Diabetic Neuropathy

  • Rayaz A. Malik
  • Aristidis Veves
Part of the Contemporary Cardiology book series (CONCARD)


Dysfunction and damage of the somatic and autonomic nervous systems leads to diabetic neuropathy. Simply defined it is characterized by “The presence of symptoms and /or signs of peripheral nerve dysfunction in people with diabetes after the exclusion of other causes” (1). For the practicing physician, a clinically relevant classification is preferred (2) (Table 1). However, to enable quantification for epidemiology and research, particularly for clinical trials, a more detailed definition that includes subclinical neuropathy is required (3,4). An established paradigm for use in clinical trials includes the following:
  • • Neuropathic symptoms (NSS: neuropathy symptom score).

  • • Neuropathic deficits (NIS: neuropathy impairment score).

  • • Motor/sensory nerve conduction velocity (MS:NCV).

  • • quantitative sensory testing (QST)

  • • Autonomic function testing (AFT).


Diabetic Neuropathy Aldose Reductase Autonomic Neuropathy Sural Nerve Nerve Conduction Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boulton AJM, Gries FA, Jervell JA. Guidelines for the diagnosis and out-patient management of diabetic peripheral neuropathy. Diabetic Med 1998;15:508–514.PubMedCrossRefGoogle Scholar
  2. 2.
    Thomas PK. Classification differential diagnosis and staging of diabetic peripheral neuropathy. Diabetes 1997;46(Suppl 2):S54–S57.PubMedGoogle Scholar
  3. 3.
    Dyck PJ, Kratz KM, Karnes JZ, et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology 1993;43:817–824.PubMedGoogle Scholar
  4. 4.
    Dyck PJ, Melton J, O’Brien PC, et al. Approaches to improve epidemiological studies of diabetic neuropathy. Diabetes 1997;46(Suppl 2):55–58.Google Scholar
  5. 5.
    Apfel SC, Asbury AK, Bril V, et al. Positive neuropathic sensory symptoms as endpoints in diabetic neuropathy trials. J Neurol Sci 2001;189:3–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Shy ME, Frohman EM, So YT Arezzo JC, Cornblath DC, Giuliani MJ, the subcommittee of the American Academy of Neurology. Quantitative sensory testing. Neurology 2003;602:898–906.Google Scholar
  7. 7.
    Young MJ, Boulton AJM, McLeod AF, et al. A multicentre study of the prevalence of diabetic peripheral neuropathy in the UK hospital clinic population. Diabetologia 1993;36:150–154.PubMedCrossRefGoogle Scholar
  8. 8.
    Tesfaye S, Stephens LK, Stephenson JM, et al. Prevalence of diabetic peripheral neuropathy and its relation to glycemic control and potential risk factors: the EURODIAB IDDM complications study. Diabetologia 1996;39:1377–1384.PubMedCrossRefGoogle Scholar
  9. 9.
    Cabezas-Cerrato J. The prevalence of clinical diabetic neuropathy in Spain: a study in primary care and hospital clinic groups. Neuropathy Spanish study group of the Spanish Diabetes Society (SDS). Diabetologia 1998;41:1263–1269.PubMedCrossRefGoogle Scholar
  10. 10.
    Partanen J, Niskanen L, Lehtinen J, et al. Natural history of peripheral neuropathy in patients with non-insulin dependent diabetes mellitus. N Engl J Med 1995;333:89–94.PubMedCrossRefGoogle Scholar
  11. 11.
    UKPDS. Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with Type 2 diabetes. Lancet 1998;352:837–853.CrossRefGoogle Scholar
  12. 12.
    Baum P, Hermann W, Verlohren HJ, Wagner A, Lohmann T, Grahmann F. Diabetic neuropathy in patients with “latent autoimmune diabetes of the adults” (LADA) compared with patients with type 1 and type 2 diabetes. J Neurol 2003;250:682–687.PubMedCrossRefGoogle Scholar
  13. 13.
    Maser RE, Pfeifer MA, Dorman JS, et al. Diabetic autonomic neuropathy and cardiovascular risk: the Pittsburgh Epidemiology of Diabetic Complications Study III. Arch Int Med 1990;150:1218–1222.CrossRefGoogle Scholar
  14. 14.
    DCCT Trial Research Group. The effect of intensive diabetes therapy on the development and progression of neuropathy. Ann Int Med 1995;122:561–568.Google Scholar
  15. 15.
    Valensi P, Paries J, Attali JR; French Group for Research and Study of Diabetic Neuropathy. Cardiac autonomic neuropathy in diabetic patients: influence of diabetes duration, obesity, and microangiopathic complications-the French multicentre study. Metabolism 2003;52:815–820.PubMedCrossRefGoogle Scholar
  16. 16.
    Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care 2003;26:1553–1579.PubMedCrossRefGoogle Scholar
  17. 17.
    Bacon CG, Hu FB, Giovannucci E, Glasser DB, Mittleman MA, Rimm EB Association of type and duration of diabetes with erectile dysfunction in a large cohort of men. Diabetes Care 2002;25:1458–1463.PubMedCrossRefGoogle Scholar
  18. 18.
    Veves A, Webster L, Chen TF, et al. Aetiopathogenesis and management of impotence in diabetic males: four years’ experience from a combined clinic. Diabetic Med 1995;12:77–82.PubMedCrossRefGoogle Scholar
  19. 19.
