Skip to main content

Transdifferentiation in the Nervous System

  • Chapter
Neural Development and Stem Cells

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 570 Accesses

Abstract

In the nervous system, neural stem cells follow a sequential process of development. More differentiated cells have a more limited repertoire of fate choices while fully differentiated cells do not have any alternative fates and may not be able to reenter the cell cycle at all (reviewed in refs. 1 and 2). This progressive restriction of developmental potential is a normal aspect of development, and phenotypic plasticity appears uncommon. To a large part, analysis with gene specific promoters, culture of isolated populations of cells, clonal analysis, and challenge perturbation experiments (3) have confirmed this lack of plasticity and suggested that cells acquire an identity prior to terminal mitosis and this positional and phenotypic identity is difficult to alter (4,5). Overall the idea that there is a cell intrinsic change that restricts the potential of initially pluripotent cells is appealing, as it helps explain how the same regulatory molecules can be reiteratively used at multiple stages and in different tissues to direct differentiation and different fates in multiple distinct lineages (2,6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rao, M. S. (1999) Multipotent and restricted precursors in the central nervous system. Anat. Rec. 257, 137–148.

    Article  PubMed  CAS  Google Scholar 

  2. Weissman, I. L., Anderson, D. J., and Gage, F. (2001) Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu. Rev. Cell Dev. Biol. 17, 387–403.

    Article  PubMed  CAS  Google Scholar 

  3. Gilbert, S. F. (2003) Developmental Biology. 7th edition. Sinauer Associates, Inc., p. 838.

    Google Scholar 

  4. Morshead, C. M. and van der Kooy, D. (2004) Disguising adult neural stem cells. Curr. Opin. Neurobiol. 14, 125–131.

    Article  PubMed  CAS  Google Scholar 

  5. Murayama, A., Matsuzaki, Y., Kawaguchi, A., Shimazaki, T., and Okano, H. (2002) Flow cytometric analysis of neural stem cells in the developing and adult mouse brain. J. Neurosci. Res. 69, 837–847.

    Article  PubMed  CAS  Google Scholar 

  6. Gage, F. H. (2000) Mammalian neural stem cells. Science 287, 1433–1438.

    Article  PubMed  CAS  Google Scholar 

  7. Rakic, P. (2003) Elusive radial glial cells: historical and evolutionary perspective. Glia 43, 19–32.

    Article  PubMed  Google Scholar 

  8. Echeverri, K. and Tanaka, E. M. (2002) Ectoderm to mesoderm lineage switching during axolotl tail regeneration. Science 298, 1993–1996.

    Article  PubMed  CAS  Google Scholar 

  9. Schoenwolf, G. C. (2000) Molecular genetic control of axis patterning during early embryogenesis of vertebrates. Ann. NY Ac ad. Sci. 919, 246–260.

    Article  CAS  Google Scholar 

  10. Rastegar, S., Albert, S., Le Roux, I., et al. (2002) A floor plate enhancer of the zebrafish netrin1 gene requires Cyclops (Nodal) signalling and the winged helix transcription factor FoxA2. Dev. Biol. 252, 1–14.

    Article  PubMed  CAS  Google Scholar 

  11. Placzek, M., Dodd, J., and Jessell, T. M. (2000) Discussion point. The case for floor plate induction by the notochord. Curr. Opin. Neurobiol. 10, 15–22.

    Article  PubMed  CAS  Google Scholar 

  12. Mujtaba, T., Mayer-Proschel, M., and Rao, M. S. (1998) A common neural progenitor for the CNS and PNS. Dev. Biol. 200, 1–15.

    Article  PubMed  CAS  Google Scholar 

  13. Ziller, C., Dupin, E., Brazeau, P., Paulin, D., and Le Douarin, N. M. (1983) Early segregation of a neuronal precursor cell line in the neural crest as revealed by culture in a chemically defined medium. Cell 32, 627–638.

    Article  PubMed  CAS  Google Scholar 

  14. Lang, H. and Fekete, D. M. (2001) Lineage analysis in the chicken inner ear shows differences in clonal dispersion for epithelial, neuronal, and mesenchymal cells. Dev. Biol. 234, 120–137.

