Advertisement

Transverse Myelitis

Clinical Manifestations, Pathogenesis, and Management
  • Chitra Krishnan
  • Adam I. Kaplin
  • Deepa M. Deshpande
  • Carlos A. Pardo
  • Douglas A. Kerr
Part of the Current Clinical Neurology book series (CCNEU)

Abstract

First described in 1882, and termed acute transverse myelitis (TM) in 1948 (1), TM is a rare syndrome with an incidence of between one and eight new cases per million people per year (2). TM is characterized by focal inflammation within the spinal cord and clinical manifestations are caused by resultant neural dysfunction of motor, sensory, and autonomic pathways within and passing through the inflamed area. There is often a clearly defined rostral border of sensory dysfunction and evidence of acute inflammation demonstrated by a spinal magnetic resonance imaging (MRI) and lumbar puncture. When the maximal level of deficit is reached, approx 50% of patients have lost all movements of their legs, virtually all patients have some degree of bladder dysfunction, and 80 to 94% of patients have numbness, paresthesias, or band-like dysesthesias (2, 3, 4, 5, 6, 7). Autonomic symptoms consist variably of increased urinary urgency, bowel or bladder incontinence, difficulty or inability to void, incomplete evacuation or bowel, constipation, and sexual dysfunction (8). Like multiple sclerosis (MS) (9), TM is the clinical manifestation of a variety of disorders with distinct presentations and pathologies (10). Recently, we proposed a diagnostic and classification scheme that has defined TM as either idiopathic or associated with a known inflammatory disease (i.e., MS, systemic lupus erythematosus [SLE], Sjogren’s syndrome, or neurosarcoidosis) (11). Most TM patients have monophasic disease, although up to 20% will have recurrent inflammatory episodes within the spinal cord (Johns Hopkins Transverse Myelitis Center [JHTMC] case series, unpublished data) (12,13).

Keywords

Spinal Cord Multiple Sclerosis Neuromyelitis Optica Transverse Myelitis Miller Fisher Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Suchett-Kaye AI. Acute transverse myelitis complicating pneumonia. Lancet 1948;255:417.CrossRefGoogle Scholar
  2. 2.
    Berman M, Feldman S, Alter M, Zilber N, Kahana E. Acute transverse myelitis: incidence and etiologic considerations. Neurology 1981;31:966–971.PubMedGoogle Scholar
  3. 3.
    Jeffery DR, Mandler RN, Davis LE. Transverse myelitis. Retrospective analysis of 33 cases, with differentiation of cases associated with multiple sclerosis and parainfectious events. Arch Neurol 1993;50:532–535.PubMedGoogle Scholar
  4. 4.
    Christensen PB, Wermuth L, Hinge HH, Bomers K. Clinical course and long-term prognosis of acute transverse myelopathy. Acta Neurol Scand 1990;81:431–435.PubMedCrossRefGoogle Scholar
  5. 5.
    Altrocchi PH. Acute Transverse Myelopathy. Arch Neurol 1963;9:21–29.Google Scholar
  6. 6.
    Misra UK, Kalita J, Kumar S. A clinical, MRI and neurophysiological study of acute transverse myelitis. J Neurol Sci 1996;138:150–156.PubMedCrossRefGoogle Scholar
  7. 7.
    Lipton HL, Teasdall RD. Acute transverse myelopathy in adults. A follow-up study. Arch Neurol 1973;28:252–257.PubMedGoogle Scholar
  8. 8.
    Sakakibara R, Hattori T, Yasuda K, Yamanishi T. Micturition disturbance in acute transverse myelitis. Spinal Cord 1996;34:481–485.PubMedGoogle Scholar
  9. 9.
    Lucchinetti CF, Brueck W, Rodriguez M, Lassmann H. Multiple sclerosis: lessons from neuropathology. Semin Neurol 1998;18:337–349.PubMedGoogle Scholar
  10. 10.
    Ropper AH, Poskanzer DC. The prognosis of acute and subacute transverse myelopathy based on early signs and symptoms. Ann Neurol 1978;4:51–59.PubMedCrossRefGoogle Scholar
  11. 11.
    Transverse Myelitis Consortium Working Group. Proposed diagnostic criteria and nosology of acute transverse myelitis. Neurology 2002;59:499–505.Google Scholar
  12. 12.