    Malik RA. Current and future strategies for the management of diabetic neuropathy. Treat Endocrinol 2003;2:389–400.PubMedCrossRefGoogle Scholar
  20. 20.
    Quattrini C, Tesfaye S. Understanding the impact of painful diabetic neuropathy. Diabetes Metab Res Rev 2003;19:S2–S8.PubMedCrossRefGoogle Scholar
  21. 21.
    Malik RA. Focal and multifocal neuropathies. Curr Diab Rep 2002;2:489–494.PubMedCrossRefGoogle Scholar
  22. 22.
    Valls-Canals J, Povedano M, Montero J, Pradas J. Diabetic polyneuropathy. Axonal or demyelinating? Electromyogr Clin Neurophysiol 2002;42:3–6.PubMedGoogle Scholar
  23. 23.
    Said G, Slama G, Selva J. Progressive centripetal degeneration of axons in small fibre type diabetic polyneuropathy. A clinical and pathologic study. Brain 1983;106:791–807.PubMedCrossRefGoogle Scholar
  24. 24.
    Dyck PJ, Sherman WR, Hallcher LM, et al. Human diabetic endoneurial sorbitol, fructose and myoinositol related to sural nerve morphometry. Ann Neurol 1980;8:590–596.PubMedCrossRefGoogle Scholar
  25. 25.
    Russell JW, Karnes JL, Dyck PJ. Sural nerve myelinated fiber density differences associated with meaningful changes in clinical and electrophysiological measurements. J Neurol Sci 1996;135:114–117.PubMedCrossRefGoogle Scholar
  26. 26.
    Dyck PJ, Zimmerman BR, Vilen TH, et al. Nerve glucose, fructose, sorbitol, myo-inositol, and fibre degeneration and regeneration in diabetic neuropathy. N Engl J Med 1988;319:542–548.PubMedCrossRefGoogle Scholar
  27. 27.
    Llewelyn JG, Gilbey SG, Thomas PK, King RH, Muddle JR, Watkins PJ. Sural nerve morphometry in diabetic autonomic and painful sensory neuropathy. A clinicopathological study. Brain 1991;114:867–892.PubMedCrossRefGoogle Scholar
  28. 28.
    Brown MJ, Martin JR, Asbury AK. Painful diabetic neuropathy: a morphometric study. Arch of Neurol 1976;33:164–171.Google Scholar
  29. 29.
    Dyck PJ, Hansen S, Karnes J, O’Brien P, Yasuda H, Windebank A, Zimmerman B. Capillary number and percentage closed in human diabetic sural nerve. Proc Natl Acad Sci USA 1985;82:2513–2517.PubMedCrossRefGoogle Scholar
  30. 30.
    Yasuda H, Dyck PJ. Abnormalities of endoneurial microvessels and sural nerve pathology in diabetic neuropathy. Neurology 1987;37:20–28.PubMedGoogle Scholar
  31. 31.
    Malik RA, Newrick PG, Sharma AK, et al. Microangiopathy in human diabetic neuropathy: relationship between capillary abnormalities and the severity of neuropathy. Diabetologia 1989;32:92–102.PubMedCrossRefGoogle Scholar
  32. 32.
    Malik RA, Veves A, Masson EA, et al. Endoneurial capillary abnormalities in mild human diabetic neuropathy. J Neurol Neurosurg Psychiatry 1992;55:557–561.PubMedGoogle Scholar
  33. 33.
    Bradley J, Thomas PK, King RHM, Llewelyn JG, Muddle JR, Watkins PJ. Morphometry of endoneurial capillaries in diabetic sensory and autonomic neuropathy. Diabetologia 1990;33:611–618.PubMedCrossRefGoogle Scholar
  34. 34.
    Britland ST, Young RJ, Sharma AK, Clarke BF. Relationship of endoneurial capillary abnormalities to type and severity of diabetic polyneuropathy. Diabetes 1990;39:909–913.PubMedCrossRefGoogle Scholar
  35. 35.
    Sima AAF, Nathaniel V, Prashar A, Bril V, Greene DA. Endoneurial microvessels in human diabetic neuropathy. Endothelial cell dysjunction and lack of treatment effect by aldose reductase inhibitor. Diabetes 1991;40:1090–1099.PubMedCrossRefGoogle Scholar
  36. 36.
    Cotter MA, Jack AM, Cameron NE. Effects of the protein kinase C inhibitor LY333531 on neural and vascular function in diabetic rats. Clin Sci 2002;103:311–321.PubMedGoogle Scholar
  37. 37.
    Walker D, Carrington A, Cannan S A, et al. Peripheral nerve structural abnormalities do not explain the reduction in nerve conduction velocity or nerve blood flow in the streptozotocin. Diabetic Rat J Anat 1999;195:419–427.Google Scholar
  38. 38.
    Walker D, Siddique I, Anderson H, et al. Peripheral Nerve pathology in the type 1 diabetic dog: effects of treatment with Sulindac. J Peripheral N System 2001;6:219–226.CrossRefGoogle Scholar
  39. 39.
    Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycemic damage. Nature 2000;404:787–790.PubMedCrossRefGoogle Scholar
  40. 40.
    Dyck PJ, Davies JL, Wilson DM, Service FJ, Melton LJ 3rd, O’Brien PC. Risk factors for severity of diabetic polyneuropathy: intensive longitudinal assessment of the Rochester Diabetic Neuropathy Study cohort. Diabetes Care 1999;22:1479–1486.PubMedCrossRefGoogle Scholar
  41. 41.
