Skip to main content

Neuroprotective Effects of Interferon-β in Multiple Sclerosis

  • Chapter
Inflammatory Disorders of the Nervous System

Part of the book series: Current Clinical Neurology ((CCNEU))

  • 758 Accesses

Abstract

Multiple sclerosis (MS) is considered an immune-mediated, demyelinating, and degenerative disease of the central nervous system (CNS). The immune-mediated pathogenesis is supported by the significant infiltration of leukocytes into the CNS parenchyma and by the finding of a substantial similarity between active MS plaques and lesions in the CNS of animals with experimental autoimmune encephalomyelitis (EAE); EAE is produced by an autoreactive T-cell response. The favorable response of many MS patients to immunomodulatory drugs, including use of β interferons (IFNs) and glatiramer acetate to decrease the number of relapses and reduce magnetic resonance imaging (MRI) disease activity (14), also corroborates the hypothesis of immune-mediated injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Paty DW, Li DK. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis, II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group. Neurology 1993;43:662–667.

    PubMed  CAS  Google Scholar 

  2. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. The IFNB Multiple Sclerosis Study Group. Neurology 1993;43:655–661.

    Google Scholar 

  3. Johnson KP, Brooks BR, Cohen JA, et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 1995;45:1268–1276.

    PubMed  CAS  Google Scholar 

  4. Comi G, Filippi M, Wolinsky JS. European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging-measured disease activity and burden in patients with relapsing multiple sclerosis. European/Canadian Glatiramer Acetate Study Group. Ann Neurol 2001;49:290–297.

    Article  PubMed  CAS  Google Scholar 

  5. Lucchinetti C, Bruck W, Rodriguez M, Lassmann G. Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol 1996;6:800–806.

    Google Scholar 

  6. Martin R, Sturzebecher CS, McFarland HF. Immunotherapy of multiple sclerosis: where are we? Where should we go? Nat Immunol 2001;2:785–788.

    Article  PubMed  CAS  Google Scholar 

  7. Wekerle H, Kojima K, Lannes-Vieira J, Lassmann H, Linington C. Animal models. Ann Neurol 1994;36(suppl.):S47–53.

    Article  PubMed  CAS  Google Scholar 

  8. Hafler DA, Weiner HL. Antigen-specific immunosuppression: oral tolerance for treatment of autoimmune disease. Chem Immunol 1995;60:126–149.

    Article  PubMed  CAS  Google Scholar 

  9. Steinman L. Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 1996;85:299–302.

    Article  PubMed  CAS  Google Scholar 

  10. Wekerle H, Hohlfeld R. Molecular mimicry in multiple sclerosis. N Engl J Med 2003;349:185–186.

    Article  PubMed  Google Scholar 

  11. Vanderlugt CL, Miller SD. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol 2002;2:85–95.

    Article  PubMed  CAS  Google Scholar 

  12. van Noort JM, Bajramovic JJ, Plomp AC, van Stipdonk MJ. Mistaken self, a novel model that links microbial infections with myelin-directed autoimmunity in multiple sclerosis. J Neuroimmunol 2000;105:46–57.

    Article  PubMed  Google Scholar 

  13. Hickey WF, Hsu BL, Kimura H. T-lymphocyte entry into the central nervous system. J Neurosci Res 1991;28:254–260.

    Article  PubMed  CAS  Google Scholar 

  14. Flugel A, Willem M, Berkowicz T, Wekerle H. Gene transfer into CD4+ T lymphocytes: green fluorescent protein-engineered, encephalitogenic T cells illuminate brain autoimmune responses. Nat Med 1999;5:843–847.

    Article  PubMed  CAS  Google Scholar 

  15. Qing Z, Sewell D, Sandor M, Fabry Z. Antigen-specific T-cell trafficking into the central nervous system. J Neuroimmunol 2000;105:169–178.

    Article  PubMed  CAS  Google Scholar 

  16. Charcot M. Histologie de la sclerose en plaques. Gaz Hosp 1868;141:554–558.

    Google Scholar 

  17. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998;338:278–285.