    Tippett DS, Fishman PS, Panitch HS. Relapsing transverse myelitis. Neurology 1991;41:703–706.PubMedGoogle Scholar
  13. 13.
    Pandit L, Rao S. Recurrent myelitis. J Neurol Neurosurg Psychiatry 1996;60:336–338.PubMedCrossRefGoogle Scholar
  14. 14.
    Rudick RA, French CA, Breton D, Williams GW. Relative diagnostic value of cerebrospinal fluid kappa chains in MS: comparison with other immunoglobulin tests. Neurology 1989;39:964–968.PubMedGoogle Scholar
  15. 15.
    Hung KL, Chen WC, Huang CS. Diagnostic value of cerebrospinal fluid immunoglobulin G (IgG) in pediatric neurological diseases. J Formos Med Assoc 1991;90:1055–1059.PubMedGoogle Scholar
  16. 16.
    Jacobs LD, Beck RW, Simon JH, Kinkel RP, Brownscheidle CM, Murray TJ et al. Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in multiple sclerosis. CHAMPS Study Group. N Engl J Med 2000;343:898–904.PubMedCrossRefGoogle Scholar
  17. 17.
    Paine RS, Byers RK. Transverse myelopathy in childhood. AMA Am J Dis Child 1968;85:151–163.Google Scholar
  18. 18.
    Knebusch M, Strassburg HM, Reiners K. Acute transverse myelitis in childhood: nine cases and review of the literature. Dev Med Child Neurol 1998;40:631–639.PubMedCrossRefGoogle Scholar
  19. 19.
    Dunne K, Hopkins IJ, Shield LK. Acute transverse myelopathy in childhood. Dev Med Child Neurol 1986;28:198–204.PubMedCrossRefGoogle Scholar
  20. 20.
    Burns AS, Rivas DA, Ditunno JF. The management of neurogenic bladder and sexual dysfunction after spinal cord injury. Spine 2001;26(24 Suppl):S129–S136.PubMedCrossRefGoogle Scholar
  21. 21.
    DasGupta R, Fowler CJ. Sexual and urological dysfunction in multiple sclerosis: better understanding and improved therapies. Curr Opin Neurol 2002;15:271–278.PubMedCrossRefGoogle Scholar
  22. 22.
    Patten SB, Metz LM. Depression in multiple sclerosis. Psychother Psychosom 1997;66:286–292.PubMedCrossRefGoogle Scholar
  23. 23.
    Scott TF, Bhagavatula K, Snyder PJ, Chieffe C. Transverse myelitis. Comparison with spinal cord presentations of multiple sclerosis. Neurology 1998;50:429–433.PubMedGoogle Scholar
  24. 24.
    al Deeb SM, Yaqub BA, Bruyn GW, Biary NM. Acute transverse myelitis. A localized form of postinfectious encephalomyelitis. Brain 1997;120(Pt7):1115–1122.PubMedCrossRefGoogle Scholar
  25. 25.
    Ferch RD, Morgan MK, Sears WR. Spinal arteriovenous malformations: a review with case illustrations. J Clin Neurosci 2001;8:299–304.PubMedCrossRefGoogle Scholar
  26. 26.
    Moriarity JL, Clatterbuck RE, Rigamonti D. The natural history of cavernous malformations. Neurosurg Clin N Am 1999;10:411–417.PubMedGoogle Scholar
  27. 27.
    Wityk RJ. Dural arteriovenous fistula of the spinal cord: an uncommon cause of myelopathy. Semin Neurol 1996;16:27–32.PubMedGoogle Scholar
  28. 28.
    Schreck RI, Manion WL, Kambin P, Sohn M. Nucleus pulposus pulmonary embolism. A case report. Spine 1995;20:2463–2466.PubMedCrossRefGoogle Scholar
  29. 29.
    Bots GT, Wattendorff AR, Buruma OJ, Roos RA, Endtz LJ. Acute myelopathy caused by fibrocartilaginous emboli. Neurology 1981;31:1250–1256.PubMedGoogle Scholar
  30. 30.
    Toro G, Roman GC, Navarro-Roman L, Cantillo J, Serrano B, Vergara I. Natural history of spinal cord infarction caused by nucleus pulposus embolism. Spine 1994;19:360–366.PubMedCrossRefGoogle Scholar
  31. 31.
    Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 5-1991. A 61-year-old woman with an abrupt onset of paralysis of the legs and impairment of the bladder and bowel function. N Engl J Med 1991;324:322–332.CrossRefGoogle Scholar
  32. 32.
    Okada S, Okeda R. Pathology of radiation myelopathy. Neuropathology 2001;21:247–265.PubMedCrossRefGoogle Scholar
  33. 33.
    Liu CY, Yim BT, Wozniak AJ. Anticoagulation therapy for radiation-induced myelopathy. Ann Pharmacother 2001;35:188–191.PubMedCrossRefGoogle Scholar
  34. 34.
    Glantz MJ, Burger PC, Friedman AH, Radtke RA, Massey EW, Schold SC Jr. Treatment of radiation-induced nervous system injury with heparin and warfarin. Neurology 1994;44:2020–2027.PubMedGoogle Scholar
  35. 35.
    Asamoto S, Sugiyama H, Doi H, Iida M, Nagao T, Matsumoto K. Hyperbaric oxygen (HBO) therapy for acute traumatic cervical spinal cord injury. Spinal Cord 2000;38:538–540.PubMedCrossRefGoogle Scholar
  36. 36.
    Calabro F, Jinkins JR. MRI of radiation myelitis: a report of a case treated with hyperbaric oxygen. Eur Radiol 2000;10:1079–1084.PubMedCrossRefGoogle Scholar
  37. 37.
    Angibaud G, Ducasse JL, Baille G, Clanet M. [Potential value of hyperbaric oxygenation in the treatment of post-radiation myelopathies]. Rev Neurol (Paris) 1995;151:661–666.Google Scholar
  38. 38.
    Hummers LK, Krishnan C, Casciola-Rosen L, et al. Recurrent transverse myelitis associates with anti-ro (SSA) autoantibodies. Neurology 2004;62:147–149.PubMedGoogle Scholar
  39. 39.
    Ford B, Tampieri D, Francis G. Long-term follow-up of acute partial transverse myelopathy. Neurology 1992;42:250–252.PubMedGoogle Scholar
  40. 40.
    de Seze J, Stojkovic T, Breteau G, et al. Acute myelopathies: clinical, laboratory, and outcome profiles in 79 cases. Brain 2001;124(Pt 8):1509–1521.PubMedCrossRefGoogle Scholar
  41. 41.
    Miller DH, Ormerod IE, Rudge P, Kendall BE, Moseley IF, McDonald WI. The early risk of multiple sclerosis following isolated acute syndromes of the brainstem and spinal cord. Ann Neurol 1989;26:635–639.PubMedCrossRefGoogle Scholar
  42. 42.
    Ungurean A, Palfi S, Dibo G, Tiszlavicz L, Vecsei L. Chronic recurrent transverse myelitis or multiple sclerosis. Funct Neurol 1996;11:209–214.PubMedGoogle Scholar
  43. 43.
    Bakshi R, Kinkel PR, Mechtler LL, et al. Magnetic resonance imaging findings in 22 cases of myelitis: comparison between patients with and without multiple sclerosis. Eur J Neurol 1998;5:35–48.PubMedCrossRefGoogle Scholar
  44. 44.
    McDonald WI, Compston A, Edan G, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 2001;50:121–127.PubMedCrossRefGoogle Scholar
  45. 45.
    O’Riordan JI, Losseff NA, Phatouros C, et al. Asymptomatic spinal cord lesions in clinically isolated optic nerve, brain stem, and spinal cord syndromes suggestive of demyelination. J Neurol Neurosurg Psychiatry 1998;64:353–357.PubMedGoogle Scholar
  46. 46.
    Nagaswami S, Kepes J, Foster DB, Twemlow SW. Necrotizing myelitis: a clinico-pathologic report of two cases associated with diplococcus pneumoniae and mycoplasma pneumoniae infections. Trans Am Neurol Assoc 1973;98:290–292.PubMedGoogle Scholar
  47. 47.
    Mirich DR, Kucharczyk W, Keller MA, Deck J. Subacute necrotizing myelopathy: MR imaging in four pathologically proved cases. AJNR Am J Neuroradiol 1991;12:1077–1083.PubMedGoogle Scholar
  48. 48.
    Katz JD, Ropper AH. Progressive necrotic myelopathy: clinical course in 9 patients. Arch Neurol 2000;57:355–361.PubMedCrossRefGoogle Scholar
  49. 49.
    Krishnan C, Kaplin AI, Deshpande DM, Pardo CA, Kerr DA. Transverse myelitis: pathogenesis, diagnosis and treatment. Front Biosci 2004;9:1483–1499.PubMedCrossRefGoogle Scholar
  50. 50.
    de Macedo DD, de Mattos JP, Borges TM. [Transverse myelopathy and systemic lupus erythematosus. Report of a case and review of the literature]. Arq Neuropsiquiatr 1979;37:76–84.PubMedGoogle Scholar
  51. 51.
    Kerr DA, Ayetey H. Immunopathogenesis of acute transverse myelitis. Curr Opin Neurol 2002;15:339–347.PubMedCrossRefGoogle Scholar
  52. 52.
    Patja A, Paunio M, Kinnunen E, Junttila O, Hovi T, Peltola H. Risk of Guillain-Barre syndrome after measles-mumps-rubella vaccination. J Pediatr 2001;138:250–254.PubMedCrossRefGoogle Scholar
  53. 53.
    Schonberger LB, Bregman DJ, Sullivan-Bolyai JZ, et al. Guillain-Barre syndrome following vaccination in the National Influenza Immunization Program, United States, 1976–1977. Am J Epidemiol 1979;110:105–123.PubMedGoogle Scholar
  54. 54.
    Langmuir AD, Bregman DJ, Kurland LT, Nathanson N, Victor M. An epidemiologic and clinical evaluation of Guillain-Barre syndrome reported in association with the administration of swine influenza vaccines. Am J Epidemiol 1984;119:841–879.PubMedGoogle Scholar
  55. 55.
    Merelli E, Casoni F. Prognostic factors in multiple sclerosis: role of intercurrent infections and vaccinations against influenza and hepatitis B. Neurol Sci 2000;21(4 Suppl 2):S853–S856.PubMedCrossRefGoogle Scholar
  56. 56.
    Ascherio A, Zhang SM, Hernan MA, et al. Hepatitis B vaccination and the risk of multiple sclerosis. N Engl J Med 2001;344:327–332.PubMedCrossRefGoogle Scholar
  57. 57.
    Confavreux C, Suissa S, Saddier P, Bourdes V, Vukusic S. Vaccinations and the risk of relapse in multiple sclerosis. Vaccines in Multiple Sclerosis Study Group. N Engl J Med 2001;344:319–326.PubMedCrossRefGoogle Scholar
  58. 58.
    Moriabadi NF, Niewiesk S, Kruse N, et al. Influenza vaccination in MS: absence of T-cell response against white matter proteins. Neurology 2001;56:938–943.PubMedGoogle Scholar
  59. 59.
    Dowling PC, Cook SD. Role of infection in Guillain-Barre syndrome: laboratory confirmation of herpesviruses in 41 cases. Ann Neurol 1981 9 Suppl:44–55.PubMedCrossRefGoogle Scholar
  60. 60.
    Sanders EA, Peters AC, Gratana JW, Hughes RA. Guillain-Barre syndrome after varicella-zoster infection. Report of two cases. J Neurol 1987;234:437–439.PubMedCrossRefGoogle Scholar
  61. 61.
    Tsukada N, Koh CS, Inoue A, Yanagisawa N. Demyelinating neuropathy associated with hepatitis B virus infection. Detection of immune complexes composed of hepatitis B virus surface antigen. J Neurol Sci 1987;77:203–216.PubMedCrossRefGoogle Scholar
  62. 62.
    Thornton CA, Latif AS, Emmanuel JC. Guillain-Barre syndrome associated with human immunodeficiency virus infection in Zimbabwe. Neurology 1991;41:812–815.PubMedGoogle Scholar
  63. 63.
    Rees JH, Soudain SE, Gregson NA, Hughes RA. Campylobacter jejuni infection and Guillain-Barre syndrome. N Engl J Med 1995;333:1374–1379.PubMedCrossRefGoogle Scholar
  64. 64.
    Mishu B, Ilyas AA, Koski CL, et al. Serologic evidence of previous Campylobacter jejuni infection in patients with the Guillain-Barre syndrome. Ann Intern Med 1993;118:947–953.PubMedGoogle Scholar
  65. 65.
    Hariharan H, Naseema K, Kumaran C, Shanmugam J, Nair MD, Radhakrishnan K. Detection of Campylobacter jejuni/C. coli infection in patients with Guillain-Barre syndrome by serology and culture. New Microbiol 1996;19:267–271.PubMedGoogle Scholar
  66. 66.
    Jacobs BC, Endtz H, Van der Meche FG, Hazenberg MP, Achtereekte HA, Van Doorn PA. Serum anti-GQ1b IgG antibodies recognize surface epitopes on Campylobacter jejuni from patients with Miller Fisher syndrome. Ann Neurol 1995;37:260–264.PubMedCrossRefGoogle Scholar
  67. 67.
    Kusunoki S, Shiina M, Kanazawa I. Anti-Gal-C antibodies in GBS subsequent to mycoplasma infection: evidence of molecular mimicry. Neurology 2001;57:736–738.PubMedGoogle Scholar
  68. 68.
    Jacobs BC, Endtz HP, Van der Meche FG, Hazenberg MP, de Klerk MA, Van Doorn PA. Humoral immune response against Campylobacter jejuni lipopolysaccharides in Guillain-Barre and Miller Fisher syndrome. J Neuroimmunol 1997;79:62–68.PubMedCrossRefGoogle Scholar
  69. 69.
    Lee WM, Westrick MA, Macher BA. High-performance liquid chromatography of long-chain neutral glycosphingolipids and gangliosides. Biochim Biophys Acta 1982;712:498–504.PubMedGoogle Scholar
  70. 70.
    Moran AP, Rietschel ET, Kosunen TU, Zahringer U. Chemical characterization of Campylobacter jejuni lipopolysaccharides containing N-acetylneuraminic acid and 2,3-diamino-2,3-dideoxy-D-glucose. J Bacteriol 1991;173:618–626.PubMedGoogle Scholar
  71. 71.
    Gregson NA, Rees JH, Hughes RA. Reactivity of serum IgG anti-GM1 ganglioside antibodies with the lipopolysaccha-ride fractions of Campylobacter jejuni isolates from patients with Guillain-Barre syndrome (GBS). J Neuroimmunol 1997;73:28–36.PubMedCrossRefGoogle Scholar
  72. 72.
    Jacobs BC, Hazenberg MP, Van Doorn PA, Endtz HP, Van der Meche FG. Cross-reactive antibodies against gangliosides and Campylobacter jejuni lipopolysaccharides in patients with Guillain-Barre or Miller Fisher syndrome. J Infect Dis 1997;175:729–733.PubMedGoogle Scholar
  73. 73.
    Hao Q, Saida T, Kuroki S, et al. Antibodies to gangliosides and galactocerebroside in patients with Guillain-Barre syndrome with preceding Campylobacter jejuni and other identified infections. J Neuroimmunol 1998;81:116–126.PubMedCrossRefGoogle Scholar
  74. 74.
    Goodyear CS, O’Hanlon GM, Plomp JJ, et al. Monoclonal antibodies raised against Guillain-Barre syndrome-associated Campylobacter jejuni lipopolysaccharides react with neuronal gangliosides and paralyze muscle-nerve preparations. J Clin Invest 1999;104:697–708.PubMedGoogle Scholar
  75. 75.
    Plomp JJ, Molenaar PC, O’Hanlon GM, et al. Miller Fisher anti-GQ1b antibodies: alpha-latrotoxin-like effects on motor end plates. Ann Neurol 1999;45:189–199.PubMedCrossRefGoogle Scholar
  76. 76.
    O’Hanlon GM, Paterson GJ, Veitch J, Wilson G, Willison HJ. Mapping immunoreactive epitopes in the human peripheral nervous system using human monoclonal anti-GM1 ganglioside antibodies. Acta Neuropathol (Berl) 1998;95:605–616.CrossRefGoogle Scholar
  77. 77.
    Koga M, Yuki N, Kashiwase K, Tadokoro K, Juji T, Hirata K. Guillain-Barre and Fisher’s syndromes subsequent to Campylobacter jejuni enteritis are associated with HLA-B54 and Cw1 independent of anti-ganglioside antibodies. J Neuroimmunol 1998;88:62–66.PubMedCrossRefGoogle Scholar
  78. 78.
    Drulovic J, Dujmovic I, Stojsavlevic N, et al.Transverse myelopathy in the antiphospholipid antibody syndrome: pinworm infestation as a trigger? J Neurol Neurosurg Psychiatry 2000;68:249.PubMedCrossRefGoogle Scholar
  79. 79.
    Bohach GA, Fast DJ, Nelson RD, Schlievert PM. Staphylococcal and streptococcal pyrogenic toxins involved in toxic shock syndrome and related illnesses. Crit Rev Microbiol 1990;17:251–272.PubMedGoogle Scholar
  80. 80.
    Bohach GA. Staphylococcal enterotoxins B and C. Structural requirements for superantigenic and entertoxigenic activities. Prep Biochem Biotechnol 1997;27:79–110.PubMedCrossRefGoogle Scholar
  81. 81.
    Betley MJ, Borst DW, Regassa LB. Staphylococcal enterotoxins, toxic shock syndrome toxin and streptococcal pyrogenic exotoxins: a comparative study of their molecular biology. Chem Immunol 1992;55:1–35.PubMedCrossRefGoogle Scholar
  82. 82.
    Zhang J, Vandevyver C, Stinissen P, Mertens N, Berg-Loonen E, Raus J. Activation and clonal expansion of human myelin basic protein-reactive T cells by bacterial superantigens. J Autoimmun 1995;8:615–632.PubMedCrossRefGoogle Scholar
  83. 83.
    Kappler J, Kotzin B, Herron L, et al. V beta-specific stimulation of human T cells by staphylococcal toxins. Science 1989;244:811–813.PubMedCrossRefGoogle Scholar
  84. 84.
    Hong SC, Waterbury G, Janeway CA, Jr. Different superantigens interact with distinct sites in the Vbeta domain of a single T cell receptor. J Exp Med 1996;183:1437–1446.PubMedCrossRefGoogle Scholar
  85. 85.
    Webb SR, Gascoigne NR. T-cell activation by superantigens. Curr Opin Immunol 1994;6:467–475.PubMedCrossRefGoogle Scholar
  86. 86.
    Acha-Orbea H, MacDonald HR. Superantigens of mouse mammary tumor virus. Annu Rev Immunol 1995;13:459–486.PubMedCrossRefGoogle Scholar
  87. 87.
    Brocke S, Gaur A, Piercy C, et al. Induction of relapsing paralysis in experimental autoimmune encephalomyelitis by bacterial superantigen. Nature 1993;365:642–644.PubMedCrossRefGoogle Scholar
  88. 88.
    Racke MK, Quigley L, Cannella B, Raine CS, McFarlin DE, Scott DE. Superantigen modulation of experimental allergic encephalomyelitis: activation of anergy determines outcome. J Immunol 1994;152:2051–2059.PubMedGoogle Scholar
  89. 89.
    Brocke S, Hausmann S, Steinman L, Wucherpfennig KW. Microbial peptides and superantigens in the pathogenesis of autoimmune diseases of the central nervous system. Semin Immunol 1998;10:57–67.PubMedCrossRefGoogle Scholar
  90. 90.
    Kotzin BL, Leung DY, Kappler J, Marrack P. Superantigens and their potential role in human disease. Adv Immunol 1993;54:99–166.PubMedCrossRefGoogle Scholar
  91. 91.
    Vanderlugt CL, Begolka WS, Neville KL, et al. The functional significance of epitope spreading and its regulation by co-stimulatory molecules. Immunol Rev 1998;164:63–72.PubMedCrossRefGoogle Scholar
  92. 92.
    Fukazawa T, Hamada T, Kikuchi S, Sasaki H, Tashiro K, Maguchi S. Antineutrophil cytoplasmic antibodies and the optic-spinal form of multiple sclerosis in Japan. J Neurol Neurosurg Psychiatry 1996;61:203–204.PubMedGoogle Scholar
  93. 93.
    Leonardi A, Arata L, Farinelli M, et al. Cerebrospinal fluid and neuropathological study in Devic’s syndrome. Evidence of intrathecal immune activation. J Neurol Sci 1987;82:281–290.PubMedCrossRefGoogle Scholar
  94. 94.
    O’Riordan JI, Gallagher HL, Thompson AJ, et al. Clinical, CSF, and MRI findings in Devic’s neuromyelitis optica. J Neurol Neurosurg Psychiatry 1996;60:382–387.PubMedGoogle Scholar
  95. 95.
    Reindl M, Linington C, Brehm U, et al. Antibodies against the myelin oligodendrocyte glycoprotein and the myelin basic protein in multiple sclerosis and other neurological diseases: a comparative study. Brain 1999;122(Pt 11):2047–2056.PubMedCrossRefGoogle Scholar
  96. 96.
    Haase CG, Schmidt S. Detection of brain-specific autoantibodies to myelin oligodendrocyte glycoprotein, S100beta and myelin basic protein in patients with Devic’s neuromyelitis optica. Neurosci Lett 2001;307:131–133.PubMedCrossRefGoogle Scholar
  97. 97.
    Garcia-Merino A, Blasco MR. Recurrent transverse myelitis with unusual long-standing Gd-DTPA enhancement. J Neurol 2000;247:550–551.PubMedCrossRefGoogle Scholar
  98. 98.
    Renard JL, Guillamo JS, Ramirez JM, Taillia H, Felten D, Buisson Y. [Acute transverse cervical myelitis following hepatitis B vaccination. Evolution of anti-HBs antibodies]. Presse Med 1999;28:1290–1292.PubMedGoogle Scholar
  99. 99.
    Matsui M, Kakigi R, Watanabe S, Kuroda Y. Recurrent demyelinating transverse myelitis in a high titer HBs-antigen carrier. J Neurol Sci 1996;139:235–237.PubMedCrossRefGoogle Scholar
  100. 100.
    Kira J, Kawano Y, Yamasaki K, Tobimatsu S. Acute myelitis with hyperIgEaemia and mite antigen specific IgE: atopic myelitis. J Neurol Neurosurg Psychiatry 1998;64:676–679.PubMedGoogle Scholar
  101. 101.
    Kikuchi H, Osoegawa M, Ochi H, et al. Spinal cord lesions of myelitis with hyperIgEemia and mite antigen specific IgE (atopic myelitis) manifest eosinophilic inflammation. J Neurol Sci 2001;183:73–78.PubMedCrossRefGoogle Scholar
  102. 102.
    Piper PG. Disseminated lupus erythematosus with involvement of the spinal cord. JAMA 1953;153:215–217.Google Scholar
  103. 103.
    Adrianakos AA, Duffy J, Suzuki M, Sharp JT. Transverse myelitis in systemic lupus erythematosus: report of three cases and review of the literature. Ann Intern Med 1975;83:616–624.Google Scholar
  104. 104.
    Nakano I, Mannen T, Mizutani T, Yokohari R. Peripheral white matter lesions of the spinal cord with changes in small arachnoid arteries in systemic lupus erythematosus. Clin Neuropathol 1989;8:102–108.PubMedGoogle Scholar
  105. 105.
    Sinkovics JG, Gyorkey F, Thoma GW. A rapidly fatal case of systemic lupus erythematosus: structure resembling viral nucleoprotein strands in the kidney and activities of lymphocytes in culture. Texas Rep Biol Med 1969;27: 887–908.Google Scholar
  106. 106.
    Weil MH. Disseminated lupus erythematosus with massive hemorrhagic manifestations and paraplegia. Lancet 1955;75:353–360.Google Scholar
  107. 107.
    Ayala L, Barber DB, Lomba MR, Able AC. Intramedullary sarcoidosis presenting as incomplete paraplegia: case report and literature review. J Spinal Cord Med 2000;23:96–99.PubMedGoogle Scholar
  108. 108.
    Garcia-Zozaya IA. Acute transverse myelitis in a 7-month-old boy. J Spinal Cord Med 2001;24:114–118.PubMedGoogle Scholar
  109. 109.
    Miller JA, Munro DD. Topical corticosteroids: clinical pharmacology and therapeutic use. Drugs 1980;19:119–134.PubMedGoogle Scholar
  110. 110.
    Hallam NF. The use and abuse of topical corticosteroids in dermatology. Scott Med J 1980;25:287–291.PubMedGoogle Scholar
  111. 111.
    Elovaara I, Lalla M, Spare E, Lehtimaki T, Dastidar P. Methylprednisolone reduces adhesion molecules in blood and cerebrospinal fluid in patients with MS. Neurology 1998;51:1703–1708.PubMedGoogle Scholar
  112. 112.
    Sellebjerg F, Christiansen M, Jensen J, Frederiksen JL. Immunological effects of oral high-dose methylprednisolone in acute optic neuritis and multiple sclerosis. Eur J Neurol 2000;7:281–289.PubMedCrossRefGoogle Scholar
  113. 113.
    Williams CS, Butler E, Roman GC. Treatment of myelopathy in Sjogren syndrome with a combination of prednisone and cyclophosphamide. Arch Neurol 2001;58:815–819.PubMedCrossRefGoogle Scholar
  114. 114.
    Dumas JL, Valeyre D, Chapelon-Abric C, et al. Central nervous system sarcoidosis: follow-up at MR imaging during steroid therapy. Radiology 2000;214:411–420.PubMedGoogle Scholar
  115. 115.
    Bracken MB, Shepard MJ, Collins WF, et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 1990;322:1405–1411.PubMedCrossRefGoogle Scholar
  116. 116.
    Defresne P, Meyer L, Tardieu M, et al. Efficacy of high dose steroid therapy in children with severe acute transverse myelitis. J Neurol Neurosurg Psychiatry 2001;71:272–274.PubMedCrossRefGoogle Scholar
  117. 117.
    Lahat E, Pillar G, Ravid S, Barzilai A, Etzioni A, Shahar E. Rapid recovery from transverse myelopathy in children treated with methylprednisolone. Pediatr Neurol 1998;19:279–282.PubMedCrossRefGoogle Scholar
  118. 118.
    Sebire G, Hollenberg H, Meyer L, Huault G, Landrieu P, Tardieu M. High dose methylprednisolone in severe acute transverse myelopathy. Arch Dis Child 1997;76:167–168.PubMedGoogle Scholar
  119. 119.
    Kennedy PG, Weir AI. Rapid recovery of acute transverse myelitis treated with steroids. Postgrad Med J 1988;64:384–385.PubMedGoogle Scholar
  120. 120.
    Kalita J, Misra UK. Is methyl prednisolone useful in acute transverse myelitis? Spinal Cord 2001;39:471–476.PubMedCrossRefGoogle Scholar
  121. 121.
    Weinshenker BG. Plasma exchange for severe attacks of inflammatory demyelinating diseases of the central nervous system. J Clin Apheresis 2001;16:39–42.PubMedCrossRefGoogle Scholar
  122. 122.
    Weinshenker BG. Therapeutic plasma exchange for acute inflammatory demyelinating syndromes of the central nervous system. J Clin Apheresis 1999;14:144–148.PubMedCrossRefGoogle Scholar
  123. 123.
    Weinshenker BG, O’Brien PC, Petterson TM, et al. A randomized trial of plasma exchange in acute central nervous system inflammatory demyelinating disease. Ann Neurol 1999;46:878–886.PubMedCrossRefGoogle Scholar
  124. 124.
    Keegan M, Pineda AA, McClelland RL, Darby CH, Rodriguez M, Weinshenker BG. Plasma exchange for severe attacks of CNS demyelination: predictors of response. Neurology 2002;58:143–146.PubMedCrossRefGoogle Scholar
  125. 125.
    Wollinsky KH, Hulser PJ, Brinkmeier H, et al. CSF filtration is an effective treatment of Guillain-Barre syndrome: a randomized clinical trial. Neurology 2001;57:774–780.PubMedGoogle Scholar
  126. 126.
    Irani DN, Kerr DA. 14-3-3 protein in the cerebrospinal fluid of patients with acute transverse myelitis. Lancet 2000;355:901.PubMedCrossRefGoogle Scholar
  127. 127.
    Robinson WH, Steinman L, Utz PJ. Protein arrays for autoantibody profiling and fine-specificity mapping. Proteomics 2003;3:2077–2084.PubMedCrossRefGoogle Scholar
  128. 128.
    Robinson WH, Fontoura P, Lee B J, et al. Protein microarray s guide tolerizing DNA vaccine treatment of autoimmune encephalomyelitis. Nat Biotechnol 2003;21:1033–1039.PubMedCrossRefGoogle Scholar
  129. 129.
    Mohan N, Edwards ET, Cupps TR, et al. Demyelination occurring during anti-tumor necrosis factor alpha therapy for inflammatory arthritides. Arthritis Rheum 2001;44:2862–2869.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Chitra Krishnan
    • 1
  • Adam I. Kaplin
    • 2
  • Deepa M. Deshpande
    • 1
  • Carlos A. Pardo
    • 1
  • Douglas A. Kerr
    • 1
  1. 1.Transverse Myelitis Center, Department of NeurologyJohns Hopkins University School of MedicineBaltimore
  2. 2.Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltmore

Personalised recommendations