    Article  PubMed  CAS  Google Scholar 

  15. Sohal, G. S., Ali, M. M., Ali, A. A., and Bockman, D. E. (1999) Ventral neural tube cells differentiate into hepatocytes in the chick embryo. Cell. Mol. Life Sci. 55, 128–130.

    Article  PubMed  CAS  Google Scholar 

  16. Sohal, G. S., Ali, M. M., Ali, A. A., and Dai, D. (1999) Ventrally emigrating neural tube cells contribute to the formation of Meckel’s and quadrate cartilage. Dev. Dyn. 216, 37–44.

    Article  PubMed  CAS  Google Scholar 

  17. Sohal, G. S., Ali, M. M., Ali, A. A., and Dai, D. (1999) Ventrally emigrating neural tube cells differentiate into heart muscle. Biochem. Biophys. Res. Commun. 254, 601–604.

    Article  PubMed  CAS  Google Scholar 

  18. Bariety, J., Hill, G. S., Mandet, C., et al. (2003) Glomerular epithelial-mesenchymal transdifferentiation in pauci-immune crescentic glomerulonephritis. Nephrol. Dial. Transplant. 18, 1777–1784.

    Article  PubMed  Google Scholar 

  19. Yanez-Mo, M., Lara-Pezzi, E., Selgas, R., et al. (2003) Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N. Engl. J. Med. 348, 403–413.

    Article  PubMed  Google Scholar 

  20. Torday, J. S., Torres, E., and Rehan, V. K. (2003) The role of fibroblast trans-differentiation in lung epithelial cell proliferation, differentiation, and repair in vitro. Pediatr. Pathol. Mol. Med. 22, 189–207.

    Article  PubMed  CAS  Google Scholar 

  21. Lim, Y. S., Kim, K. A., Jung, J. O., et al. (2002) Modulation of cytokeratin expression during in vitro cultivation of human hepatic stellate cells: evidence of transdifferentiation from epithelial to mesenchymal phenotype. Histochem. Cell Biol. 118, 127–136.

    PubMed  CAS  Google Scholar 

  22. Liu, Y. and Rao, M. S. (2003) Transdifferentiation—fact or artifact. J. Cell. Biochem. 88, 29–40.

    Article  PubMed  CAS  Google Scholar 

  23. Donovan, P. J. (1994) Growth factor regulation of mouse primordial germ cell development. Curr. Top. Dev. Biol. 29, 189–225.

    Article  PubMed  CAS  Google Scholar 

  24. Matsui, Y., Zsebo, K., and Hogan, B. L. (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841–847.

    Article  PubMed  CAS  Google Scholar 

  25. Tosh, D. and Slack, J. M. (2002) How cells change their phenotype. Nat. Rev. Mol. Cell. Biol. 3, 187–194.

    Article  PubMed  CAS  Google Scholar 

  26. Tsonis, P. A. (2000) Regeneration in vertebrates. Dev. Biol. 221, 273–284.

    Article  PubMed  CAS  Google Scholar 

  27. Woodbury, D., Schwarz, E. J., Prockop, D. J., and Black, I. B. (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 61, 364–370.

    Article  PubMed  CAS  Google Scholar 

  28. Franchi, A., Pasquinelli, G., Cenacchi, G., et al. (2001) Immunohistochemical and ultra-structural investigation of neural differentiation in Ewing sarcoma/PNET of bone and soft tissues. Ultrastruct. Pathol. 25, 219–225.

    Article  PubMed  CAS  Google Scholar 

  29. Kondo, T. and Raff, M. (2000) Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289, 1754–1757.

    Article  PubMed  CAS  Google Scholar 

  30. Laywell, E. D., Rakic, P., Kukekov, V. G., Holland, E. C., and Steindler, D. A. (2000) Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc. Natl. Acad. Sci. USA 97, 13883–13888.

    Article  PubMed  CAS  Google Scholar 

  31. Malatesta, P., Hartfuss, E., and Gotz, M. (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253–5263.

    PubMed  CAS  Google Scholar 

  32. Alexanian, A. R. and Nornes, H. O. (2001) Proliferation and regeneration of retrogradely labeled adult rat corticospinal neurons in culture. Exp. Neurol. 170, 277–282.

    Article  PubMed  CAS  Google Scholar 

  33. Brewer, G. J. (1999) Regeneration and proliferation of embryonic and adult rat hippocampal neurons in culture. Exp. Neurol. 159, 237–247.