    Article  PubMed  CAS  Google Scholar 

  18. Ferguson B, Matyszak MK, Esiri MM, Perry VH. Axonal damage in acute multiple sclerosis lesions. Brain 1997;120(Pt3):393–399.

    Article  PubMed  Google Scholar 

  19. Randomized controlled trial of interferon-beta-1a in secondary progressive MS: Clinical results. Neurology 2001;56:1496–1504.

    Google Scholar 

  20. Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Bruck W. Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 2002;125(Pt 10):2202–2212.

    Article  PubMed  Google Scholar 

  21. Tourbah A, Stievenart JL, Gout O, et al. Localized proton magnetic resonance spectroscopy in relapsing remitting versus secondary progressive multiple sclerosis. Neurology 1999;53:1091–1097.

    PubMed  CAS  Google Scholar 

  22. Filippi M, Bozzali M, Rovaris M, et al. Evidence for widespread axonal damage at the earliest clinical stage of multiple sclerosis. Brain 2003;126(Pt 2):433–437.

    Article  PubMed  CAS  Google Scholar 

  23. Bagnato F, Jeffries N, Richert ND, et al. Evolution of T1 black holes in patients with multiple sclerosis imaged monthly for 4 years. Brain 2003;126:1782–1789.

    Article  PubMed  Google Scholar 

  24. Bruck W, Bitsch A, Kolenda H, Bruck Y, Stiefel M, Lassmann H. Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol 1997;42:783–793.

    Article  PubMed  CAS  Google Scholar 

  25. Bitsch A, Kuhlmann T, Stadelmann C, Lassmann H, Lucchinetti C, Bruck W. A longitudinal MRI study of histopathologically defined hypointense multiple sclerosis lesions. Ann Neurol 2001;49:793–796.

    Article  PubMed  CAS  Google Scholar 

  26. Cifelli A, Arridge M, Jezzard P, Esiri MM, Palace J, Matthews PM. Thalamic neurodegeneration in multiple sclerosis. Ann Neurol 2002;52:650–653.

    Article  PubMed  Google Scholar 

  27. Wylezinska M, Cifelli A, Jezzard P, Palace J, Alecci M, Matthews PM. Thalamic neurodegeneration in relapsing-remitting multiple sclerosis. Neurology 2003;60:1949–1954.

    PubMed  CAS  Google Scholar 

  28. De Stefano N, Matthews PM, Filippi M, et al. Evidence of early cortical atrophy in MS: relevance to white matter changes and disability. Neurology 2003;60:1157–1162.

    PubMed  Google Scholar 

  29. Peterson JW, Bo L, Mork S, Chang A, Trapp BD. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 2001;50:389–400.

    Article  PubMed  CAS  Google Scholar 

  30. Smith KJ, Kapoor R, Hall SM, Davies M. Electrically active axons degenerate when exposed to nitric oxide. Ann Neurol 2001;49:470–476.

    Article  PubMed  CAS  Google Scholar 

  31. Downen M, Amaral TD, Hua LL, Zhao ML, Lee SC. Neuronal death in cytokine-activated primary human brain cell culture: role of tumor necrosis factor-alpha. Glia 1999;28:114–127.

    Article  PubMed  CAS  Google Scholar 

  32. Giuliani F, Goodyer C, Antel JP, Yong VW. Vulnerability of human neurons to T cell-mediated cytotoxicity. J Immunol 2003;171:368–379.

    PubMed  CAS  Google Scholar 

  33. Venters HD, Tang Q, Liu Q, VanHoy RW, Dantzer R, Kelley KW. A new mechanism of neurodegeneration: a proinflammatory cytokine inhibits receptor signaling by a survival peptide. Proc Natl Acad Sci USA 1999;96:9879–9884.

    Article  PubMed  CAS  Google Scholar 

  34. Neumann H, Cavalie A, Jenne DE, Wekerle H. Induction of MHC class I genes in neurons. Science 1995;269:2582–2590.

    Article  Google Scholar 

  35. Relton JK, Rothwell NJ. Interleukin-1 receptor antagonist inhibits ischaemic and excitotoxic neuronal damage in the rat. Brain Res Bull 1992;29:243–246.