    Sundkvist G, Dahlin LB, Nilsson H, et al. Sorbitol and myo-inositol levels and morphology of sural nerve in relation to peripheral nerve function and clinical neuropathy in men with diabetic, impaired, and normal glucose tolerance. Diabetic Med 2000;17:259–268.PubMedCrossRefGoogle Scholar
  42. 42.
    Smith AG, Ramachandran P, Tripp S, Singleton JR. Epidermal nerve innervation in impaired glucose tolerance and diabetes-associated neuropathy. Neurology 2001;13:1701–1704.Google Scholar
  43. 43.
    Sumner CJ, Sheth S, Griffin JW, Cornblath DR, Polydefkis M. The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology 2003;60:108–111.PubMedGoogle Scholar
  44. 44.
    Navarro X, Sutherland DE, Kennedy WR. Long-term effects of pancreatic transplantation on diabetic neuropathy. Ann Neurol 1997;42:727–736.PubMedCrossRefGoogle Scholar
  45. 45.
    Azad N, Emanuele NV, Abraira C, et al. The effects of intensive glycemic control on neuropathy in the VA cooperative study on type II diabetes mellitus (VA CSDM). J Diabetes Complications 1999;13:307–313.PubMedCrossRefGoogle Scholar
  46. 46.
    Oates PJ. Polyol pathway and diabetic peripheral neuropathy. Int Rev Neurobiol 2002;50:325–392.PubMedGoogle Scholar
  47. 47.
    Mayhew JA, Gillon KR, Hawthorne JN. Free and lipid inositol, sorbitol and sugars in sciatic nerve obtained post-mortem from diabetic patients and control subjects. Diabetologia 1983;24:13–15.PubMedCrossRefGoogle Scholar
  48. 48.
    Hale PJ, Nattrass M, Silverman SH, et al. Peripheral nerve concentrations of glucose, fructose, sorbitol and myoinositol in diabetic and non-diabetic patients. Diabetologia 1987;30:464–467.PubMedCrossRefGoogle Scholar
  49. 49.
    Dyck PJ, Sherman WR, Hallcher LM, et al. Human diabetic endoneurial sorbitol, fructose, and myoinositol related to sural nerve morphometry. Ann Neurol 1980;8:590–596.PubMedCrossRefGoogle Scholar
  50. 50.
    Dyck PJ, Zimmerman BR, Vilen TH, et al. Nerve glucose, fructose, sorbitol, myo-inositol, and fiber degeneration and regeneration in diabetic neuropathy. N Engl J Med 1988;319:542–548.PubMedCrossRefGoogle Scholar
  51. 51.
    Kasajima H, Yamagishi S, Sugai S, Yagihashi N, Yagihashi S. Enhanced in situ expression of aldose reductase in peripheral nerve and renal glomeruli in diabetic patients. Virchows Arch 2001;439:46–54.PubMedCrossRefGoogle Scholar
  52. 52.
    Shimizu H, Ohtani KI, Tsuchiya T, et al. Aldose reductase mRNA expression is associated with rapid development of diabetic microangiopathy in Japanese Type 2 diabetic (T2DM) patients. Diabetes Nutr Metab 2000;13:75–79.PubMedGoogle Scholar
  53. 53.
    Demaine AG. Polymorphisms of the aldose reductase gene and susceptibility to diabetic microvascular complications. Curr Med Chem 2003;10:1389–1398.PubMedCrossRefGoogle Scholar
  54. 54.
    Airey M, Bennett C, Nicolucci A, Williams R. Aldose reductase inhibitors for the prevention and treatment of diabetic peripheral neuropathy. Cochrane Database Syst Rev 2000;(2):CD002182.PubMedGoogle Scholar
  55. 55.
    Greene DA, Arezzo JC, Brown MB. Effect of aldose reductase inhibition on nerve conduction and morphometry in diabetic neuropathy. Zenarestat Study Group. Neurology 1999;53:580–591.PubMedGoogle Scholar
  56. 56.
    Hotta N, Toyota T, Matsuoka K, et al. The SNK-860 Diabetic Neuropathy Study Group. Clinical efficacy of fidarestat, a novel aldose reductase inhibitor, for diabetic peripheral neuropathy: a 52-week multicenter placebo-controlled double-blind parallel group study. Diabetes Care 2001;24:1776–1782.PubMedCrossRefGoogle Scholar
  57. 57.
    King RH. The role of glycation in the pathogenesis of diabetic polyneuropathy. Mol Pathol 2001;54:400–408.PubMedGoogle Scholar
  58. 58.
    McLennan SV, Martell SK, Yue DK. Effects of mesangium glycation on matrix metalloproteinase activities: possible role in diabetic nephropathy. Diabetes 2002;51:2612–2618.PubMedCrossRefGoogle Scholar
  59. 59.
    Vasan S, Foiles P, Founds H. Therapeutic potential of breakers of advanced glycation end product-protein crosslinks. Arch Biochem Biophys 2003;419:89–96.PubMedCrossRefGoogle Scholar
  60. 60.
    Ryle C, Donaghy M. Non-enzymatic glycation of peripheral nerve proteins in human diabetics. J Neurol Sci 1995;129:62–68.PubMedCrossRefGoogle Scholar
  61. 61.
    Sugimoto K, Nishizawa Y, Horiuchi S, Yagihashi S. Localization in human diabetic peripheral nerve of N (epsilon)-carboxymethyllysine-protein adducts, an advanced glycation end product. Diabetologia 1997;40:1380–1387.PubMedCrossRefGoogle Scholar
  62. 62.