    Article  PubMed  CAS  Google Scholar 

  34. Toma, J. G., Akhavan, M., Fernandes, K. J., et al. (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol. 3, 778–784.

    Article  PubMed  CAS  Google Scholar 

  35. Sieber-Blum, M. (2004) Cardiac neural crest stem cells. Anat. Rec. 276A, 34–42.

    Article  Google Scholar 

  36. Kruger, G. M., Mosher, J. T., Bixby, S., Joseph, N., Iwashita, T., and Morrison, S. J. (2002) Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron 35, 657–669.

    Article  PubMed  CAS  Google Scholar 

  37. Tsonis, P. A. and Del Rio-Tsonis, K. (2004) Lens and retina regeneration: trans-differentiation, stem cells and clinical applications. Exp. Eye Res. 78, 161–172.

    Article  PubMed  CAS  Google Scholar 

  38. Reynolds, B. A. and Weiss, S. (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol. 175, 1–13.

    Article  PubMed  CAS  Google Scholar 

  39. Vescovi, A. L., Reynolds, B. A., Fraser, D. D., and Weiss, S. (1993) bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11, 951–966.

    Article  PubMed  CAS  Google Scholar 

  40. Magrassi, L., Castello, S., Ciardelli, L., et al. (2003) Freshly dissociated fetal neural stem/progenitor cells do not turn into blood. Mol. Cell. Neurosci. 22, 179–187.

    Article  PubMed  CAS  Google Scholar 

  41. Benca, R. M., Wemhoff, G., and Quintans, J. (1986) Functional studies of pluripotential hemopoietic stem cells in mouse brain. J. Neuroimmunol. 10, 341–352.

    PubMed  CAS  Google Scholar 

  42. McKinney-Freeman, S. L., Jackson, K. A., Camargo, F. D., Ferrari, G., Mavilio, F., and Goodell, M. A. (2002) Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc. Natl. Acad. Sci. USA 99, 1341–1346.

    Article  PubMed  CAS  Google Scholar 

  43. Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., et al. (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49.

    Article  PubMed  CAS  Google Scholar 

  44. Song, L. and Tuan, R. S. (2004) Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J.

    Google Scholar 

  45. Young, H. E., Duplaa, C., Romero-Ramos, M., et al. (2004) Adult reserve stem cells and their potential for tissue engineering. Cell Biochem. Biophys. 40, 1–80.

    PubMed  CAS  Google Scholar 

  46. Morshead, C. M., Benveniste, P., Iscove, N. N., and van der Kooy, D. (2002) Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nat. Med. 8, 268–273.

    Article  PubMed  CAS  Google Scholar 

  47. Terada, N., Hamazaki, T., Oka, M., et al. (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416, 542–545.

    Article  PubMed  CAS  Google Scholar 

  48. Vassilopoulos, G., Wang, P. R., and Russell, D. W. (2003) Transplanted bone marrow regenerates liver by cell fusion. Nature 422, 901–904.

    Article  PubMed  CAS  Google Scholar 

  49. Geiger, H., True, J. M., Grimes, B., Carroll, E. J., Fleischman, R. A., and Van Zant, G. (2002) Analysis of the hematopoietic potential of muscle-derived cells in mice. Blood 100, 721–723.

    Article  PubMed  CAS  Google Scholar 

  50. McKinney-Freeman, S. L., Majka, S. M., Jackson, K. A., Norwood, K., Hirschi, K. K., and Goodell, M. A. (2003) Altered phenotype and reduced function of muscle-derived hematopoietic stem cells. Exp. Hematol. 31, 806–814.

    Article  PubMed  CAS  Google Scholar 

  51. Camargo, F. D., Chambers, S. M., and Goodell, M. A. (2004) Stem cell plasticity: from transdifferentiation to macrophage fusion. Cell Prolif. 37, 55–65.

    Article  PubMed  CAS  Google Scholar 

  52. Eto, K., Murphy, R., Kerrigan, S. W., et al. (2002) Megakaryocytes derived from embryonic stem cells implicate CalDAG-GEFI in integrin signaling. Proc. Natl. Acad. Sci. USA 99, 12819–12824.