    Article  PubMed  CAS  Google Scholar 

  36. Relton JK, Martin D, Thompson RC, Russell DA. Peripheral administration of interleukin-1 receptor antagonist inhibits brain damage after focal cerebral ischemia in the rat. Exp Neurol 1996;138:206–213.

    Article  PubMed  CAS  Google Scholar 

  37. Toulmond S, Parnet P, Linthorst AC. When cytokines get on your nerves: cytokine networks and CNS pathologies. Trends Neurosci 1996;19:409–410.

    PubMed  CAS  Google Scholar 

  38. Yamasaki Y, Matsuura N, Shozuhara H, Onodera H, Itoyama Y, Kogure K. Interleukin-1 as a pathogenetic mediator of ischemic brain damage in rats. Stroke 1995;26:676–680, discussion 681.

    PubMed  CAS  Google Scholar 

  39. Takahashi JL, Giuliani F, Power C, Imai Y, Yong VW. Interleukin-1 beta promotes oligodendrocyte death through glutamate excitotoxicity. Ann Neurol 2003;53:588–595.

    Article  PubMed  CAS  Google Scholar 

  40. Werner P, Pitt D, Raine CS. Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann Neurol 2001;50:169–180.

    Article  PubMed  CAS  Google Scholar 

  41. Kalkers NF, Barkhof F, Bergers E, van Schijndel R, Polman CH. The effect of the neuroprotective agent riluzole on MRI parameters in primary progressive multiple sclerosis: a pilot study. Mult Scler 2002;8:532–533.

    Article  PubMed  CAS  Google Scholar 

  42. Smith KJ, Hall SM. Factors directly affecting impulse transmission in inflammatory demyelinating disease: recent advances in our understanding. Curr Opin Neurol 2001;14:289–298.

    Article  PubMed  CAS  Google Scholar 

  43. Garthwaite G, Goodwin DA, Batchelor AM, Leeming K, Garthwaite J. Nitric oxide toxicity in CNS white matter: an in vitro study using rat optic nerve. Neuroscience 2002;109:145–155.

    Article  PubMed  CAS  Google Scholar 

  44. Bo L, Dawson TM, Wesselingh S, et al. Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann Neurol 1994;36:778–786.

    Article  PubMed  CAS  Google Scholar 

  45. Bagasra O, Michaels FH, Zheng YM, et al. Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis. Proc Natl Acad Sci USA 1995;92:12,041–12,045.

    Article  PubMed  CAS  Google Scholar 

  46. Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Bruck W. Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 2000;123(Pt 6):1174–1183.

    Article  PubMed  Google Scholar 

  47. Yong VW, Power C, Forsyth P, Edwards DR. Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2001;2:502–511.

    Article  PubMed  CAS  Google Scholar 

  48. Vos CM, Sjulson L, Nath A, et al. Cytotoxicity by matrix metalloprotease-1 in organotypic spinal cord and dissociated neuronal cultures. Exp Neurol 2000;163:324–330.

    Article  PubMed  CAS  Google Scholar 

  49. Johnston JB, Zhang K, Silva C, Shalinsky DR, Conant K, Ni W, et al. HIV-1 Tat neurotoxicity is prevented by matrix metalloproteinase inhibitors. Ann Neurol 2001;49:230–241.

    Article  PubMed  CAS  Google Scholar 

  50. Krekoski CA, Neubauer D, Graham JB, Muir D. Metalloproteinase-dependent predegeneration in vitro enhances axonal regeneration within acellular peripheral nerve grafts. J Neurosci 2002;22:10,408–10,415.

    PubMed  CAS  Google Scholar 

  51. Linington C, Bradl M, Lassmann H, Brunner C, Vass K. Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol 1988;130:443–454.

    PubMed  CAS  Google Scholar 

  52. Mollnes TE, Vandvik B, Lea T, Vartdal F. Intrathecal complement activation in neurological diseases evaluated by analysis of the terminal complement complex. J Neurol Sci 1987;78:17–28.

    Article  PubMed  CAS  Google Scholar 

  53. Storch MK, Piddlesden S, Haltia M, Iivanainen M, Morgan P, Lassmann H. Multiple sclerosis: in situ evidence for antibody-and complement-mediated demyelination. Ann Neurol 1998;43:465–471.