    Amano S, Kaji Y, Oshika T, et al. Advanced glycation end products in human optic nerve head. Br J Ophthalmol 2001;85:52–55.PubMedCrossRefGoogle Scholar
  63. 63.
    Miyauchi Y, Shikama H, Takasu T, et al. Slowing of peripheral motor nerve conduction was ameliorated by aminoguanidine in streptozocin-induced diabetic rats. Eur J Endocrinol 1996;134:467–473.PubMedCrossRefGoogle Scholar
  64. 64.
    Schmidt RE, Dorsey DA, Beaudet LN, Reiser KM, Williamson JR, Tilton RG. Effect of aminoguanidine on the frequency of neuroaxonal dystrophy in the superior mesenteric sympathetic autonomic ganglia of rats with streptozocin-induced diabetes. Diabetes 1996;45:284–290.PubMedCrossRefGoogle Scholar
  65. 65.
    Sugimoto K, Yagihashi S. Effects of aminoguanidine on structural alterations of microvessels in peripheral nerve of streptozotocin diabetic rats. Microvasc Res 1997;53:105–112.PubMedCrossRefGoogle Scholar
  66. 66.
    Birrell AM, Heffernan SJ, Ansselin AD, et al. Functional and structural abnormalities in the nerves of type I diabetic baboons: aminoguanidine treatment does not improve nerve function. Diabetologia 2000;43:110–116.PubMedCrossRefGoogle Scholar
  67. 67.
    Kalousova M, Zima T, Tesar V, Stipek S, Sulkova S. Advanced Glycation End Products in Clinical Nephrology. Kidney Blood Press Res 2004;27:18–28.PubMedCrossRefGoogle Scholar
  68. 68.
    Rahbar S, Natarajan R, Yerneni K, Scott S, Gonzales N, Nadler JL. Evidence that pioglitazone, metformin and pentoxifylline are inhibitors of glycation. Clin Chim Acta 2000;301:65–77.PubMedCrossRefGoogle Scholar
  69. 69.
    Bui BV, Armitage JA, Tolcos M, Cooper ME, Vingrys AJ. ACE inhibition salvages the visual loss caused by diabetes. Diabetologia 2003;46:401–408.PubMedGoogle Scholar
  70. 70.
    Zotova EV, Chistiakov DA, Savost’ianov KV, et al. Association of the SOD2 Ala(-9)Val and SOD3 Arg213Gly polymorphisms with diabetic polyneuropathy in patients with diabetes mellitus type 1 Mol Biol (Mosk) 2003;37:404–408.CrossRefGoogle Scholar
  71. 71.
    Reljanovic M, Reichel G, Rett K, et al. Treatment of diabetic polyneuropathy with the antioxidant thioctic acid (alpha-lipoic acid): a two year multicentre randomized double-blind placebo-controlled trial (ALADINII). Free Radic Res 1999;31:171–179.PubMedCrossRefGoogle Scholar
  72. 72.
    Ziegler D, Hanefeld M, Ruhnau KJ, et al. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a 7-month multicentre randomized controlled trial (ALADIN III Study). ALADIN in Study Group. Diabetes Care 1999;22:1296–1301.PubMedCrossRefGoogle Scholar
  73. 73.
    Ametov AS, Barinov A, Dyck PJ, et al., SYDNEY Trial Study Group. The sensory symptoms of diabetic polyneuropathy are improved with alpha-lipoic acid: the SYDNEY trial. Diabetes Care 2003;26:770–776.PubMedCrossRefGoogle Scholar
  74. 74.
    Delaney CL, Russell JW, Cheng HL, Feldman EL. Insulin-like growth factor-I and over-expression of Bcl-xL prevent glucose-mediated apoptosis in Schwann cells. J Neuropathol Exp Neurol 2001;60:147–160.PubMedGoogle Scholar
  75. 75.
    Schmidt RE, Dorsey DA, Beaudet LN, Peterson RG. Analysis of the Zucker Diabetic Fatty (ZDF) type 2 diabetic rat model suggests a neurotrophic role for insulin/IGF-I in diabetic autonomic neuropathy. Am JPathol 2003;163:21–28.Google Scholar
  76. 76.
    Grandis M, Nobbio L, Abbruzzese M, et al. Insulin treatment enhances expression of IGF-I in sural nerves of diabetic patients. Muscle Nerve 2001;24:622–629.PubMedCrossRefGoogle Scholar
  77. 77.
    Sima AA. C-peptide and diabetic neuropathy. Expert Opin Investig Drugs 2003;12:1471–1488.PubMedCrossRefGoogle Scholar
  78. 78.
    Cotter MA, Ekberg K, Wahren J, Cameron NE. Effects of proinsulin C-peptide in experimental diabetic neuropathy: vascular actions and modulation by nitric oxide synthase inhibition. Diabetes 2003;52:1812–1817.PubMedCrossRefGoogle Scholar
  79. 79.
    Ekberg K, Brismar T, Johansson BL, Jonsson B, Lindstrom P, Wahren J. Amelioration of sensory nerve dysfunction by C-Peptide in patients with type 1 diabetes. Diabetes 2003;52:536–541.PubMedCrossRefGoogle Scholar
  80. 80.
    Carmeliet P, Storkebaum E. Vascular and neuronal effects of VEGF in the nervous system: implications for neurological disorders. Semin Cell Dev Biol 2002;13:39–53.PubMedCrossRefGoogle Scholar
  81. 81.