    Article  PubMed  CAS  Google Scholar 

  53. Ying, Q. L., Nichols, J., Evans, E. P., and Smith, A. G. (2002) Changing potency by spontaneous fusion. Nature 416, 545–548.

    Article  PubMed  CAS  Google Scholar 

  54. Wang, X., Willenbring, H., Akkari, Y., et al. (2003) Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422, 897–901.

    Article  PubMed  CAS  Google Scholar 

  55. Broyles, R. H. (1999) Use of somatic cell fusion to reprogram globin genes. Semin. Cell Dev. Biol. 10, 259–265.

    Article  PubMed  CAS  Google Scholar 

  56. Wilmut, I., Beaujean, N., de Sousa, P. A., et al. (2002) Somatic cell nuclear transfer. Nature 419, 583–586.

    Article  PubMed  CAS  Google Scholar 

  57. Wilmut, I. and Paterson, L. (2003) Somatic cell nuclear transfer. Oncol. Res. 13, 303–307.

    PubMed  Google Scholar 

  58. Reya, T., Morrison, S. J., Clarke, M. F., and Weissman, I. L. (2001) Stem cells, cancer, and cancer stem cells. Nature 414, 105–111.

    Article  PubMed  CAS  Google Scholar 

  59. Joshi, C. V. and Enver, T. (2002) Plasticity revisited. Curr. Opin. Cell Biol. 14, 749–755.

    Article  PubMed  CAS  Google Scholar 

  60. Bang, Y. J., Pirnia, F., Fang, W. G., et al. (1994) Terminal neuroendocrine differentiation of human prostate carcinoma cells in response to increased intracellular cyclic AMP. Proc. Natl. Acad. Sci. USA 91, 5330–5334.

    Article  PubMed  CAS  Google Scholar 

  61. Martin, G. R. (1980) Teratocarcinomas and mammalian embryogenesis. Science 209, 768–776.

    Article  PubMed  CAS  Google Scholar 

  62. Moreno, T. A. and Bronner-Fraser, M. (2001) The secreted glycoprotein Noelin-1 promotes neurogenesis in Xenopus. Dev. Biol. 240, 340–360.

    Article  PubMed  CAS  Google Scholar 

  63. Anderson, D. J. (1995) Neural development. Spinning skin into neurons. Curr. Biol. 5, 1235–1238.

    Article  PubMed  CAS  Google Scholar 

  64. Boukamp, P. (1995) Transdifferentiation induced by gene transfer. Semin. Cell Biol. 6, 157–163.

    Article  PubMed  CAS  Google Scholar 

  65. Sparks, R. L., Seibel-Ross, E. I., Wier, M. L., and Scott, R. E. (1986) Differentiation, dedifferentiation, and transdifferentiation of BALB/c 3T3 T mesenchymal stem cells: potential significance in metaplasia and neoplasia. Cancer Res. 46, 5312–5319.

    PubMed  CAS  Google Scholar 

  66. Gabay, L., Lowell, S., Rubin, L. L., and Anderson, D. J. (2003) Deregulation of dorsoventral patterning by FGF confers trilineage differentiation capacity on CNS stem cells in vitro. Neuron 40, 485–499.

    Article  PubMed  CAS  Google Scholar 

  67. Gotz, M. and Steindler, D. (2003) To be glial or not-how glial are the precursors of neurons in development and adulthood? Glia 43, 1–3.

    Article  PubMed  Google Scholar 

  68. Hartfuss, E., Galli, R., Heins, N., and Gotz, M. (2001) Characterization of CNS precursor subtypes and radial glia. Dev. Biol. 229, 15–30.

    Article  PubMed  CAS  Google Scholar 

  69. Seri, B., Garcia-Verdugo, J. M., McEwen, B. S., and Alvarez-Buylla, A. (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci. 21, 7153–7160.

    PubMed  CAS  Google Scholar 

  70. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M., and Alvarez-Buylla, A. (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716.

    Article  PubMed  CAS  Google Scholar 

  71. Steindler, D. A. and Laywell, E. D. (2003) Astrocytes as stem cells: nomenclature, phenotype, and translation. Glia 43, 62–69.