    Article  PubMed  CAS  Google Scholar 

  54. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000;47:707–717.

    Article  PubMed  CAS  Google Scholar 

  55. Mead RJ, Singhrao SK, Neal JW, Lassmann H, Morgan BP. The membrane attack complex of complement causes severe demyelination associated with acute axonal injury. J Immunol 2002;168:458–465.

    PubMed  CAS  Google Scholar 

  56. Manning PT, Johnson EMJ. MHC-specific cytotoxic T lymphocyte killing of dissociated sympathetic neuronal cultures. Am J Pathol 1987;128:395–409.

    PubMed  CAS  Google Scholar 

  57. Rall GF, Mucke L, Oldstone MB. Consequences of cytotoxic T lymphocyte interaction with major histocompatibility complex class-1 expressing neurons in vivo. J Exp Med 1995;94:1201–1212.

    Article  Google Scholar 

  58. Medana I, Martinic MA, Wekerle H, Neumann H. Transection of major histocompatibility complex class I-induced neurites by cytotoxic T lymphocytes. Am J Pathol 2001;159:809–815.

    PubMed  CAS  Google Scholar 

  59. Redwine JM, Buchmeier MJ, Evans CF. In vivo expression of major histocompatibility complex molecules on oligodendrocytes and neurons during viral infection. Am J Pathol 2001;159:1219–1224.

    PubMed  CAS  Google Scholar 

  60. Wucherpfennig KW, Newcombe J, Li H, Keddy C, Cuzner ML, Hafler DA. T cell receptor V alpha-V beta repertoire and cytokine gene expression in active multiple sclerosis lesions. J Exp Med 1992;175:993–1002.

    Article  PubMed  CAS  Google Scholar 

  61. Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 1957;147:258–267.

    PubMed  CAS  Google Scholar 

  62. Yong VW, Chabot S, Stuve O, Williams G. Interferon beta in the treatment of multiple sclerosis: mechanisms of action. Neurology 1998;51:682–689.

    PubMed  CAS  Google Scholar 

  63. Shapiro S, Galboiz Y, Lahat N, Kinarty A, Miller A. The ‘immunological-synapse’ at its APC side in relapsing and secondary-progressive multiple sclerosis: modulation by interferon-beta. J Neuroimmunol 2003;144:116–124.

    Article  PubMed  CAS  Google Scholar 

  64. Sharief MK, Semra YK, Seidi OA, Zoukos Y. Interferon-beta therapy downregulates the anti-apoptosis protein FLIP in T cells from patients with multiple sclerosis. J Neuroimmunol 2001;120:199–207.

    Article  PubMed  CAS  Google Scholar 

  65. Zang YC, Yang D, Hong J, Tejada-Simon MV, Rivera VM, Zhang JZ. Immunoregulation and blocking antibodies induced by interferon beta treatment in MS. Neurology 2000;55:397–404.

    PubMed  CAS  Google Scholar 

  66. Dayal AS, Jensen MA, Lledo A, Arnason BG. Interferon-gamma-secreting cells in multiple sclerosis patients treated with interferon beta-1b. Neurology 1995;45:2173–2177.

    PubMed  CAS  Google Scholar 

  67. Wandinger KP, Sturzebecher CS, Bielekova B, et al. Complex immunomodulatory effects of interferon-beta in multiple sclerosis include the upregulation of T helper 1-associated marker genes. Ann Neurol 2001;50:349–357.

    Article  PubMed  CAS  Google Scholar 

  68. Calabresi PA, Pelfrey CM, Tranquill LR, Maloni H, McFarland HF. VLA-4 expression on peripheral blood lymphocytes is downregulated after treatment of multiple sclerosis with interferon beta. Neurology 1997;49:1111–1116.

    PubMed  CAS  Google Scholar 

  69. Trojano M, Avolio C, Liuzzi GM, et al. Changes of serum sICAM-1 and MMP-9 induced by rIFNbeta-1b treatment in relapsing-remitting MS. Neurology 1999;53:1402–1408.