    Samii A, Unger J, Lange W. Vascular endothelial growth factor expression in peripheral nerves and dorsal root ganglia in diabetic neuropathy in rats. Neurosci Lett 1999;262:159–162.PubMedCrossRefGoogle Scholar
  82. 82.
    Schratzberger P, Walter DH, Rittig K, et al. Reversal of experimental diabetic neuropathy by VEGF gene transfer. J Clin Invest 2001;107:1083–1092.PubMedGoogle Scholar
  83. 83.
    Isner JM, Ropper A, Hirst K. VEGF gene transfer for diabetic neuropathy. Hum Gene Ther 2001;12:1593–1594.PubMedGoogle Scholar
  84. 84.
    Anand P, Terenghi G, Warner G, Kopelman P, Williams-Chestnut RE, Sinicropi DV. The role of endogenous nerve growth factor in human diabetic neuropathy. Nat Med 1996;2:703–707.PubMedCrossRefGoogle Scholar
  85. 85.
    Diemel LT, Cai F, Anand P, et al. Increased nerve growth factor mRNA in lateral calf skin biopsies from diabetic patients. Diabetic Med 1999;16:113–118.PubMedCrossRefGoogle Scholar
  86. 86.
    Kennedy AJ, Wellmer A, Facer P, et al. Neurotrophin-3 is increased in skin in human diabetic neuropathy. J Neurol Neurosurg Psychiatry 1998;65:393–395.PubMedGoogle Scholar
  87. 87.
    Lee DA, Gross L, Wittrock DA, Windebank AJ. Localization and expression of ciliary neurotrophic factor (CNTF) in postmortem sciatic nerve from patients with motor neuron disease and diabetic neuropathy. J Neuropathol Exp Neurol 1996;55:915–923.PubMedGoogle Scholar
  88. 88.
    Terenghi G, Mann D, Kopelman PG, Anand P. trkA and trkC expression is increased in human diabetic skin. Neurosci Lett 1997;228:33–36.PubMedCrossRefGoogle Scholar
  89. 89.
    Apfel SC, Kessler JA, Adornato BT, Litchy WJ, Sanders C, Rask CA. Recombinant human nerve growth factor in the treatment of diabetic polyneuropathy. NGF Study Group. Neurology 1998;51:695–702.PubMedGoogle Scholar
  90. 90.
    Apfel SC, Schwartz S, Adornato BT, et al. Efficacy and safety of recombinant human nerve growth factor in patients with diabetic polyneuropathy: a randomized controlled trial. JAMA 2000;284:2215–2221.PubMedCrossRefGoogle Scholar
  91. 91.
    Wellmer A, Misra VP, Sharief MK, Kopelman PG, Anand P. A double-blind placebo-controlled clinical trial of recombinant human brain-derived neurotrophic factor (rhBDNF) in diabetic polyneuropathy. J Peripher Nerv Syst 2001;6:204–210.PubMedCrossRefGoogle Scholar
  92. 92.
    Pryce TD. On diabetic neuritis, with a clinical and pathological description of three cases of diabetic pseudo-tabes. Brain 1893;16:416.CrossRefGoogle Scholar
  93. 93.
    Woltman HW, Wilder RM. Diabetes mellitus pathological changes in the spinal cord and peripheral nerves. Arch Intern Med 1929;44:576–603.Google Scholar
  94. 94.
    Said G, Goulon-Goeau C, Lacroix C, Moulonguet A. Nerve biopsy findings in different patterns of proximal diabetic neuropathy. Ann Neurol 1994;35:559–569.PubMedCrossRefGoogle Scholar
  95. 95.
    Asbury AK. Focal and Multifocal neuropathies of diabetes. In: Dyck PJ, Thomas PK, Asbury AK, Winegrad AI, Porte D, (eds.). Diabetic Neuropathy. WB Saunders, Philadelphia, PA: 1987, pp. 45–55.Google Scholar
  96. 96.
    Johnson PC, Doll SC, Cromey DW. Pathogenesis of diabetic neuropathy. Ann Neurol 1986;19:450–457.PubMedCrossRefGoogle Scholar
  97. 97.
    Dyck PJ, Karnes JL, O’Brien P, Okazaki H, Lias A, Engelstad J. The spatial distribution of fibre loss in diabetic polyneuropathy suggests ischaemia. Ann Neurol 1986;19:440–449.PubMedCrossRefGoogle Scholar
  98. 98.
    Dyck PJ, Lais A, Karnes JL, O’Brien P, Rizza R. Fibre loss is primary and multifocal in sural nerves in diabetic polyneuropathy. Ann Neurol 1986;19:425–439.PubMedCrossRefGoogle Scholar
  99. 99.
    Rodriguez-Sanchez C, Medina Sanchez M, Malik RA, Ah-See AK, Sharma AK. Morphological abnormalities in the sural nerve from patients with peripheral vascular disease. Histol Histopath 1991;6:63–71.Google Scholar
  100. 100.
    Nukada H, van Rij AM, Packer SG, McMorran PD. Pathology of acute and chronic ischaemic neuropathy in atherosclerotic peripheral vascular disease. Brain 1996;119:1449–1460.PubMedCrossRefGoogle Scholar
  101. 101.
    McKenzie D, Nukada H, van Rij AM, McMorran PD. Endoneurial microvascular abnormalities of sural nerve in non-diabetic chronic atherosclerotic occlusive disease. J Neurol Sci 1999;162:84–88.PubMedCrossRefGoogle Scholar
  102. 102.