    Article  PubMed  Google Scholar 

  72. Pevny, L. and Rao, M. S. (2003) The stem-cell menagerie. Trends Neurosci. 26, 351–359.

    Article  PubMed  CAS  Google Scholar 

  73. Eyding, D., Macklis, J. D., Neubacher, U., Funke, K., and Worgotter, F. (2003) Selective elimination of corticogeniculate feedback abolishes the electroencephalogram dependence of primary visual cortical receptive fields and reduces their spatial specificity. J. Neurosci. 23, 7021–7033.

    PubMed  CAS  Google Scholar 

  74. Kulesa, P., Bronner-Fraser, M., and Fraser, S. (2000) In ovo time-lapse analysis after dorsal neural tube ablation shows rerouting of chick hindbrain neural crest. Development 127, 2843–2852.

    PubMed  CAS  Google Scholar 

  75. Sechrist, J., Nieto, M. A., Zamanian, R. T., and Bronner-Fraser, M. (1995) Regulative response of the cranial neural tube after neural fold ablation: spatiotemporal nature of neural crest regeneration and up-regulation of Slug. Development 121, 4103–4115.

    PubMed  CAS  Google Scholar 

  76. Hanna, L. A., Foreman, R. K., Tarasenko, I. A., Kessler, D. S., and Labosky, P. A. (2002) Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes Dev. 16, 2650–2661.

    Article  PubMed  CAS  Google Scholar 

  77. Stark, M. R., Sechrist, J., Bronner-Fraser, M., and Marcelle, C. (1997) Neural tube-ectoderm interactions are required for trigeminal placode formation. Development 124, 4287–4295.

    PubMed  CAS  Google Scholar 

  78. Knoblich, J. A. (1997) Mechanisms of asymmetric cell division during animal development. Curr. Opin. CellBiol. 9, 833–841.

    Article  CAS  Google Scholar 

  79. Bird, A. P. and Wolffe, A. P. (1999) Methylation-induced repression—belts, braces, and chromatin. Cell 99, 451–454.

    Article  PubMed  CAS  Google Scholar 

  80. Surani, M. A. (2001) Reprogramming of genome function through epigenetic inheritance. Nature 414, 122–128.

    Article  PubMed  CAS  Google Scholar 

  81. Wu, J. and Grunstein, M. (2000) 25 Years after the nucleosome model: chromatin modifications. Trends Biochem. Sci. 25, 619–623.

    Article  PubMed  CAS  Google Scholar 

  82. Ahlquist, P. (2002) RNA-dependent RNA polymerases, viruses, and RNA silencing. Science 296, 1270–1273.

    Article  PubMed  CAS  Google Scholar 

  83. Sommer, L. and Rao, M. (2002) Neural stem cells and regulation of cell number. Prog. Neurobiol. 66, 1–18.

    Article  PubMed  CAS  Google Scholar 

  84. Wakayama, T., Perry, A. C., Zuccotti, M., Johnson, K. R., and Yanagimachi, R. (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374.

    Article  PubMed  CAS  Google Scholar 

  85. Hwang, W. S., Ryu, Y. J., Park, J. H., et al. (2004) Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst. Science 303, 1669–1674.

    Article  PubMed  CAS  Google Scholar 

  86. Wakayama, T., Tabar, V., Rodriguez, I., Perry, A. C., Studer, L., and Mombaerts, P. (2001) Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292, 740–743.

    Article  PubMed  CAS  Google Scholar 

  87. Baker, N. E. (2001) Master regulatory genes; telling them what to do. Bioessays 23, 763–766.

    Article  PubMed  CAS  Google Scholar 

  88. Baker, N. E. (2001) Cell proliferation, survival, and death in the Drosophila eye. Semin. Cell Dev. Biol. 12, 499–507.

    Article  PubMed  CAS  Google Scholar 

  89. Kallunki, P., Edelman, G. M., and Jones, F. S. (1997) Tissue-specific expression of the L1 cell adhesion molecule is modulated by the neural restrictive silencer element. J. Cell Biol. 138, 1343–1354.

    Article  PubMed  CAS  Google Scholar 

  90. Stocker, K. M., Baizer, L., Coston, T., Sherman, L., and Ciment, G. (1995) Regulated expression of neurofibromin in migrating neural crest cells of avian embryos. J. Neurobiol. 27, 535–552.