    PubMed  CAS  Google Scholar 

  70. Iarlori C, Reale M, Lugaresi A, et al. RANTES production and expression is reduced in relapsing-remitting multiple sclerosis patients treated with interferon-beta-1b. J Neuroimmunol 2000;107:100–107.

    Article  PubMed  CAS  Google Scholar 

  71. Zang YC, Halder JB, Samanta AK, Hong J, Rivera VM, Zhang JZ. Regulation of chemokine receptor CCR5 and production of RANTES and MIP-1alpha by interferon-beta. J Neuroimmunol 2001;112:174–180.

    Article  PubMed  CAS  Google Scholar 

  72. Stuve O, Dooley NP, Uhm JH, et al. Interferon beta-1b decreases the migration of T lymphocytes in vitro: effects on matrix metalloproteinase-9. Ann Neurol 1996;40:853–863.

    Article  PubMed  CAS  Google Scholar 

  73. Leppert D, Waubant E, Burk MR, Oksenberg JR, Hauser SL. Interferon beta-1b inhibits gelatinase secretion and in vitro migration of human T cells: a possible mechanism for treatment efficacy in multiple sclerosis. Ann Neurol 1996;40:846–852.

    Article  PubMed  CAS  Google Scholar 

  74. Dubois B, Leary SM, Nelissen I, Opdenakker G, Giovannoni G, Thompson AJ. Serum gelatinase B/MMP-9 in primary progressive multiple sclerosis patients treated with interferon-beta-1a. J Neurol 2003;250:1037–1043.

    Article  PubMed  CAS  Google Scholar 

  75. Galboiz Y, Shapiro S, Lahat N, Rawashdeh H, Miller A. Matrix metalloproteinases and their tissue inhibitors as markers of disease subtype and response to interferon-beta therapy in relapsing and secondary-progressive multiple sclerosis patients. Ann Neurol 2001;50:443–451.

    Article  PubMed  CAS  Google Scholar 

  76. Weinshenker BG, Bass B, Rice GP, et al. The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. Brain 1989;112(Pt 1):133–146.

    Google Scholar 

  77. Rudick RA, Goodkin DE, Jacobs LD, et al. Impact of interferon beta-1a on neurologic disability in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Neurology 1997;49:358–363.

    PubMed  CAS  Google Scholar 

  78. Rice G, Ebers G. Interferons in the treatment of multiple sclerosis: do they prevent the progression of the disease? Arch Neurol 1998;55:1578–1580.

    Article  PubMed  CAS  Google Scholar 

  79. Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. PRISMS (Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis) Study Group. Lancet 1998;352:1498–1504.

    Google Scholar 

  80. PRISMS-4: long-term efficacy of interferon-beta-1a in relapsing MS. Neurology 2001;56:1628–1636.

    Google Scholar 

  81. Placebo-controlled multicentre randomised trial of interferon beta-1 b in treatment of secondary progressive multiple sclerosis. European Study Group on interferon beta-1b in secondary progressive MS. Lancet 1998;352:1491–1497.

    Google Scholar 

  82. Goodkin DE and the North American Study Group on Interferon Beta-1b in Secondary Progressive MS. Interferon beta-1b in secondary progressive MS: clinical and MRI results of a three-year randomized controlled trial. Neurology 2000;54(suppl.):2352.

    Google Scholar 

  83. Cohen JA, Cutter GR, Fischer JS, et al. Benefit of interferon beta-1a on MSFC progression in secondary progressive MS. Neurology 2002;59:679–687.

    PubMed  CAS  Google Scholar 

  84. Simon JH, Jacobs LD, Campion MK, et al. A longitudinal study of brain atrophy in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Neurology 1999;53:139–148.

    PubMed  CAS  Google Scholar 

  85. Rudick RA, Fisher E, Lee JC, Duda JT, Simon J. Brain atrophy in relapsing multiple sclerosis: relationship to relapses, EDSS, and treatment with interferon beta-1a. Mult Scler 2000;6:365–372.

    PubMed  CAS  Google Scholar 

  86. Coles AJ, Wing MG, Molyneux P, et al. Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis. Ann Neurol 1999;46:296–304.