    Rizzoni D, Porteri E, Guelfi D, et al. Structural alterations in subcutaneous small arteries of normotensive and hypertensive patients with non-insulin-dependent diabetes mellitus. Circulation 2001;103:1238–1244.PubMedGoogle Scholar
  103. 103.
    Schofield I, Malik RA, Izzard A, Austin C, Heagerty AM. Vascular structural and functional changes in type 2 diabetes mellitus: Evidence for the role of abnormal myogenic responsiveness and dyslipidemia. Circulation 2002;106:3037–3043.PubMedCrossRefGoogle Scholar
  104. 104.
    Tooke JE. A pathophysiological framework for the pathogenesis of diabetic microangiopathy. In: Tooke JE, (ed.). Diabetic Angiopathy. Arnold: London, UK, 1999, pp. 187–194.Google Scholar
  105. 105.
    Patel V, Rassam S, Newsom R, Wiek J, Kohner E. Retinal blood flow in diabetic retinopathy. BMJ 1992;305:678–683.PubMedGoogle Scholar
  106. 106.
    Lansang MC, Hollenberg NK. Renal perfusion and the renal hemodynamic response to blocking the renin system in diabetes: are the forces leading to vasodilation and vasoconstriction linked? Diabetes 2002;51:2025–2028.PubMedCrossRefGoogle Scholar
  107. 107.
    Taniwaki H, Ishimura E, Kawagishi T, Matsumoto N, Hosoi M, Emoto M, Shoji T, Shoji S, Nakatani T, Inaba M, Nishizawa Y. Intrarenal hemodynamic changes after captopril test in patients with type 2 diabetes: a duplex Doppler sonography study. Diabetes Care 2003;26:132–137.PubMedCrossRefGoogle Scholar
  108. 108.
    Osterby R, Hartmann A, Bangstad HJ. Structural changes in renal arterioles in Type I diabetic patients. Diabetologia 2002;45:542–549.PubMedCrossRefGoogle Scholar
  109. 109.
    Palm F, Cederberg J, Hansell P, Liss P, Carlsson PO. Reactive oxygen species cause diabetes-induced decrease in renal oxygen tension. Diabetologia 2003;46:1153–1160.PubMedCrossRefGoogle Scholar
  110. 110.
    Cagliero E, Roth T, Roy S, Lorenzi M. Characteristics and mechanisms of high glucose induced overexpression of basement membrane components in cultured human endothelial cells. Diabetes 1991;40:102–109.PubMedCrossRefGoogle Scholar
  111. 111.
    Arora S, Smakowski P, Frykberg RG, et al. Differences in foot and forearm skin microcirculation in diabetic patients with and without neuropathy. Diabetes Care 1998;21:1339–1344.PubMedCrossRefGoogle Scholar
  112. 112.
    Walker D, Malik RA, Boulton AJM, Rayman G. Structural differences in skin between the arm and foot in normal subjects and diabetic patients. Diabetologia 1996;39:A266–A1011.Google Scholar
  113. 113.
    Khder Y, Briancon S, Petermann R, et al. Shear stress abnormalities contribute to endothelial dysfunction in hypertension but not in Type II diabetes. J Hypertens 1998;16:1619–1625.PubMedCrossRefGoogle Scholar
  114. 114.
    Sorensen VB, Rossing P, Tarnow L, Parving H-H, Norgaard T, Kastrup J. Effects of Nisoldipine and lisinopril on microvascular dysfunction in hypertensive type I diabetes patients with nephropathy. Clin Sci 1998;95:709–717.PubMedCrossRefGoogle Scholar
  115. 115.
    Rayman G, Malik RA, Sharma AK, Day JL. Microvascular response to tissue injury and capillary ultrastructure in the foot skin of type I diabetic patients. Clin Sci (Lond) 1995;89:467–474.Google Scholar
  116. 116.
    Veves A, Akbari CM, Primavera J, et al. Endothelial dysfunction and the expression of endothelial nitric oxide synthetase in diabetic neuropathy, vascular disease, and foot ulceration. Diabetes 1998;47:457–463.PubMedCrossRefGoogle Scholar
  117. 117.
    Jude EB, Boulton AJM, Ferguson MWJ, Appleton I. The role of nitric oxide synthase isoforms and arginase in the pathogenesis of diabetic foot ulcers: possible modulatory effects by transforming growth beta 1. Diabetologia 1999;42:748–757.PubMedCrossRefGoogle Scholar
  118. 118.
    Coppey LJ, Gellett JS, Davidson EP, Dunlap JA, Yorek MA. Effect of treating streptozotocin-induced diabetic rats with sorbinil, myo-inositol or aminoguanidine on endoneurial blood flow, motor nerve conduction velocity and vascular function of epineurial arterioles of the sciatic nerve. Int J Exp Diabetes Res 2002;3:21–36.PubMedCrossRefGoogle Scholar
  119. 119.
    Coppey LJ, Gellett JS, Davidson EP, Dunlap JA, Lund DD, Yorek MA. Effect of antioxidant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes 2001;50:1927–1937.PubMedCrossRefGoogle Scholar
  120. 120.
    Kihara M, Mitsui MK, Mitsui Y, et al. Altered vasoreactivity to angiotensin II in experimental diabetic neuropathy: Role of nitric oxide. Muscle and Nerve 1999;22:920–925.PubMedCrossRefGoogle Scholar
  121. 121.
