Google Scholar 

  118. Davis, A. A. and Temple, S. (1994) A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature 372, 263–266.

    Article  PubMed  CAS  Google Scholar 

  119. Qian, X., Davis, A. A., Goderie, S. K., and Temple, S. (1997) FGF2 concentration regulates the generation of neurons and glia from multipotent cortical stem cells. Neuron 18, 81–93.

    Article  PubMed  CAS  Google Scholar 

  120. Qian, X., Goderie, S. K., Shen, Q., Stern, J. H., and Temple, S. (1998) Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells. Development 125, 3143–3152.

    PubMed  CAS  Google Scholar 

  121. Williams, B. P., Read, J., and Price, J. (1991) The generation of neurons and oligodendro-cytes from a common precursor cell. Neuron 7, 685–693.

    Article  PubMed  CAS  Google Scholar 

  122. Mitome, M., et al. (2001) Towards the reconstruction of central nervous system white matter using neural precursor cells. Brain 124, 2147–2161.

    Article  PubMed  CAS  Google Scholar 

  123. Yandava, B. D., Billinghurst, L. L., and Snyder, E. Y. (1999) “Global” cell replacement is feasible via neural stem cell transplantation: evidence from the dysmyelinated shiverer mouse brain. Proc. Natl. Acad. Sci. USA 96, 7029–7034.

    Article  PubMed  CAS  Google Scholar 

  124. Scolding, N., et al. (1998) Oligodendrocyte progenitors are present in the normal adult human CNS and in the lesions of multiple sclerosis. Brain 121, 2221–2228.

    Article  PubMed  Google Scholar 

  125. Scolding, N. J., Rayner, P. J., and Compston, D. A. (1999) Identification of A2B5-positive putative oligodendrocyte progenitor cells and A2B5-positive astrocytes in adult human white matter. Neuroscience 89, 1–4.

    Article  PubMed  CAS  Google Scholar 

  126. Watt, F. M. (2001) Stem cell fate and patterning in mammalian epidermis. Curr. Opin. Genet. Dev. 11, 410–417.

    Article  PubMed  CAS  Google Scholar 

  127. Niemann, C. and Watt, F. M. (2002) Designer skin: lineage commitment in postnatal epidermis. Trends Cell Biol. 12, 185–192.

    Article  PubMed  CAS  Google Scholar 

  128. Loeffler, M. and Potten, C. S. (1997) Stem cells and cellular pedigrees. In Stem Cells (Potten, C. S., ed.), Academic Press, San Diego, pp. 1–28.

    Google Scholar 

  129. Potten, C. S. and Loeffler, M. (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110, 1001–1020.

    PubMed  CAS  Google Scholar 

  130. Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J., and Alvarez-Buylla, A. (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36, 1021–1034.

    Article  PubMed  CAS  Google Scholar 

  131. Menezes, J. R., Smith, C. M., Nelson, K. C., and Luskin, M. B. (1995) The division of neuronal progenitor cells during migration in the neonatal mammalian forebrain. Mol. Cell. Neurosci. 6, 496–508.

    Article  PubMed  CAS  Google Scholar 

  132. Luskin, M. B. (1998) Neuroblasts of the postnatal mammalian forebrain: their phenotype and fate. J. Neurobiol. 36, 221–233.

    Article  PubMed  CAS  Google Scholar 

  133. Seri, B., Garcia-Verdugo, J. M., McEwen, B. S., and Alvarez-Buylla, A. (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci. 21, 7153–7160.

    PubMed  CAS  Google Scholar 

  134. Arsenijevic, Y., et al. (2001) Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp. Neurol. 170, 48–62.

    Article  PubMed  CAS  Google Scholar 

  135. Belachew, S., et al. (2003) Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J. Cell Biol. 161, 169–186.

    Article  PubMed  CAS  Google Scholar 

  136. Palmer, T., Willhoite, A., and Gage, F. (2000) Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479–494.

    Article  PubMed  CAS  Google Scholar 

  137. Palmer, T. (2002) Adult neurogenesis and the vascular Nietzsche. Neuron 34, 856–858.

    Article  PubMed  CAS  Google Scholar 

  138. Louissaint, A., Rao, S., Leventhal, C., and Goldman, S. A. (2002) Coordinated interaction of angiogenesis and neurogenesis in the adult songbird brain. Neuron 34, 945–960.

    Article  PubMed  CAS  Google Scholar 

  139. Lim, D. A., et al. (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28, 713–726.

    Article  PubMed  CAS  Google Scholar 

  140. Packer, M., et al. (2003) Nitric oxide negatively regulates mammalian adult neurogenesis. Proc. Natl. Acad. Sci. USA 100, 9566–9571.

    Article  PubMed  CAS  Google Scholar 

  141. Benraiss, A., et al. (1999) In vivo transduction of the adult rat ventricular zone with an adenoviral BDNF vector substantially increases neurogenesis and neuronal recruitment to the rat olfactory bulb. Soc. Neurosci. Abstr. 25.

    Google Scholar 

  142. Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z., and Lindvall, O. (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8, 963–970.

    Article  PubMed  CAS  Google Scholar 

  143. Nakatomi, H., et al. (2002) Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous progenitors. Cell 110, 429–441.

    Article  PubMed  CAS  Google Scholar 

  144. Parent, J. M. (2003) Injury-induced neurogenesis in the adult mammalian brain. Neuroscientist 9, 261–272.

    Article  PubMed  Google Scholar 

  145. Curtis, M. A., et al. (2003) Increased cell proliferation and neurogenesis in the adult human Huntington’s disease brain. Proc. Natl. Acad. Sci. USA 100, 9023–9027.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Goldman, S.A. (2006). Neural Progenitor Cells of the Adult Human Brain. In: Rao, M.S. (eds) Neural Development and Stem Cells. Contemporary Neuroscience. Humana Press. https://doi.org/10.1385/1-59259-914-1:267

Download citation

Publish with us

Policies and ethics