    Article  PubMed  CAS  Google Scholar 

  91. Kameyama, M., Ishikawa, Y., Shibahara, T., and Kadota, K. (2000) Melanotic neuro-fibroma in a steer. J. Vet. Med. Sci. 62, 125–128.

    Article  PubMed  CAS  Google Scholar 

  92. Robertson, K. D. and Jones, P. A. (2000) DNA methylation: past, present and future directions. Carcinogenesis 21, 461–467.

    Article  PubMed  CAS  Google Scholar 

  93. Milhem, M., Mahmud, N., Lavelle, D., et al. (2004) Modification of hematopoietic stem cell fate by 5aza 2’deoxycytidine and trichostatin A. Blood 103, 4102–4110.

    Article  PubMed  CAS  Google Scholar 

  94. Lee, J. H., Hart, S. R., and Skalnik, D. G. (2004) Histone deacetylase activity is required for embryonic stem cell differentiation. Genesis 38, 32–38.

    Article  PubMed  CAS  Google Scholar 

  95. Marks, P., Rifkind, R. A., Richon, V. M., Breslow, R., Miller, T., and Kelly, W. K. (2001) Histone deacetylases and cancer: causes and therapies. Nat. Rev. Cancer 1, 194–202.

    Article  PubMed  CAS  Google Scholar 

  96. Fan, G., Beard, C., Chen, R. Z., et al. (2001) DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals. J. Neurosci. 21, 788–797.

    PubMed  CAS  Google Scholar 

  97. Rombouts, K., Niki, T., Wielant, A., Hellemans, K., and Geerts, A. (2001) Trichostatin A, lead compound for development of antifibrogenic drugs. Acta Gastroenterol. Belg. 64, 239–246.

    PubMed  CAS  Google Scholar 

  98. Brazelton, T. R., Rossi, F. M., Keshet, G. I., and Blau, H. M. (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775–1779.

    Article  PubMed  CAS  Google Scholar 

  99. Mezey, E., Chandross, K. J., Harta, G., Maki, R. A., and McKercher, S. R. (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779–1782.

    Article  PubMed  CAS  Google Scholar 

  100. Kohyama, J., Abe, H., Shimazaki, T., et al. (2001) Brain from bone: efficient “meta-differentiation” of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation 68, 235–244.

    Article  PubMed  CAS  Google Scholar 

  101. Hao, H. N., Zhao, J., Thomas, R. L., Parker, G. C., and Lyman, W. D. (2003) Fetal human hematopoietic stem cells can differentiate sequentially into neural stem cells and then astrocytes in vitro. J. Hematother. Stem Cell Res. 12, 23–32.

    Article  PubMed  CAS  Google Scholar 

  102. Slutsky, S. G., Kamaraju, A. K., Levy, A. M., Chebath, J., and Revel, M. (2003) Activation of myelin genes during transdifferentiation from melanoma to glial cell phenotype. J. Biol. Chem. 278, 8960–8968.

    Article  PubMed  CAS  Google Scholar 

  103. Niki, T., Rombouts, K., De Bleser, P., et al. (1999) A histone deacetylase inhibitor, trichostatin A, suppresses myofibroblastic differentiation of rat hepatic stellate cells in primary culture. Hepatology 29, 858–867.

    Article  PubMed  CAS  Google Scholar 

  104. Rooman, I., Heremans, Y., Heimberg, H., and Bouwens, L. (2000) Modulation of rat pancreatic acinoductal transdifferentiation and expression of PDX-1 in vitro. Diabetologia 43, 907–914.

    Article  PubMed  CAS  Google Scholar 

  105. Richon, V. M., Emiliani, S., Verdin, E., et al. (1998) A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc. Natl. Acad. Sci. USA 95, 3003–3007.

    Article  PubMed  CAS  Google Scholar 

  106. Guo, Z., Du, X., and Iacovitti, L. (1998) Regulation of tyrosine hydroxylase gene expression during transdifferentiation of striatal neurons: changes in transcription factors binding the AP-1 site. J. Neurosci. 18, 8163–8174.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Liu, Y., Rao, M.S. (2006). Transdifferentiation in the Nervous System. In: Rao, M.S. (eds) Neural Development and Stem Cells. Contemporary Neuroscience. Humana Press. https://doi.org/10.1385/1-59259-914-1:249

Download citation

Publish with us

Policies and ethics