    Hogikyan RV, Wald JJ, Feldman EL, Greene DA, Halter JB, Supiano MA. Acute effects of adrenergic-mediated ischemia on nerve conduction in subjects with type 2 diabetes. Metabolism 1999;48:495–500.PubMedCrossRefGoogle Scholar
  122. 122.
    Korthals JK, Gieron MA, Dyck PJ. Intima of epineurial arterioles is increased in diabetic polyneuropathy. Neurology 1988;38:1582–1586.PubMedGoogle Scholar
  123. 123.
    Malik RA, Tesfaye S, Thompson SD, et al. Transperineurial capillary abnormalities in the sural nerve of patients with diabetic neuropathy. Microvascular Res 1994;48:236–245.CrossRefGoogle Scholar
  124. 124.
    Fagerberg SE. Diabetic neuropathy: a clinical and histological study on the significance of vascular affections. Acta Med Scand 1959;164:5–81.Google Scholar
  125. 125.
    Giannini C, Dyck PJ. Basement membrane reduplication and pericyte degeneration precede development of diabetic polyneuropathy and are associated with its severity. Ann Neurol 1995;37:498–504.PubMedCrossRefGoogle Scholar
  126. 126.
    Malik RA, Veves A, Masson EA, et al. Endoneurial capillary abnormalities in mild human diabetic neuropathy. J Neurol Neurosurg Psychiatry 1992;55:557–561.PubMedGoogle Scholar
  127. 127.
    Malik RA, Newrick PG, Sharma AK, et al. Microangiopathy in human diabetic neuropathy: relationship between capillary abnormalities and the severity of neuropathy. Diabetologia 1989;32:92–102.PubMedCrossRefGoogle Scholar
  128. 128.
    Malik RA, Tesfaye S, Thompson SD, et al. Endoneurial localisation of microvascular damage inhuman diabetic neuropathy. Diabetologia 1993;36:454–459.PubMedCrossRefGoogle Scholar
  129. 129.
    Yasuda H, Dyck PJ. Abnormalities of endoneurial microvessels and sural nerve pathology in diabetic neuropathy Neurology 1987;37:20–28.PubMedGoogle Scholar
  130. 130.
    Britland ST, Young RJ, Sharma AK, Clarke BF. Relationship of endoneurial capillary abnormalities to type and severity of diabetic polyneuropathy. Diabetes 1990;39:909–913.PubMedCrossRefGoogle Scholar
  131. 131.
    Dyck PJ, Giannini C. Pathologic alterations in the diabetic neuropathies of humans: A review. J Neuropathol Exp Neurol 1996;55:1181–1193.PubMedCrossRefGoogle Scholar
  132. 132.
    Timperley WR, Boulton AJM, Davies Jones GAB, Jarrat JA, Ward JD. Small vessel disease in progressive diabetic neuropathy associated with good metabolic control. J Clin Pathol 1985;38:1030–1038.PubMedCrossRefGoogle Scholar
  133. 133.
    Williams E, Timperly WR, Ward JD, Duckworth T. Electronmicroscopical studies of vessels in diabetic peripheral neuropathy. J Clin Pathol 1980;33:462–470.PubMedCrossRefGoogle Scholar
  134. 134.
    Dyck PJ, Hansen S. Karnes J, et al. Capillary number and percentage closed in human diabetic sural nerve. Proc Nat Acad Sci (USA) 1985;82:2513–2517.CrossRefGoogle Scholar
  135. 135.
    Malik RA, Masson EA, Sharma AK, et al. Hypoxic neuropathy: relevance to human diabetic neuropathy. Diabetologia 1990;33:311–318.PubMedCrossRefGoogle Scholar
  136. 136.
    Newrick PG, Wilson AJ, Jakubowski J, Boulton AJM, Ward JD. Sural nerve oxygen tension in diabetes. BMJ 1986;293:1053–1054.PubMedGoogle Scholar
  137. 137.
    Ibrahim S, Harris ND, Radatz M, et al. A new minimally invasive technique to show nerve ischaemia in diabetic neuropathy. Diabetologia 1999;42:737–742.PubMedCrossRefGoogle Scholar
  138. 138.
    Theriault M, Dort J, Sutherland G, et al. Local human sural nerve blood flow in diabetic and other polyneuropathies. Brain 1997;120:1131–1138.PubMedCrossRefGoogle Scholar
  139. 139.
    Eaton SE, Harris ND, Ibrahim S, et al. Increased sural nerve epineurial blood flow in human subjects with painful diabetic neuropathy. Diabetologia 2003;46:934–939.PubMedCrossRefGoogle Scholar
  140. 140.
    Tesfaye S, Harris N, Jakubowski J, et al. Impaired blood flow and arterio-venous shunting in human diabetic neuropathy: a novel technique of nerve photography and fluorescein angiography. Diabetologia 1993;36:1266–1274.PubMedCrossRefGoogle Scholar
  141. 141.
    Tesfaye S, Malik R, Harris N, Jakubowski J, Mody C, Ward JD. Arterio-venous shunting and proliferating new vessels in acute painful neuropathy of rapid glycaemic control (insulin neuritis) Diabetologia 1996;39:329–335.PubMedCrossRefGoogle Scholar
  142. 142.
    Beggs J, Johnson PC, Olafsen A, Watkins CL, Cleary C. Transperineurial arterioles in human sural nerve. J Neuropathol Exp Neurol 1991;6:704–718.Google Scholar
  143. 143.
    Eaton RP, Qualls C, Bicknell J, Sibbitt WL, King MK, Griffey RH. Structure-function relationships within peripheral nerves in diabetic neuropathy: the hydration hypothesis. Diabetologia 1996;39:439–446.PubMedCrossRefGoogle Scholar
  144. 144.
    Young MJ Bennett JL, Liderth SA, Veves A, Boulton AJM, Douglas JT. Rheological and microvascular parameters in diabetic peripheral neuropathy. Clin Sci 1996;90:183–187.PubMedGoogle Scholar
  145. 145.
    Ford I, Malik RA, Newrick PG, Preston EF, Ward JD, Greaves M. Relationship between haemostatic factors and capillary morphology in human diabetic neuropathy. Thrombosis and Haemostasis 1992;68:628–633.PubMedGoogle Scholar
  146. 146.
    Plater ME, Ford I, Dent MT, Preston FE, Ward JD. Elevated von Willebrand factor antigen predicts deterioration in diabetic peripheral nerve function. Diabetologia 1996;39:336–343.PubMedCrossRefGoogle Scholar
  147. 147.
    Jude E, Abbott CA, Young MJ, et al. Potential role of cell adhesion molecules in the pathogenesis of diabetic neuropathy. Diabetologia 1998;41:330–336.PubMedCrossRefGoogle Scholar
  148. 148.
    Young MJ, Veves A, Walker MG, Boulton AJM. Correlations between nerve function and tissue oxygenation in diabetic patients: further clues to the aetiology of diabetic neuropathy? Diabetologia 1992;35:1146–1150.PubMedCrossRefGoogle Scholar
  149. 149.
    Veves A, Donaghue VM, Sarnow MR, Giurini JM, Campbell DR, LoGerfo FW. The impact of reversal of hypoxia by revascularization on the peripheral nerve function of diabetic patients. Diabetologia 1996;39:344–348.PubMedCrossRefGoogle Scholar
  150. 150.
    Akbari CM, Gibbons GW, Habershaw GM, LoGerfo FW, Veves A. The effect of arterial reconstruction on the natural history of diabetic neuropathy. Arch-Surg 1997;132:148–152.PubMedGoogle Scholar
  151. 151.
    Malik RA, Williamson S, Abbott CA, Carrington AL, Iqbal J, Schady W Boulton AJM. Effect of angiotensin-converting enzyme (ACE) inhibitor trandalopril on human diabetic neuropathy: randomised double-blind controlled trial. Lancet 1998;352:1978–1981.PubMedCrossRefGoogle Scholar
  152. 152.
    Estacio RO, Jeffers BW, Gifford N, Schrier RW. Effect of blood pressure control on diabetic micro-vascular complications in patients with hypertension and type 2 diabetes. Diabetes Care 2000;23:B54–B64.PubMedGoogle Scholar
  153. 153.
    Eichberg J. Protein kinase C changes in diabetes: is the concept relevant to neuropathy? Int Rev Neurobiol 2002;50:61–82.PubMedCrossRefGoogle Scholar
  154. 154.
    Cameron NE, Cotter MA. Effects of protein kinase C beta inhibition on neurovascular dysfunction in diabetic rats: interaction with oxidative stress and essential fatty acid dysmetabolism. Diabetes Metab Res Rev 2002;18:315–323.PubMedCrossRefGoogle Scholar
  155. 155.
    Litchy W, Dyck PJ, Tesfaye S, Zhang D, Bastyr E, The MBBQ Study Group. Diabetic peripheral neuropathy (DPN) assessed by neurological examination (NE) and composite scores (CS) is improved with LY333531 treatment. Diabetes 2002;45(Suppl 2):197.Google Scholar
  156. 156.
    Forrest KY, Maser RE, Pambianco G, Becker DJ, Orchard TJ. Hypertension as arisk factor for diabetic neuropathy: a prospective study. Diabetes 1997;46:665–670.PubMedCrossRefGoogle Scholar
  157. 157.
    The EURODIAB prospective complications study (PCS) group. Cardiovascular risk factors predict diabetic peripheral neuropathy in Type 1 subjects in Europe. Diabetologia 1999;42:A50–A181.Google Scholar
  158. 158.
    Okamoto T, Yamagishi SI, Inagaki Y, et al. Angiogenesis induced by advanced glycation end products and its prevention by cerivastatin. FASEB J 2002;16:1928–1930.PubMedGoogle Scholar
  159. 159.
    Nangle MR, Cotter MA, Cameron NE. Effects of rosuvastatin on nitric oxide-dependent function in aorta and corpus cavernosum of diabetic mice: relationship to cholesterol biosynthesis pathway inhibition and lipid lowering. Diabetes 2003;52:2396–2402.PubMedCrossRefGoogle Scholar
  160. 160.
    Fried LF, Forrest KY, Ellis D, Chang Y, Silvers N, Orchard TJ. Lipid modulation in insulin-dependent diabetes mellitus: effect on microvascular outcomes. J Diabetes Complications 2001;15:113–119.PubMedCrossRefGoogle Scholar
  161. 161.
    Backes JM, Howard PA. Association of HMG-CoA reductase inhibitors with neuropathy. Ann Pharmacother 2003;37:274–278.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Rayaz A. Malik
    • 1
  • Aristidis Veves
    • 2
    • 3
  1. 1.Department of MedicineManchester Royal InfirmaryManchesterUK
  2. 2.Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBoston
  3. 3.Department of SurgeryHarvard Medical SchoolBoston

Personalised recommendations