    Article  PubMed  CAS  Google Scholar 

  87. Paolillo A, Coles AJ, Molyneux PD, et al. Quantitative MRI in patients with secondary progressive MS treated with monoclonal antibody Campath 1H. Neurology 1999;53:751–757.

    PubMed  CAS  Google Scholar 

  88. Wolinsky JS, Narayana PA, Noseworthy JH, et al. Linomide in relapsing and secondary progressive MS: part II: MRI results. MRI Analysis Center of the University of Texas-Houston, Health Science Center, and the North American Linomide Investigators. Neurology 2000;54:1734–1741.

    PubMed  CAS  Google Scholar 

  89. Frank JA, Richert N, Bash C, et al. Interferon-beta-1b slows progression of atrophy in RRMS: Three-year follow-up in NAb-and NAb+ patients. Neurology 2004;62:719–725.

    PubMed  CAS  Google Scholar 

  90. Simon JH, Lull J, Jacobs LD, et al. A longitudinal study of T1 hypointense lesions in relapsing MS: MSCRG trial of interferon beta-1a. Multiple Sclerosis Collaborative Research Group. Neurology 2000;55:185–192.

    PubMed  CAS  Google Scholar 

  91. Barkhof F, van Waesberghe JH, Filippi M, et al. T(1) hypointense lesions in secondary progressive multiple sclerosis: effect of interferon beta-1b treatment. Brain 2001;124(Pt 7):1396–1402.

    Article  PubMed  CAS  Google Scholar 

  92. Losseff NA, Webb SL, O’Riordan JI, et al. Spinal cord atrophy and disability in multiple sclerosis. Anew reproducible and sensitive MRI method with potential to monitor disease progression. Brain 1996;119(Pt 3):701–708.

    Article  PubMed  Google Scholar 

  93. Edwards SG, Gong QY, Liu C, et al. Infratentorial atrophy on magnetic resonance imaging and disability in multiple sclerosis. Brain 1999;122(Pt 2):291–301.

    Article  PubMed  Google Scholar 

  94. Lin X, Tench CR, Turner B, Blumhardt LD, Constantinescu CS. Spinal cord atrophy and disability in multiple sclerosis over four years: application of a reproducible automated technique in monitoring disease progression in a cohort of the interferon beta-1a (Rebif) treatment trial. J Neurol Neurosurg Psychiatry 2003;74:1090–1094.

    Article  PubMed  CAS  Google Scholar 

  95. Narayanan S, De Stefano N, Francis GS, et al. Axonal metabolic recovery in multiple sclerosis patients treated with interferon beta-1b. J Neurol 2001;248:979–986.

    Article  PubMed  CAS  Google Scholar 

  96. Parry A, Corkill R, Blamire AM, et al. Beta-Interferon treatment does not always slow the progression of axonal injury in multiple sclerosis. J Neurol 2003;250:171–178.

    Article  PubMed  CAS  Google Scholar 

  97. Sarchielli P, Presciutti O, Tarducci R, et al. 1H-MRS in patients with multiple sclerosis undergoing treatment with interferon beta-1a: results of a preliminary study. J Neurol Neurosurg Psychiatry 1998;64:204–212.

    Article  PubMed  CAS  Google Scholar 

  98. Boutros T, Croze E, Yong VW. Interferon-beta is a potent promoter of nerve growth factor production by astrocytes. J Neurochem 1997;69:939–946.

    Article  PubMed  CAS  Google Scholar 

  99. Yong VW. Prospects for neuroprotection in multiple sclerosis. Front Biosci 2004;9:864–872.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Giuliani, F., Zabad, R., Yong, V.W. (2005). Neuroprotective Effects of Interferon-β in Multiple Sclerosis. In: Minagar, A., Alexander, J.S. (eds) Inflammatory Disorders of the Nervous System. Current Clinical Neurology. Humana Press. https://doi.org/10.1385/1-59259-905-2:133

Download citation

  • DOI: https://doi.org/10.1385/1-59259-905-2:133

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-424-1

  • Online ISBN: 978-1-59259-905-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics